AiiDA documentation
Release 0.5.0

Giovanni Pizzi Andrea Cepellotti
Riccardo Sabatini Nicola Marzari Boris Kozinsky

December 17, 2015

Contents

1 User’s guide
1.1 User'sguide
2 Other guide resources
2.1 Other guide resources
3 Developer’s guide
3.1 Developer’s guide . .
4 Modules provided with aiida
4.1 Modules
5 Indices and tables
Python Module Index

111
111

121
121

229
229

341

343

AiiDA documentation, Release 0.5.0

o5 AlDA

Fig. 1: Automated Interactive Infrastructure and Database for Computational Science

AiiDA is a sophisticated framework designed from scratch to be a flexible and scalable infrastructure for computational
science. Being able to store the full data provenance of each simulation, and based on a tailored database solution built
for efficient data mining implementations, AiiDA gives the user the ability to interact seamlessly with any number
of HPC machines and codes thanks to its flexible plugin interface, together with a powerful workflow engine for the
automation of simulations.

The software is available at http://www.aiida.net.
If you use AiiDA for your research, please cite the following work:

Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola Marzari, and Boris Kozinsky, AiiDA: auto-
mated interactive infrastructure and database for computational science, Comp. Mat. Sci 111, 218-230
(2016); http://dx.doi.org/10.1016/j.commatsci.2015.09.013; http://www.aiida.net.

This is the documentation of the AiiDA framework. For the first setup, configuration and usage, refer to the user’s
guide below.

If, instead, you plan to add new plugins, or you simply want to understand AiiDA internals, refer to the developer’s
guide.

Contents 1

http://www.aiida.net
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
http://www.aiida.net

AiiDA documentation, Release 0.5.0

2 Contents

CHAPTER 1

User’s guide

1.1 User’s guide

1.1.1 Databases for AiiDA

AiiDA needs a database backend to store the nodes, node attributes and other information, allowing the end user to
perform very fast queries of the results.

Before installing AiiDA, you have to choose (and possibly configure) a suitable supported backend.

Supported databases

Note: For those who do not want to read all this section, the short answer if you want to choose a database is SQLite
if you just want to try out AiiDA without spending too much time in configuration (but SQLite is not suitable for

production runs), while PostgreSQL for regular production use of AiiDA.

For those who are interested in the details, there are three supported database backends:

* SQLite The SQLite backend is the fastest to configure: in fact, it does not really use a “real” database, but stores
everything in a file. This is great if you never configured a database before and you just want to give AiiDA a
try. However, keep in mind that it has many big shortcomings for a real AiiDA usage!

In fact, since everything is stored on a single file, each access (especially when writing or doing a transaction)
to the database locks it: this means that a second thread wanting to access the database has to wait that the lock
is released. We set up a timeout of about 60 seconds for each thread to retry to connect to the database, but after
that time you will get an exception, with the risk of storing corrupted data in the AiiDA repository.

Therefore, it is OK to use SQLite for testing, but as soon as you want to use AiiDA in production, with more
than one calculation submitted at each given time, please switch to a real database backend, like PostgreSQL.

Note: note, however, that typically SQLite is pretty fast for queries, once the database is loaded into memory,
so it could be an interesting solution if you do not want to launch new calculations, but only to import the results

and then query them (in a single-user approach).

e PostgreSQL This is the database backend that the we, the AiiDA developers, suggest to use, because it is the
one with most features.

e MySQL This is another possible backend that you could use. However, we suggest that you use PostgreSQL
instead of MySQL, due to some MySQL limitations (unless you have very strong reasons to prefer MySQL over
PostgreSQL). In particular, some of the limitations of MySQL are:

http://www.sqlite.org/
http://www.postgresql.org/
http://www.mysql.com/

AiiDA documentation, Release 0.5.0

— Only a precision of 1 second is possible for time objects, while PostgreSQL supports microsecond preci-
sion. This can be relevant for a proper sorting of calculations launched almost simultaneously.

— Indexed text columns can have an hardcoded maximum length. This can give issues with attributes, if
you have very long key names or nested dictionaries/lists. These cannot be natively stored and therefore
you either end up storing a JSON (therefore partially losing query capability) or you can even incur in
problems.

Setup instructions

For any database, you may need to install a specific python package using pip; this typically also requires to have the
development libraries installed (the . h C header files). Refer to the installation documentation for more details.

SQLite

To use SQLite as backend, please install:

‘sudo apt-get install libsglite3-dev

SQLite requires almost no configuration. In the verdi install phase, just type sglite when the Database
engine is required, and then provide an absolute path for the A1iDA Database location field, that will be
the file that will store the full database (if no file exists yet in that position, a fresh AiiDA database will be created).

Note: Do not forget to backup your database (instructions fere).

PostgreSQL

Note: We assume here that you already installed PostgreSQL on your computer and that you know the password for
the postgres user (there are many tutorials online that explain how to do it, depending on your operating system

and distribution). To install PostgreSQL under Ubuntu, you can do:

sudo apt-get install postgresgl-9.1
sudo apt—-get install postgresgl-server-dev-9.1
sudo apt-get install postgresgl-client-9.1

On Mac OS X, you can download binary packages to install PostgreSQL from the official website.

To properly configure a new database for AiiDA with PostgreSQL, you need to create a new aiida user and a new
aiidadb table.

To create the new aiida user and the aiidadb database, first become the UNIX postgres user, typing as root:

‘su — postgres

(or equivalently type sudo su - postgres, depending on your distribution).

Then type the following command to enter in the PostgreSQL shell in the modality to create users:

‘psql templatel

To create a new user for postgres (you can call it simply aiida, as in the example below), type in the psgl shell:

‘CREATE USER aiida WITH PASSWORD 'the_aiida_password';

4 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

where of course you have to change the_aiida_password with a valid password.

Note: Remember, however, that since AiiDA needs to connect to this database, you will need to store this password in
clear text in your home folder for each user that wants to have direct access to the database, therefore choose a strong

password, but different from any that you already use!

Note: Did you just copy and paste the line above, therefore setting the password to the_aiida_password? Then,
let’s change it! Choose a good password this time, and then type the following command (this time replacing the string

new_aiida_password with the password you chose!):

’ALTER USER aiida PASSWORD 'new_aiida_password';

Then create a new aiidadb database for AiiDA, and give ownership to user aiida created above:

‘CREATE DATABASE aiidadb OWNER aiida;

and grant all privileges on this DB to the previously-created aiida user:

’GRANT ALL PRIVILEGES ON DATABASE aiidadb to aiida;

Finally, type \ g to quit the templatel shell, and exit to exit the PostgreSQL shell.

To test if this worked, type this on a bash terminal (as a normal user):

psgl -h localhost -d aiidadb -U aiida -W

and type the password you inserted before, when prompted. If everything worked, you should get no error and the
psql shell. Type \ g to exit.

If you use the names suggested above, in the verdi install phase you should use the following parameters:

Database engine: postgresqgl

PostgreSQL host: localhost

PostgreSQL port: 5432

AiiDA Database name: aiidadb

AiiDA Database user: aiida

AiiDA Database password: the_aiida_password

Note: Do not forget to backup your database (instructions /ere).

Note: If you want to move the physical location of the data files on your hard drive AFTER it has been created and
filled, look at the instructions /ere.

Note: Due to the presence of a bug, PostgreSQL could refuse to restart after a crash. If this happens you should
follow the instructions written here.

MySQL

To use properly configure a new database for AiiDA with MySQL, you need to create a new aiida user and a new
aiidadb table.

We assume here that you already installed MySQL on your computer and that you know your MySQL root password
(there are many tutorials online that explain how to do it, depending on your operating system and distribution). To
install mysql-client, you can do:

1.1. User’s guide 5

https://wiki.postgresql.org/wiki/May_2015_Fsync_Permissions_Bug/

AiiDA documentation, Release 0.5.0

‘sudo apt-get install libmysglclient-dev

After MySQL is installed, connect to it as the MySQL root account to create a new account. This can be done typing
in the shell:

’mysql -h localhost mysgl -u root -p

(we are assuming that you installed the database on 1ocalhost, even if this is not strictly required - if this is not
the case, change 1ocalhost with the proper database host, but note that also some of the commands reported below
need to be adapted) and then type the MySQL root password when prompted.

In the MySQL shell, type the following command to create a new user:

CREATE USER 'aiida'@'localhost' IDENTIFIED BY 'the_aiida_password';

where of course you have to change the_aiida_password with a valid password.

Note: Remember, however, that since AiiDA needs to connect to this database, you will need to store this password in
clear text in your home folder for each user that wants to have direct access to the database, therefore choose a strong

password, but different from any that you already use!

Then, still in the MySQL shell, create a new database named aiida using the command:

] CREATE DATABASE aiidadb;

and give all privileges to the aiida user on this database:

’GRANT ALL PRIVILEGES on aiidadb.* to aiida@localhost;

Note: “’(only for developers)” If you are a developer and want to run the tests using the MySQL database (to do so,
you also have to set the tests.use_sqglite AiiDA property to False using the verdi devel setproperty

tests.use_sqglite False command), you also have to create a test_aiidadb database. In this case, run
also the two following commands:

CREATE DATABASE test_aiidadb;
GRANT ALL PRIVILEGES on test_aiidadb.* to aiida@localhost;

If you use the names suggested above, in the verdi install phase you should use the following parameters:

Database engine: mysqgl

mySQL host: localhost

mySQL port: 3306

AiiDA Database name: aiidadb

AiiDA Database user: aiida

AiiDA Database password: the_aiida_passwd

Note: Do not forget to backup your database (instructions /ere).

1.1.2 AiiDA Backup

In this page you will find useful information on how to backup your database, how to move it to a different location
and how to backup your repository.

6 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

How to backup the databases

It is strongly advised to backup the content of your database daily. Below are instructions to set this up for the SQLite,
PostgreSQL and MySQL databases, under Ubuntu (tested with version 12.04).

SQLite backup

Note: Perform the following operation after having set up AiiDA. Only then the ~/.aiida folder (and the files
within) will be created.

Simply make sure your database folder (typically /home/USERNAME/.aiida/ containing the file aiida.db and the
repository directory) is properly backed up by your backup software (under Ubuntu, Backup -> check the “Fold-
ers” tab).

PostgreSQL backup

Note: Perform the following operation after having set up AiiDA. Only then the ~/.aiida folder (and the files
within) will be created.

The database files are not put in the . aiida folder but in the system directories which typically are not backed up.
Moreover, the database is spread over lots of files that, if backed up as they are at a given time, cannot be re-used to
restore the database.

So you need to periodically (typically once a day) dump the database contents in a file that will be backed up. This
can be done by the following bash script backup_postgresqgl. sh:

#!/bin/bash

AIIDAUSER=aiida

AIIDADB=aiidadb

ATIIDAPORT=5432

STORE THE PASSWORD, IN THE PROPER FORMAT, IN THE ~/.pgpass file

see http://www.postgresqgl.org/docs/current/static/libpg-pgpass.html
ATIIDALOCALTMPDUMPFILE=~/.aiida/${AIIDADB}-backup.psqgl.gz

if [-e ${AIIDALOCALTMPDUMPFILE}]
then

mv ${AIIDALOCALTMPDUMPFILE} S${AIIDALOCALTMPDUMPFILE}~
fi

NOTE: password stored in ~/.pgpass, where pg_dump will read it automatically
pg_dump -h localhost -p $AIIDAPORT -U $ATIDAUSER SAIIDADB | gzip > $ATIIDALOCALTMPDUMPFI]

LE

Before launching the script you need to create the file ~/ . pgpass to avoid having to enter your database password
each time you use the script. It should look like (. pgpass):

localhost:5432:aiidadb:aiida:YOUR_DATABASE_PASSWORD

where YOUR_DATABASE_PASSWORD is the password you set up for the database.

Note: Do not forget to put this file in ~/ and to name it . pgpass. Remember also to give it the right permissions
(read and write): chmod u=rw .pgpass.

1.1. User’s guide 7

rm SAIII

AiiDA documentation, Release 0.5.0

To dump the database in a file automatically everyday, you can add the following script
backup-aiidadb-USERNAME in /etc/cron.daily/, which will launch the previous script once per
day:

#!/bin/bash
su USERNAME -c "/home/USERNAME/.aiida/backup_postgresgl.sh"

where all instances of USERNAME are replaced by your actual user name. The su USERNAME makes the dumped file
be owned by you rather than by root. Remember to give the script the right permissions:

‘sudo chmod +x /etc/cron.daily/backup-aiidadb-USERNAME

Finally make sure your database folder (/home/USERNAME/.aiida/) containing this dump file and the
repository directory, is properly backed up by your backup software (under Ubuntu, Backup -> check the “Fold-
ers” tab).

Note: If your database is very large (more than a few hundreds of thousands of nodes and workflows), a standard
backup of your repository folder will be very slow (up to days), thus slowing down your computer dramatically. To

fix this problem you can set up an incremental backup of your repository by following the instructions /ere.

MySQL backup

Todo
Back-up instructions for the MySQL database.

We do not have explicit instructions on how to back-up MySQL yet, but you can find plenty of information on Google.

How to retrieve the database from a backup
PostgreSQL backup

In order to retrieve the database from a backup, you have first to create a empty database following the instructions
described above in “Setup instructions: PostgreSQL” except the verdi install phase. Once that you have created
your empty database with the same names of the backuped one, type the following command:

psgl -h localhost -U aiida -d aiidadb -f aiidadb-backup.psqgl

How to move the physical location of a database

It might happen that you need to move the physical location of the database files on your hard-drive (for instance, due
to the lack of space in the partition where it is located). Below we explain how to do it.

PostgreSQL move

First, make sure you have a backup of the full database (see instructions /ere), and that the AiiDA daemon is not
running. Then, become the UNIX postgres user, typing as root:

su — postgres

8 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

(or, equivalently, type sudo su - postgres, depending on your distribution).

Stop the postgres database daemon:

‘service postgresgl stop

Then enter the postgres shell:

‘psql

and look for the current location of the data directory:

’SHOW data_directory;

Typically you should get something like /var/lib/postgresgl/9.1/main.

Note: If you are experiencing memory problems and cannot enter the postgres shell, you can look directly
into the file /etc/postgresqgl/9.1/main/postgresgl.conf and check out the line defining the variable

data_directory.

Then exit the shell with \ g, go to this directory and copy all the files to the new directory:

cp —a SOURCE_DIRECTORY DESTINATION_DIRECTORY

where SOURCE_DIRECTORY is the directory you got from the SHOW data_directory; command, and
DESTINATION_DIRECTORY is the new directory for the database files.

Make sure the permissions, owner and group are the same in the old and new directory (including all levels above the
DESTINATION_DIRECTORY). The owner and group should be both postgres, at the notable exception of some
symbolic links in server.crt and server.key.

Note: If the permissions of these links need to be changed, use the —h option of chown to avoid changing the
permissions of the destination of the links. In case you have changed the permission of the links destination by

mistake, they should typically be (beware that this might depend on your actual distribution!):

-rw-r——-r-— 1 root root 989 Mar 1 2012 /etc/ssl/certs/ssl-cert-snakeoil.pem
—IW-r————— 1 root ssl-cert 1704 Mar 1 2012 /etc/ssl/private/ssl-cert-snakeoil.key

Then you can change the postgres configuration file, that should typically be located here:

’/etc/postgresql/9.1/main/postgresql.conf

Make a backup version of this file, then look for the line defining data_directory and replace it with the new
data directory path:

‘data_directory = 'NEW_DATA_DIRECTORY'

Then start again the database daemon:

‘service postgresgl start

You can check that the data directory has indeed changed:

psql
SHOW data_directory;

\gq

Before removing definitely the previous location of the database files, first rename it and test AiiDA with the new
database location (e.g. do simple queries like verdi code 1list or create a node and store it). If everything went
fine, you can delete the old database location.

1.1. User’s guide 9

AiiDA documentation, Release 0.5.0

How to set up an incremental backup for the repository

Apart from the database backup, you should also backup the AiiDA repository. For small repositories, this can be
easily done by a simple directory copy or, even better, with the use of the rsync command which can copy only
the differences. However, both of the aforementioned approaches are not efficient in big repositories where even a
partial recursive directory listing may take significant time, especially for filesystems where accessing a directory has
a constant (and significant) latency time. Therefore, we provide scripts for making efficient backups of the AiiDA
repository.

Before running the backup script, you will have to configure @ it. There-
fore you should execute the backup_setup.py which is located under
MY_AIIDA_FOLDER/aiida/common/additions/backup_script. For example:

python MY_ATIIDA_FOLDER/aiida/common/additions/backup_script/backup_setup.py

This will ask a set of questions. More precisely, it will initially ask for:

* The backup folder. This is the destination of the backup configuration file. By default a folder named backup
in your . aiida directory is proposed to be created.

e The destination folder of the backup. This is the destination folder of the files to be
backed up. By default it is a folder inside the aforementioned backup folder (e.g.
/home/aiida_user/.aiida/backup/backup_dest).

Note: You should backup the repository on a different disk than the one in which you have the AiiDA repository! If
you just use the same disk, you don’t have any security against the most common data loss cause: disk failure. The

best option is to use a destination folder mounted over ssh. For this you need to install sshfs (under ubuntu: sudo
apt—get install sshfs).

E.g. Imagine that you run your calculations on server_1 and you would like to take regular repository backups to
server_2. Then, you could mount a server_2 directory via sshfs on server_1 using the following command on server_1:

sshfs —o idmap=user -o rw backup_user@server_2:/home/backup_user/backup_destination_dir/
/home/aiida_user/remote_backup_dir/

You can put this line into the actions performed at start-up, so that the remote directory is mounted automatically after
a reboot (but do not put it in your .bashrc file otherwise each time you open a new terminal, your computer will
complain that the mount point is not empty...).

A template backup configuration file (backup_info. json.tmpl) will be copied in the backup folder. You can
set the backup variables by yourself after renaming the template file to backup_info. json, or you can answer the
questions asked by the script, and then backup_info. json will be created based on you answers.

The main script backs up the AiiDA repository that is referenced by the current AiiDA database. The script will
start from the oldest_object_backedup date or the date of the oldest node/workflow object found and it
will periodically backup (in periods of periodicity days) until the ending date of the backup specified by
end_date_of_backup ordays_to_backup

The backup parameters to be set in the backup_info. json are:

* periodicity (indays): The backup runs periodically for a number of days defined in the periodicity variable.
The purpose of this variable is to limit the backup to run only on a few number of days and therefore to limit the
number of files that are backed up at every round. e.g. "periodicity": 2 Example: if you have files in
the AiiDA repositories created in the past 30 days, and periodicity is 15, the first run will backup the files of the
first 15 days; a second run of the script will backup the next 15 days, completing the backup (if it is run within
the same day). Further runs will only backup newer files, if they are created.

* oldest_object_backedup (timestamp or null): This is the timestamp of the oldest object that was backed
up. If you are not aware of this value or if it is the first time that you start a backup up for this repository,

10 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

then set this value to null. Then the script will search the creation date of the oldest workflow or node
object in the database and it will start the backup from that date. E.g. "oldest_object_backedup":
"2015-07-20 11:13:08.145804+02:00"

* end_date_of_backup: If set, the backup script will backup files that have a modification date until the
value specified by this variable. If not set, the ending of the backup will be set by the following variable
(days_to_backup) which specifies how many days to backup from the start of the backup. If none of
these variables are set (end_date_of_backup and days_to_backup), then the end date of backup
is set to the current date. E.g. "end_date_of_backup": null or "end_date_of_backup":
"2015-07-20 11:13:08.145804+02:00"

* days_to_backup: If set, you specify how many days you will backup from the starting date of your backup.
Ifitsetto null and also end_date_of_backup is setto null, then the end date of the backup is set to the
current date. You can not set days_to_backup & end_date_of_backup at the same time (it will lead
to an error). E.g. "days_to_backup": nullor"days_to_backup": 5

* backup_length_threshold (in hours): The backup script runs in rounds and on every round it backs-
up a number of days that are controlled primarily by periodicity and also by end_date_of_backup
/ days_to_backup, for the last backup round. The backup_length_threshold specifies the lowest
acceptable round length. This is important for the end of the backup.

* backup_dir: The destination directory of the backup. e.g. "backup_dir":
"/home/aiida_user/.aiida/backup/backup_dest"

To start the backup, run the start_backup.py script. Run as often as needed to complete a full backup, and then
run it periodically (e.g. calling it from a cron script, for instance every day) to backup new changes.

Note: You can set up a cron job using the following command:

’sudo crontab -u aiida_user -e ‘

It will open an editor where you can add a line of the form:

’OO 03 » x % /home/aiida_user/.aiida/backup/start_backup.py 2>&1 | mail -s "Incremental #ackup of the

This will launch the backup of the database everyday at 3 AM, and send the output (or any error message) to the email
address of the user (provided the mail command — from mailutils —is configured appropriately).

Finally, do not forget to exclude the repository folder from the normal backup of your home directory!

1.1.3 Installation and Deployment of AiiDA

If you are updating from a previous version and you don’t want to reinstall everything from scratch, read the instruc-
tions here.

Supported architecture
AiiDA has a few strict requirements, in its current version: first, it will run only on Unix-like systems - it is tested (and
developed) in Mac OS X and Linux (Ubuntu), but other Unix flavours should work as well.

Moreover, on the clusters (computational resources) side, it expects to find a Unix system, and the default shell is
required to be bash.

1.1. User’s guide 11

AiiDA documentation, Release 0.5.0

Installing python

AiiDA requires python 2.7.x (only CPython has been tested). It is probable that you already have a version of python
installed on your computer. To check, open a terminal and type:

‘python -V

that will print something like this:

’Python 2.7.3

If you don’t have python installed, or your version is outdated, please install a suitable version of python (either refer
to the manual of your Linux distribution, or for instance you can download the ActiveState Python from ActiveState.
Choose the appropriate distribution corresponding to your architecture, and with version 2.7.x.X).

Installation of the core dependencies

Database

As a first thing, choose and setup the database that you want to use.

Other core dependencies

Before continuing, you still need to install a few more programs. Some of them are mandatory, while others are
optional (but often strongly suggested), also depending for instance on the type of database that you plan to use.

Here is a list of packages/programs that you need to install (for each of them, there may be a specific/easier way to
install them in your distribution, as for instance apt—-get in Debian/Ubuntu -see below for the specific names of
packages to install- or yum in RedHat/Fedora).

e git (required to download the code)
* python-pip (required to automatically download and install further python packages required by AiiDA)
* ipython (optional, but strongly recommended for interactive usage)

* python 2.7 development files (these may be needed; refer to your distribution to know how to locate and install
them)

* To support SQLite:

— SQLite3 development files (required later to compile the library, when configuring the python sqlite mod-
ule; see below for the Ubuntu module required to install these files)

* To support PostgreSQL:

— PostgreSQL development files (required later to compile the library, when configuring the python psy-
copg2 module; see below for the Ubuntu module required to install these files)

For Ubuntu, you can install the above packages using (tested on Ubuntu 12.04, names may change in different re-
leases):

‘sudo apt-get install git python-pip ipython python2.7-dev

Note: For the latter line, please use the same version (in the example above is 9.1) of the postgresql server
that you installed (in this case, to install the server of the same version, use the sudo apt-get install

postgresgl-9.1 command).

If you want to use postgreSQL, use a version greater than 9.1 (the greatest that your distribution supports).

12 Chapter 1. User’s guide

http://www.activestate.com/activepython/downloads
http://git-scm.com/
https://pypi.python.org/pypi/pip
http://ipython.org/
http://www.sqlite.org/
http://www.postgresql.org/

AiiDA documentation, Release 0.5.0

For Mac OS X, you may either already have some of the dependencies above (e.g., git), or you can download binary
packages to install (e.g., for PostgreSQL you can download and install the binary package from the official website).

Downloading the code

Download the code using git in a directory of your choice (~/git/aiida in this tutorial), using the following
command:

‘git clone https://USERNAME@bitbucket.org/aiida_team/aiida_core.git

(or use git@bitbucket.org:aiida_team/aiida_core.qgit if you are downloading through SSH; note
that this requires your ssh key to be added on the Bitbucket account.)

Python dependencies

Python dependencies are managed using pip, that you have installed in the previous steps.
As a first step, check that pip is at its most recent version.

One possible way of doing this is to update pip with itself, with a command similar to the following:

sudo pip install -U pip

Then, install the python dependencies is as simple as this:

cd ~/git/aiida # or the folder where you downloaded AiiDA
pip install --user -U -r requirements.txt

(this will download and install requirements that are listed in the requirements.txt file; the ——user option
allows to install the packages as a normal user, without the need of using sudo or becoming root). Check that every
package is installed correctly.

There are some additional dependencies need to be installed if you are using PostgreSQL or MySql as backend
database. No additional dependency is required for SQLite.

For PostgreSQL:

’ pip install psycopg2==2.6

For MySQL.:

’pip install MySQL-python==1.2.5

Note: This step should work seamlessly, but there are a number of reasons for which problems may occur. Often
googling for the error message helps in finding a solution. Some common pitfalls are described in the notes below.

Note: ifthe pip install command gives you this kind of error message:

‘OSError: [Errno 13] Permission denied: '/usr/local/bin/easy_install'

then try again as root:

’sudo pip install -U -r requirements.txt

If everything went smoothly, congratulations! Now the code is installed! However, we need still a few steps to properly
configure AiiDA for your user.

1.1. User’s guide 13

AiiDA documentation, Release 0.5.0

Note: if the pip install command gives you an error that resembles the one shown below, you might need to
downgrade to an older version of pip:

’Cannot fetch index base URL https://pypi.python.org/simple/ ‘

To downgrade pip, use the following command:

’sudo easy_install pip==1.2.1 ‘

Note: Several users reported the need to install also 1ibgp-dev:

apt-get install libgp-dev

But under Ubuntu 12.04 this is not needed.

Note: If the installation fails while installing the packages related to the database, you may have not installed or set
up the database libraries as described in the section Other core dependencies.

In particular, on Mac OS X, if you installed the binary package of PostgreSQL, it is possible that the PATH environment
variable is not set correctly, and you get a “Error: pg_config executable not found.” error. In this case, discover where
the binary is located, then add a line to your ~/ . bashrc file similar to the following:

export PATH=/the/path/to/the/pg_config/file:${PATH}

and then open a new bash shell. Some possible paths can be found at this Stackoverflow link and a non-exhaustive list
of possible paths is the following (version number may change):

e /Applications/Postgres93.app/Contents/MacOS/bin
e /Applications/Postgres.app/Contents/Versions/9.3/bin
e /Library/PostgreSQL/9.3/bin/pg_config

Similarly, if the package installs but then errors occur during the first of AiiDA (with Symbol not found errors
or similar), you may need to point to the path where the dynamical libraries are. A way to do it is to add a line similar
to the following to the ~/ . bashrc and then open a new shell:

‘ export DYLD_FALLBACK_LIBRARY_PATH=/Library/PostgreSQL/9.3/1ib:$DYLD_FALLBACK_L IBRARY_PA%FH

(you should of course adapt the path to the PostgreSQL libraries).

AiiDA configuration

Path configuration

The main interface to AiiDA is through its command-line tool, called verdi. For it to work, it must be on the system
path, and moreover the AiiDA python code must be found on the python path.

To do this, add the following to your ~/ .bashrc file (create it if not already present):

export PYTHONPATH=~/git/aiida:${PYTHONPATH}
export PATH=~/git/aiida/bin:${PATH}

and then source the .bashrc file with the command source ~/.bashrc, orlogin in a new window.

Note: replace ~/git/aiida with the path where you installed AiiDA. Note also that in the PYTHONPATH you

14 Chapter 1. User’s guide

http://stackoverflow.com/questions/21079820/how-to-find-pg-config-pathlink

AiiDA documentation, Release 0.5.0

simply have to specify the AiiDA path, while in PATH you also have to append the /bin subfolder!

Note: if you installed the modules with the ——user parameter during the pip install step, you will need to
add one more directory to your PATH variable in the ~/ .bashrc file. For Linux systems, the path to add is usually

~/.local/bin:

‘export PATH=~/git/aiida/bin:~/.local/bin:${PATH}

For Mac OS X systems, the path to add is usually ~/Library/Python/2.7/bin:

‘export PATH=~/git/aiida/bin:~/Library/Python/2.7/bin:${PATH}

To verify if this is the correct path to add, navigate to this location and you should find the executable supervisord
in the directory.

To verify if the path setup is OK:

* type verdi on your terminal, and check if the program starts (it should provide a list of valid commands). If it
doesn’t, check if you correctly set up the PATH environmente variable above.

* go in your home folder or in another folder different from the AiiDA folder, run python or ipython and try
to import a module, e.g. typing:

import aiida

If the setup is ok, you shouldn’t get any error. If you do get an ImportError instead, check if you correctly
set up the PYTHONPATH environment variable in the steps above.

Bash completion verdi fully supports bash completion (i.e., the possibility to press the TAB of your keyboard to
get a list of sensible commands to type. We strongly suggest to enable bash completion by adding also the following
line to your .bashrc, after the previous lines:

‘eval "$ (verdi completioncommand)"

If you feel that the bash loading time is becoming too slow, you can instead run the:

‘verdi completioncommand

on a shell, and copy-paste the output directly inside your .bashrc file, instead of the eval "$ (verdi
completioncommand) " line.

Remember, after any modification to the . bashrc file, to source it, or to open a new shell window.

Note: remember to check that your .bashrc is sourced also from your .profile or .bash_profile script.
E.g., if not already present, you can add to your ~/ .bash_profile the following lines:

if [-f ~/.bashrc]
then

~/.bashrc
fi

AiiDA first setup

Run the following command:

1.1. User’s guide 15

AiiDA documentation, Release 0.5.0

’verdi install

to configure AiiDA. The command will guide you through a process to configure the database, the repository location,
and it will finally (automatically) run a django migrate command, if needed, that creates the required tables in the
database and installs the database triggers.

The first thing that will be asked to you is the timezone, extremely important to get correct dates and times for your
calculations.

AiiDA will do its best to try and understand the local timezone (if properly configured on your machine), and will
suggest a set of sensible values. Choose the timezone that fits best to you (that is, the nearest city in your timezone -
for Lausanne, for instance, we choose Europe/Zurich) and type it at the prompt.

If the automatic zone detection did not work for you, type instead another valid string. A list of valid strings can be
found at http://en.wikipedia.org/wiki/List_of tz_database_time_zones but for the definitive list of timezones supported
by your system, open a python shell and type:

import pytz
print pytz.all_timezones

as AiiDA will not accept a timezone string that is not in the above list.
As a second parameter to input during the verdi install phase, the “Default user email” is asked.

We suggest here to use your institution email, that will be used to associate the calculations to you.

Note: In AiiDA, the user email is used as username, and also as unique identifier when importing/exporting data from
AiiDA.

Note: Even if you choose an email different from the default one (aiida@localhost), a user with email
aiida@localhost will be set up, with its password set to None (disabling access via this user via API or Web

interface).

The existence of a default user is internally useful for multi-user setups, where only one user runs the daemon, even if
many users can simultaneously access the DB. See the page on setting up AiiDA in multi-user mode for more details
(only for advanced users).

Note: The password, in the current version of AiiDA, is not used (it will be used only in the REST API and in the
web interface). If you leave the field empty, no password will be set and no access will be granted to the user via the

REST API and the web interface.

Then, the following prompts will help you configure the database. Typical settings are:

Insert your timezone: Europe/Zurich

Default user email: richard.wagner@leipzig.de

Database engine: sqglite3

AiiDA Database location: /home/wagner/.aiida/aiida.db
Ai1iDA repository directory: /home/wagner/.aiida/repository/
[...]

Configuring a new user with email 'richard.wagner@leipzig.de'
First name: Richard

Last name: Wagner

Institution: BRUHL, LEIPZIG

The user has no password, do you want to set one? [y/N] y
Insert the new password:

Insert the new password (again):

16 Chapter 1. User’s guide

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

AiiDA documentation, Release 0.5.0

Note: When the “Database engine” is asked, use ‘sqlite3” only if you want to try out AiiDA without setting up a
database.

However, keep in mind that for serious use, SQLite has serious limitations!! For instance, when many calculations
are managed at the same time, the database file is locked by SQLite to avoid corruption, but this can lead to timeouts
that do not allow to AiiDA to properly store the calculations in the DB.

Therefore, for production use of AiiDA, we strongly suggest to setup a ‘“real” database as PostgreSQL or MySQL.
Then, in the “Database engine” field, type either ‘postgres’ or ‘mysql’ according to the database you chose to use. See
here for the documentation to setup such databases (including info on how to proceed with verdi install in this
case).

At the end, AiiDA will also ask to configure your user, if you set up a user different from aiida@localhost.

If something fails, there is a high chance that you may have misconfigured the database. Double-check your settings
before reporting an error.

Note: The repository will contain the same number of folders as the number of nodes plus the number of workflows.
For very large databases, some operations on the repository folder, such as rsync or scanning its content, might be very

slow, and if they are performed reguarly this will slow down the computer due to an intensive use of the hard drive.
Check out our #ips in the troubeshooting section in case this happens.

Start the daemon

If you configured your user account with your personal email (or if in general there are more than just one user) you
will not be able to start the daemon with the command verdi daemon start before its configuration.

If you are working in a single-user mode, and you are sure that nobody else is going to run the daemon,
you can configure your user as the (only) one who can run the daemon.

To configure the deamon, run:

‘verdi daemon configureuser

and (after having read and understood the warning text that appears) insert the email that you used above during the
verdi install phase.

To try AiiDA and start the daemon, run:

‘verdi daemon start

If everything was done correctly, the daemon should start. You can inquire the daemon status using:

‘verdi daemon status

and, if the daemon is running, you should see something like:

* alida—-daemon[0] RUNNING pid 12076, uptime 0:39:05
* aiida-daemon-beat [0] RUNNING pid 12075, uptime 0:39:05

To stop the daemon, use:

verdi daemon stop

A log of the warning/error messages of the daemon can be found in in ~/.aiida/daemon/log/, and can also
be seen using the verdi daemon logshow command. The daemon is a fundamental component of AiiDA, and
it is in charge of submitting new calculations, checking their status on the cluster, retrieving and parsing the results of
finished calculations, and managing the workflow steps.

1.1. User’s guide 17

AiiDA documentation, Release 0.5.0

Congratulations, your setup is complete!

Before going on, however, you will need to setup at least one computer (i.e., on computational resource as a cluster or
a supercomputer, on which you want to run your calculations) and one code. The documentation for these steps can
be found here.

Optional dependencies

CIF manipulation

For the manipulation of Crystallographic Information Framework (CIF) files, following dependencies are required to
be installed:

* PyCifRW

* pymatgen

* pyspglib

* jmol

e Atomic Simulation Environment (ASE)
* cod-tools

First four can be installed from the default repositories:

sudo pip install pycifrw==3.6.2.1
sudo pip install pymatgen==3.0.13
sudo pip install pyspglib
sudo apt-get install jmol

ASE has to be installed from source:

curl https://wiki.fysik.dtu.dk/ase-files/python-ase-3.8.1.3440.tar.gz > python-ase-3.8.1.3440.tar.gz
tar -zxvf python-ase-3.8.1.3440.tar.gz
cd python-ase-3.8.1.3440

setup.py build

setup.py install

export PYTHONPATH=S$ (pwd) : SPYTHONPATH

For the setting up of cod-tools please refer to installation of cod-tools.

Further comments and troubleshooting

* For some reasons, on some machines (notably often on Mac OS X) there is no default locale defined, and when
you run verdi install for the first time it fails (see also this issue of django). To solve the problem, first
remove the sqlite database that was created.

Then, run in your terminal (or maybe even better, add to your . bashrc, but then remember to open a new shell
window!):

export LANG="en_US.UTF-8"
export LC_ALL="en_US.UTF-8"

and then run verdi install again.

* [Only for developers] The developer tests of the SSH transport plugin are performed connecting to localhost.
The tests will fail if a passwordless ssh connection is not set up. Therefore, if you want to run the tests:

18 Chapter 1. User’s guide

http://www.iucr.org/resources/cif
https://pypi.python.org/pypi/PyCifRW/3.6.2
http://pymatgen.org
http://spglib.sourceforge.net/pyspglibForASE/
http://jmol.sourceforge.net
https://wiki.fysik.dtu.dk/ase/
https://code.djangoproject.com/ticket/16017

AiiDA documentation, Release 0.5.0

— make sure to have a ssh server. On Ubuntu, for instance, you can install it using:

sudo apt-get install openssh-server

|

— Configure a ssh key for your user on your machine, and then add your public key to the authorized keys of
localhsot. The easiest way to achieve this is to run:

ssh-copy-id localhost

(it will ask your password, because it is connecting via ssh to localhost to install your public key inside
~/.ssh/authorized_keys).

Updating AiiDA from a previous version

Updating from 0.4.1 to 0.5.0

* Stop your daemon (using verdi daemon stop)
* Store your aiida source folder somewhere in case you did some modifications to some files

* Replace the aiida folder with the new one (either from the tar.gz or, if you are using git, by doinga git pull).
If you use the same folder name, you will not need to update the PATH and PYTHONPATH variables

* Run a verdi command, e.g., verdi calculation list. This should raise an exception, and
in the exception message you will see the command to run to update the schema version of the DB
(v.0.5.0 is using a newer version of the schema). The command will look like python manage.py
-—aiida-profile=default migrate, but please read the message for the correct command to run.

e If yourun verdi calculation 1list again now, it should work without error messages.

* You can now restart your daemon and work as usual.

Note: If you modified or added files, you need to put them back in place. Note that if you were working on a plugin,
the plugin interface changed: you need to change the CalclInfo returning also a Codelnfo, as specified /ere and also

accept a Code object among the inputs (also described in the same page).

1.1.4 Setup of computers and codes

Note: The Ssh transport plugin referenced below is available in the EPFL version.

Before being able to run the first calculation, you need to setup at least one computer and one code, as described below.

Remote computer requirements
A computer in AiiDA denotes any computational resource (with a batch job scheduler) on which you will run your
calculations. Computers typically are clusters or supercomputers.
Requirements for a computer are:
* It must run a Unix-like operating system
* The default shell must be bash
* It should have a batch scheduler installed (see here for a list of supported batch schedulers)

* It must be accessible from the machine that runs AiiDA using one of the available transports (see below).

1.1. User’s guide 19

AiiDA documentation, Release 0.5.0

The first step is to choose the transport to connect to the computer. Typically, you will want to use the SSH transport,
apart from a few special cases where SSH connection is not possible (e.g., because you cannot setup a password-less
connection to the computer). In this case, you can install AiiDA directly on the remote cluster, and use the 1ocal
transport (in this way, commands to submit the jobs are simply executed on the AiiDA machine, and files are simply
copied on the disk instead of opening an SFTP connection).

If you plan to use the 1ocal transport, you can skip to the next section.

If you plan to use the SSH transport, you have to configure a password-less login from your user to the cluster. To
do so type first (only if you do not already have some keys in your local ~/.ssh directory - ie. files like
id_rsa.pub):

’sshfkeygen -t rsa

Then copy your keys to the remote computer (in ~/.ssh/authorized_keys) with:

‘Ssh—copy—id YOURUSERNAMEQ@YOURCLUSTERADDRESS

replacing YOURUSERNAME and YOURCLUSTERADDRESS by respectively your username and cluster address. Fi-
nally add the following lines to ~/.ssh/config (leaving an empty line before and after):

Host YOURCLUSTERADDRESS
User YOURUSERNAME
HostKeyAlgorithms ssh-rsa
IdentityFile YOURRSAKEY

replacing YOURRSAKEY by the path to the rsa private key you want to use (it should look like ~/ . ssh/id_rsa).

Note: In principle you don’t have to put the IdentityFile line if you have only one rsa key in your ~/ . ssh
folder.

Before proceeding to setup the computer, be sure that you are able to connect to your cluster using:

’SSh YOURCLUSTERADDRESS

without the need to type a password. Moreover, make also sure you can connect via sftp (needed to copy files). The
following command:

]sftp YOURCLUSTERADDRESS

should show you a prompt without errors (possibly with a message saying Connected to
YOURCLUSTERADDRESS).

Warning: Due to a current limitation of the current ssh transport module, we do not support ECDSA, but only
RSA or DSA keys. In the present guide we’ve shown RSA only for simplicity. The first time you connect to the
cluster, you should see something like this:

The authenticity of host 'YOURCLUSTERADDRESS (IP)' can't be established.
RSA key fingerprint is xx:xXX:XX:!XX:!XX.
Are you sure you want to continue connecting (yes/no)?

Make sure you see RSA written. If you already installed the keys in the past, and you don’t know which keys you
are using, you could remove the cluster YOURCLUSTERADDRESS from the file ~/.ssh/known-hosts (backup it
first!) and try to ssh again. If you are not using a RSA or DSA key, you may see later on a submitted calculation
going in the state SUBMISSIONFAILED.

Note: If the ssh command works, but the sftp command does not (e.g. it just prints Connection closed),
a possible reason can be that there is a line in your ~/ .bashrc that either produces an output, or an error. Re-

move/comment it until no output or error is produced: this should make s ftp working again.

20 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

Finally, try also:

ssh YOURCLUSTERADDRESS QUEUE_VISUALIZATION_COMMAND

replacing QUEUE_VISUALIZATION_COMMAND by the scheduler command that prints on screen the status of the
queue on the cluster (i.e. gstat for PBSpro scheduler, squeue for SLURM, etc.). It should print a snapshot of the
queue status, without any errors.

Note: If there are errors with the previous command, then edit your ~/.bashrc file in the remote computer and add a
line at the beginning that adds the path to the scheduler commands, typically (here for PBSpro):

export PATH=$PATH:/opt/pbs/default/bin

Or, alternatively, find the path to the executables (like using which gsub)

Note: If you need your remote .bashrc to be sourced before you execute the code (for instance to change the PATH),
make sure the .bashrc file does not contain lines like:

[-z "$PS1"] && return

or:

case $- in

*ix) ;5

*) return;;
esac

in the beginning (these would prevent the bashrc to be executed when you ssh to the remote computer). You can check
that e.g. the PATH variable is correctly set upon ssh, by typing (in your local computer):

ssh YOURCLUSTERADDRESS 'echo $PATH'

Note: If you need to ssh to a computer A first, from which you can then connect to computer B you wanted to connect
to, you can use the proxy_ command feature of ssh, that we also support in AiiDA. For more information, see Using

the proxy_command option with ssh.

Computer setup and configuration

The configuration of computers happens in two steps.

Note: The commands use some readline extensions to provide default answers, that require an advanced terminal.
Therefore, run the commands from a standard terminal, and not from embedded terminals as the ones included in text

editors, unless you know what you are doing. For instance, the terminal embedded in emacs is known to give
problems.

1. Setup of the computer, using the:

verdi computer setup

command. This command allows to create a new computer instance in the DB.

Tip: The code will ask you a few pieces of information. At every prompt, you can type the ? character and
press <enter> to get a more detailed explanation of what is being asked.

1.1. User’s guide 21

AiiDA documentation, Release 0.5.0

Tip:

You can press <CTRL>+C at any moment to abort the setup process. Nothing will be stored in the DB.

Note: For multiline inputs (like the prepend text and the append text, see below) you have to press <CTRL>+D
to complete the input, even if you do not want any text.

Here is a list of what is asked, together with an explanation.

Computer name: the (user-friendly) name of the new computer instance which is about to be created in
the DB (the name is used for instance when you have to pick up a computer to launch a calculation on
it). Names must be unique. This command should be thought as a AiiDA-wise configuration of computer,
independent of the AiiDA user that will actually use it.

Fully-qualified hostname: the fully-qualified hostname of the computer to which you want to connect
(i.e., with all the dots: bellatrix.epfl.ch, and not just bellatrix). Type localhost for the
local transport.

Description: A human-readable description of this computer; this is useful if you have a lot of computers
and you want to add some text to distinguish them (e.g.: “cluster of computers at EPFL, installed in 2012,
2 GB of RAM per CPU”)

Enabled: either True or False; if False, the computer is disabled and calculations associated with it will
not be submitted. This allows to disable temporarily a computer if it is giving problems or it is down for
maintenance, without the need to delete it from the DB.

Transport type: The name of the transport to be used. A list of valid transport types can be obtained
typing ?

Scheduler type: The name of the plugin to be used to manage the job scheduler on the computer. A list
of valid scheduler plugins can be obtained typing ?. See here for a documentation of scheduler plugins in
AiiDA.

AiiDA work directory: The absolute path of the directory on the remote computer where AiiDA will
run the calculations (often, it is the scratch of the computer). You can (should) use the {username}
replacement, that will be replaced by your username on the remote computer automatically: this allows
the same computer to be used by different users, without the need to setup a different computer for each
one. Example:

/scratch/{username}/aiida_work/

mpirun command: The mpirun command needed on the cluster to run parallel MPI programs. You can
(should) use the {tot_num_mpiprocs} replacement, that will be replaced by the total number of cpus,
or the other scheduler-dependent fields (see the scheduler docs for more information). Some examples:

mpirun -np {tot_num_mpiprocs}
aprun -n {tot_num_ mpiprocs}
poe

Text to prepend to each command execution: This is a multiline string, whose content will be prepended
inside the submission script before the real execution of the job. It is your responsibility to write proper
bash code! This is intended for computer-dependent code, like for instance loading a module that should
always be loaded on that specific computer. Remember to end the input by pressing <CTRL>+D. A practi-
cal example:

export NEWVAR=1
source some/file

A not-to-do example:

22

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

#PBS -1 nodes=4:ppn=12

(it’s the plugin that will do this!)

* Text to append to each command execution: This is a multiline string, whose content will be appended
inside the submission script after the real execution of the job. It is your responsibility to write proper bash
code! This is intended for computer-dependent code. Remember to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID in the database (pXk, i.e. the principal
key, and uuid).

2. Configuration of the computer, using the:

verdi computer configure COMPUTERNAME

command. This will allow to access more detailed configurations, that are often user-dependent and also depend
on the specific transport (for instance, if the transport is SSH, it will ask for username, port, ...).

The command will try to provide automatically default answers, mainly reading the existing ssh configuration
in ~/.ssh/config, and in most cases one simply need to press enter a few times.

Note: At the moment, the in-line help (i.e., just typing ? to get some help) is not yet supported in verdi
configure, butonly in verdi setup.

For 1ocal transport, you need to run the command, even if nothing will be asked to you. For ssh transport,
the following will be asked:

e username: your username on the remote machine
e port: the port to connect to (the default SSH port is 22)
* look_for_keys: automatically look for the private key in ~/ . ssh. Default: True.

¢ key_filename: the absolute path to your private SSH key. You can leave it empty to use the default SSH
key, if you set 1ook_for_keys to True.

* timeout: A timeout in seconds if there is no response (e.g., the machine is down. You can leave it empty
to use the default value.

» allow_agent: If True, it will try to use an SSH agent.

e proxy_command: Leave empty if you do not need a proxy command (i.e., if you can directly connect to
the machine). If you instead need to connect to an intermediate computer first, you need to provide here
the command for the proxy: see documentation /ere for how to use this option, and in particular the notes
here for the format of this field.

» compress: True to compress the traffic (recommended)
¢ load_system_host_keys: True to load the known hosts keys from the default SSH location (recommended)
* key_policy: What is the policy in case the host is not known. It is a string among the following:

— RejectPolicy (default, recommended): reject the connection if the host is not known.

— WarningPolicy (not recommended): issue a warning if the host is not known.

— AutoAddPolicy (not recommended): automatically add the host key at the first connection to the
host.

After these two steps have been completed, your computer is ready to go!

Note: To check if you set up the computer correctly, execute:

1.1. User’s guide 23

AiiDA documentation, Release 0.5.0

verdi computer test COMPUTERNAME

that will run a few tests (file copy, file retrieval, check of the jobs in the scheduler queue) to verify that everything
works as expected.

Note: If you are not sure if your computer is already set up, use the command:

’verdi computer list

to get a list of existing computers, and:

’verdi computer show COMPUTERNAME

to get detailed information on the specific computer named COMPUTERNAME. You have also the:

’verdi computer rename OLDCOMPUTERNAME NEWCOMPUTERNAME

and:

’verdi computer delete COMPUTERNAME

commands, whose meaning should be self-explanatory.

Note: You can delete computers only if no entry in the database is using them (as for instance Calculations, or
RemoteData objects). Otherwise, you will get an error message.

Note: It is possible to disable a computer.

Doing so will prevent AiiDA from connecting to the given computer to check the state of calculations or to submit
new calculations. This is particularly useful if, for instance, the computer is under maintenance but you still want to
use AiiDA with other computers, or submit the calculations in the AiiDA database anyway.

When the computer comes back online, you can re-enable it; at this point pending calculations in the TOSUBMIT state
will be submitted, and calculations WITHSCHEDULER will be checked and possibly retrieved.

The relevant commands are:

verdi computer enable COMPUTERNAME
verdi computer disable COMPUTERNAME

Note that the above commands will disable the computer for all AiiDA users. If instead, for some reason, you want to
disable the computer only for a given user, you can use the following command:

‘verdi computer disable COMPUTERNAME --only-for-user USER_EMAIL

(and the corresponding verdi computer enable command to re-enable it).

Code setup and configuration

Once you have at least one computer configured, you can configure the codes.

In AiiDA, for full reproducibility of each calculation, we store each code in the database, and attach to each calculation
a given code. This has the further advantage to make very easy to query for all calculations that were run with a given
code (for instance because I am looking for phonon calculations, or because I discovered that a specific version had a
bug and I want to rerun the calculations).

24 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

In AiiDA, we distinguish two types of codes: remote codes and local codes, where the distinction between the two is
described here below.

Remote codes

With remote codes we denote codes that are installed/compiled on the remote computer. Indeed, this is very often the
case for codes installed in supercomputers for high-performance computing applications, because the code is typically
installed and optimized on the supercomputer.

In AiiDA, a remote code is identified by two mandatory pieces of information:
* A computer on which the code is (that must be a previously configured computer);

* The absolute path of the code executable on the remote computer.

Local codes

With local codes we denote codes for which the code is not already present on the remote machine, and must be copied
for every submission. This is the case if you have for instance a small, machine-independent Python script that you
did not copy previously in all your clusters.

In AiiDA, a local code can be set up by specifying:
* A folder, containing all files to be copied over at every submission

* The name of executable file among the files inside the folder specified above

Setting up a code

The:

verdi code

command allows to manage codes in AiiDA.

To setup a new code, you execute:

verdi code setup

and you will be guided through a process to setup your code.

Tip: The code will ask you a few pieces of information. At every prompt, you can type the ? character and press
<enter> to get a more detailed explanation of what is being asked.

You will be asked for:

* label: A label to refer to this code. Note: this label is not enforced to be unique. However, if you try to keep
it unique, at least within the same computer, you can use it later to refer and use to your code. Otherwise, you
need to remember its ID or UUID.

* description: A human-readable description of this code (for instance “Quantum Espresso v.5.0.2 with 5.0.3
patches, pw.x code, compiled with openmpi’)

¢ default input plugin: A string that identifies the default input plugin to used to generate new calculations to use
with this code. This string has to be a valid string recognized by the CalculationFactory function. To
get the list of all available Calculation plugin strings, use the verdi calculation plugins command.
Note: if you do not want to specify a default input plugin, you can write the string “None”, but this is strongly
discouraged, because then you will not be able to use the . new_calc method of the Code object.

1.1. User’s guide 25

AiiDA documentation, Release 0.5.0

* local: either True (for local codes) or False (for remote codes). For the meaning of the distinction, see above.
Depending on your choice, you will be asked for:

- LOCAL CODES:

+ Folder with the code: The folder on your local computer in which there are the files to be stored in
the AiiDA repository, and that will then be copied over to the remote computers for every submitted
calculation. This must be an absolute path on your computer.

+ Relative path of the executable: The relative path of the executable file inside the folder entered in
the previous step.

— REMOTE CODES:

* Remote computer name: The computer name as on which the code resides, as configured and stored
in the AiiDA database

* Remote absolute path: The (full) absolute path of the code executable on the remote machine
For any type of code, you will also be asked for:

» Text to prepend to each command execution: This is a multiline string, whose content will be prepended
inside the submission script before the real execution of the job. It is your responsibility to write proper
bash code! This is intended for code-dependent code, like for instance loading the modules that are
required for that specific executable to run. Example:

module load intelmpi

Remember to end the input by pressing <CTRL>+D.

» Text to append to each command execution: This is a multiline string, whose content will be appended inside
the submission script after the real execution of the job. It is your responsibility to write proper bash code!
This is intended for code-dependent code. Remember to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID of the code in the database (the pk, i.e. the principal
key, and the uuid).

Note: Codes are a subclass of the Node class, and as such you can attach any set of attributes to the code. These can
be extremely useful for querying: for instance, you can attach the version of the code as an attribute, or the code family

(for instance: “pw.x code of Quantum Espresso”) to later query for all runs done with a pw.x code and version more
recent than 5.0.0, for instance. However, in the present AiiDA version you cannot add attributes from the command
line using verdi, but you have to do it using Python code.

Note: You can change the label of a code by using the following command:

‘verdi code rename "ID"

(Without the quotation marks!) “ID” can either be the numeric ID (PK) of the code (preferentially), or possibly its
label (or label @computername), if this string uniquely identifies a code.

You can also list all available codes (and their relative IDs) with:

’verdi code list

The verdi code list accepts some flags to filter only codes on a given computer, only codes using a specific
plugin, etc.; use the —h command line option to see the documentation of all possible options.

You can then get the information of a specific code with:

verdi code show "ID"

Finally, to delete a code use:

26 Chapter 1. User’s guide

mailto:label@computername

AiiDA documentation, Release 0.5.0

’verdi code delete "ID"

(only if it wasn’t used by any calculation, otherwise an exception is raised)

And now, you are ready to launch your calculations! You may want to follow to the examples of how you can submit
a single calculation, as for instance the specific tutorial for Quantum Espresso.

1.1.5 Plug-ins for AiiDA

AiiDA plug-ins are input generators and output parsers, enabling the integration of codes into AiiDA calculations and
workflows.

Available plugins

Quantum Espresso

Description Quantum Espresso is a suite of open-source codes for electronic-structure calculations from first prin-
ciples, based on density-functional theory, plane waves, and pseudopotentials, freely available online. Documentation
of the code and its internal details can be found in the distributed software, and in the online forum (and its search
engine).

The plugins of quantumespresso in AiiDA are not meant to completely automatize the calculation of the electronic
properties. It is still required an underlying knowledge of how quantum espresso is working, which flags it requires,
etc. A total automatization, if desired, has to be implemented at the level of a workflow.

Currently supported codes are:
* PW: Ground state properties, total energy, ionic relaxation, molecular dynamics, forces, etc...
e CP: Car-Parrinello molecular dynamics
* PH: Phonons from density functional perturbation theory
* Q2R: Fourier transform the dynamical matrices in the real space
* Matdyn: Fourier transform the dynamical matrices in the real space
* NEB: Energy barriers and reaction pathways using the Nudged Elastic Band (NEB) method

Moreover, support for further codes can be implemented adapting the namelist plugin.
Plugins

PW

Description Use the plugin to support inputs of Quantum Espresso pw.x executable.

Supported codes

¢ tested from pw.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

1.1. User’s guide 27

http://www.quantum-espresso.org/
http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=18
http://www.quantum-espresso.org/forum/
https://www.google.com/cse/home?cx=000217952118062629757:xew9tb5yarq
https://www.google.com/cse/home?cx=000217952118062629757:xew9tb5yarq

AiiDA documentation, Release 0.5.0

Inputs

* pseudo, class UpfrData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

kpoints, class KpointsData Reciprocal space points on which to build the wavefunctions. Can either be a
mesh or a list of points with/without weights

parameters, class ParameterData Input parameters of pw.x, as a nested dictionary, mapping the input of
QE. Example:

{"CONTROL": {"calculation":"scf"},
"ELECTRONS": {"ecutwfc":30., "ecutrho":100.},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'"CONTROL', 'outdir': scratch directory
'"CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm

'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

structure, class St ructureData

settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

— ‘FIXED_COORDS?’: a list Nx3 booleans, with N the number of atoms. If True, the atomic position is
fixed (in relaxations/md).

— ‘GAMMA_ONLY’: boolean. If True and the kpoint mesh is gamma, activate a speed up of the calculation.
— ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

— ‘PARENT_FOLDER_SYMLINK’: boolean # If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

— ‘CMDLINE?’: list of strings. parameters to be put after the executable and before the input file. Example:
[*-npool”,’4”] will produce pw.x -npool 4 < aiida.in

— ‘ADDITIONAL_RETRIEVE_LIST”: list of strings. Specify additional files to be retrieved. By default,
the output file and the xml file are already retrieved.

— ‘ALSO_BANDS’: boolean. If True, retrieves the band structure (default: False)

— ‘FORCE_KPOINTS_LIST”: If it is set to True and the KpointsData have a mesh set, it will pass the
kpoints to QE as if they were a list of coordinates, generating a list of points. (at the moment used for
wannier90)

28

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

 parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous QE cal-
culation is copied in the scratch of the new calculation.

* vdw_table, class SinglefileData (optional) If specified, it should be a file for the van der Waals kernel
table. The file is copied in the pseudo subfolder, without changing its name, and without any check, so it is your
responsibility to select the correct file that you want to use.

Outputs

Note: The output_parameters has more parsed values in the EPFL version and output_bands is parsed only in the
EPFL version.

There are several output nodes that can be created by the plugin, according to the calculation details. All output nodes
can be accessed with the calculation.out method.

* output_parameters ParameterData (accessed by calculation. res) Contains the scalar properties. Ex-
ample: energy (in eV), total_force (modulus of the sum of forces in eV/Angstrom), warnings (possible error
messages generated in the run).

* output_array ArrayData Produced in case of calculations which do not change the structure, otherwise, an
output_trajectory is produced. Contains vectorial properties, too big to be put in the dictionary. Exam-
ple: forces (eV/Angstrom), stresses, ionic positions. Quantities are parsed at every step of the ionic-relaxation /
molecular-dynamics run.

* output_trajectory ArrayData Produced in case of calculations which change the structure, otherwise an
output_array is produced. Contains vectorial properties, too big to be put in the dictionary. Example:
forces (eV/Angstrom), stresses, ionic positions. Quantities are parsed at every step of the ionic-relaxation /
molecular-dynamics run.

* output_band (non spin polarized calculations)) or output_band1 + output_band2 (spin polarized calculations)
BandsData Present only if parsing is activated with the ‘ALDO_BANDSF setting. Contains the list of elec-
tronic energies for every kpoint. If calculation is a molecular dynamics or a relaxation run, bands refer only to
the last ionic configuration.

* output_structure St ructureData Present only if the calculation is moving the ions. Cell and ionic positions
refer to the last configuration.

* output_kpoints KpointsData Present only if the calculation changes the cell shape. Kpoints refer to the last
structure.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Ccp

Description Use the plugin to support inputs of Quantum Espresso pw.x executable.

Supported codes

* tested from pw.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

1.1. User’s guide 29

AiiDA documentation, Release 0.5.0

Inputs
* pseudo, class UpfrData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

* parameters, class ParameterData Input parameters of cp.x, as a nested dictionary, mapping the input of
QE. Example:

{"ELECTRONS": {"ecutwfc":"30", "ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'"CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm

'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

e structure, class St ructureData The initial ionic configuration of the CP molecular dynamics.

* settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

— ‘FIXED_COORDS?’: a list Nx3 booleans, with N the number of atoms. If True, the atomic position is
fixed (in relaxations/md).

— ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

— ‘PARENT_FOLDER_SYMLINK”: boolean # If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

— ‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file. Example:
[*-npool”,’4””] will produce pw.x -npool 4 < aiida.in

— ‘ADDITIONAL_RETRIEVE_LIST”: list of strings. Specify additional files to be retrieved. By default,
the output file and the xml file are already retrieved.

— ‘ALSO_BANDS’: boolean. If True, retrieves the band structure (default: False)

 parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous QE cal-
culation is copied in the scratch of the new calculation.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

* output_parameters ParameterData (accessed by calculation. res) Contains the scalar properties. Ex-
ample: energies (in eV) of the last configuration, wall_time, warnings (possible error messages generated in the
run).

30 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

* output_trajectory_array Tra jectoryData Contains vectorial properties, too big to be put in the dictionary,
like energies, positions, velocities, cells, at every saved step.

* output_structure St ructureData Structure of the last step.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

PH

Note: The PH plugin referenced below is available in the EPFL version.

Description Plugin for the Quantum Espresso ph.x executable.

Supported codes

* tested from ph.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most

of the times).

Inputs

 parent_calculation, can either be a PW calculation to get the ground state on which to compute the phonons,

or a PH calculation in case of restarts.

Note: There are no direct links between calculations. The use_parent_calculation will set a link to the Remote-
Folder attached to that calculation. Alternatively, the method use_parent_folder can be used to set this link
directly.

qpoints, class KpointsData Reciprocal space points on which to build the dynamical matrices. Can either
be a mesh or a list of points. Note: up to QE 5.1 only either an explicit list of 1 gpoint (1 point only) can be
provided, or a mesh (containing gamma).

parameters, class ParameterData Input parameters of ph.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUTPH": {"ethr-ph":le-16},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'"INPUTPH', 'outdir': scratch directory
'"INPUTPH', 'prefix': file prefix

'"INPUTPH', 'iverbosity': file prefix
'"INPUTPH', 'fildyn': file prefix

'"INPUTPH', 'ldisp': logic displacement
'INPUTPH', 'ngl': g-mesh on bl

'"INPUTPH', 'ng2': g-mesh on b2

'"INPUTPH', 'ng3': g-mesh on b3

'"INPUTPH', 'gplot': flag for list of gpoints

settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

1.1.

User’s guide 31

AiiDA documentation, Release 0.5.0

— ‘PARENT_CALC_OUT_SUBFOLDER’: string. The subfolder of the parent scratch to be copied in the
new scratch.

— ‘PREPARE_FOR_D3’: boolean. If True, more files are created in preparation of the calculation of a D3
calculation.

— ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

— ‘PARENT_FOLDER_SYMLINK”: boolean # If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

— ‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file. Example:
[*-npool”,’4”] will produce ph.x -npool 4 < aiida.in

— ‘ADDITIONAL_RETRIEVE_LIST”: list of strings. Extra files to be retrieved. By default, dynamical
matrices, text output and main xml files are retrieved.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

* output_parameters ParameterData (accessed by calculation.res) Contains small properties. Ex-
ample: dielectric constant, warnings (possible error messages generated in the run). Furthermore, vari-
ous dynamical_matrix_«+ keys are created, each is a dictionary containing the keys g _point and
frequencies.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Matdyn

Note: The Matdyn plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of Quantum Espresso matdyn.x executable.

Supported codes

e tested from matdyn.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work
most of the times).

Inputs

e parameters, class ParameterData Input parameters of pw.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUT":{"ars":"simple"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'"INPUT', 'flfrqg': file with frequencies in output
'"INPUT', 'flvec': file with eigenvecors
'"INPUT', 'fldos': file with dos

32 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

'"INPUT', 'g_in_cryst_coord': for gpoints
'"INPUT', 'flfrc': input force constants

 parent_calculation, pass the parent q2r calculation of its FolderData as the parent_folder to pass the input
force constants.

* kpoints, class KpointsData Points on which to compute the interpolated frequencies. Must contain a list of
kpoints.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

* output_parameters ParameterData (accessed by calculation. res) Contains warnings

* output_phonon_bands BandsData Phonon frequencies as a function of gpoints.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Q2R
Note: The Q2R plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of Quantum Espresso q2r.x executable.

Supported codes

¢ tested from g2r.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

Inputs

* parameters, class ParameterData Input parameters of q2r.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUT":{"zasr":"simple"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'"INPUT', 'fildyn': name of input dynamical matrices
'"INPUT', 'flfrc': name of output force constants

¢ parent_calculation. Use the parent PH calculation, to take the dynamical matrices and convert them in real
space. Alternatively, use the parent_folder to point explicitely to the retrieved FolderData of the parent PH
calculation.

Outputs

* force_constants SinglefileData A file containing the force constants in real space.

1.1. User’s guide 33

AiiDA documentation, Release 0.5.0

Errors

NEB
Note: The NEB plugin referenced below is available in the EPFL version.

Description Plugin for the Quantum Espresso neb.x executable.

Supported codes

e tested from neb.x v5.2 onwards.

Inputs

* pseudo, class UpfrData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

kpoints, class KpointsData Reciprocal space points on which to build the wavefunctions. Can either be a
mesh or a list of points with/without weights

* neb_parameters, class ParameterDat a Input parameters of neb.x, as a nested dictionary, mapping the input

of QE. Example:

{"PATH" : {"num_of_images":6, "string method": "neb", "nstep_path": 50},
}

See the QE documentation for the full list of variables and their meaning.

e pw_parameters, class ParameterData Nested dictionary containing the input parameters in PW format

common to all images. Example:

{"CONTROL": {"calculation":"scf"},
"ELECTRONS": {"ecutwfc":"30", "ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'"CONTROL', 'outdir': scratch directory
'"CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm

'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

* first_structure, class St ructureDat a Structure of the first image.

* last_structure, class St ructureData Structure of the last image.

34

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

* settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

— ‘CLIMBING_IMAGES?’: list of integers. Specify the indices of the climbing images. Read only if the
climbing image scheme is set to manual in neb_parameters.

— ‘FIXED_COORDS?’: a list Nx3 booleans, with N the number of atoms. If True, the atomic position is
fixed.

— ‘GAMMA_ONLY’: boolean. If True and the kpoint mesh is gamma, activate a speed up of the calculation.
— ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

— ‘PARENT_FOLDER_SYMLINK’: boolean. If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

— ‘CMDLINE’: list of strings. parameters to be put after the executable in addition to -input_images 2.
Example: [’-npool”,’4’] will produce neb.x -input_images 2 -npool 4 > aiida.out

— ‘ADDITIONAL_RETRIEVE_LIST”: list of strings. Specify additional files to be retrieved. By default,
the following files are already retrieved: * NEB output file * PATH output file containing the information
on structures and gradients of each image at last iteration * The calculated and interpolated energy profile
as a function of the reaction coordinate (.dat and .int files) * The PW output and xml file for each image

— ‘ALL_ITERATIONS’: boolean. If true the energies and forces for each image at each intermediate
iteration are also parsed and stored in the output node iteration_array (default: False)

» parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous NEB
calculation is copied in the scratch of the new calculation.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

* output_parameters ParameterData (accessed by calculation. res) Contains the data obtained by pars-
ing the NEB output file. Information on the last iteration are only reported. The parsed PW outputs of each image
are also reported as a subdictionaries.

e mep_array ArrayData Contains the parsed data on the calculated and interpolated Minimim Energy Path
(MEP), i.e. the energy profile as a function of the reaction coordinate.

* output_trajectory ArrayData Contains the structure of the images at the last iteration of the NEB calculation,
too big to be put in the dictionary.

e iteration_array ArrayData , and other quantities at intermediate iterations.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

cod-tools

Description cod-tools is an open-source collection of command line scripts for handling of Crystallographic In-
formation Framework (CIF) files. The package is developed by the team of Crystallography Open Database (COD)
developers. Detailed information for the usage of each individual script from the package can be obtained by invoking
commands with ——help and -—usage command line options. For example:

cif_filter —-help
cif_filter --usage

1.1. User’s guide 35

http://www.iucr.org/resources/cif
http://www.iucr.org/resources/cif
http://www.crystallography.net

AiiDA documentation, Release 0.5.0

* cif_cod_check Parse a CIF file, check if certain data values match COD requirements and IUCr data validation
criteria (Version: 2000.06.09, ftp://ftp.iucr.ac.uk/pub/dvntests or ftp://ftp.iucr.org/pub/dvntests)

* cif_cod_deposit Deposit CIFs into COD database using CGI deposition interface.

¢ cif_cod_numbers Find COD numbers for the .cif files in given directories of file lists.

* cif_correct_tags Correct misspelled tags in a CIF file.

o cif_filter Parse a CIF file and print out essential data values in the CIF format, the COD CIF style.

This script has also many capabilities — it can restore spacegroup symbols from symmetry operators (con-
sulting pre-defined tables), parse and tidy-up _chemical_formula_sum, compute cell volume, ex-
clude unknown or “empty” tags, and add specified bibliography data.

* cif_fix_values Correct temperature values which have units specified or convert between Celsius degrees and
Kelvins. Changes ‘room/ambiante temperature’ to the appropriate numeric value. Fixes other undefined
values (no, not measured, etc.) to ‘?” symbol. Determine a report about changes made into standart I/O
streams.

Fixes enumeration values in CIF file against CIF dictionaries.
« cif_mark_disorder Marks disorder in CIF files judging by distance and occupancy.
¢ cif molecule Restores molecules from a CIF file.
* cif_select Read CIFs and print out selected tags with their values.
« cif_split Split CIF files into separate files with one data_ section each.

This script parses given CIF files to separate the datablocks, so is capable of splitting non-correctly for-
matted and nested CIF files.

* cif_split_primitive Split CIF files into separate files with one data_ section each.

This is a very naive and primitive version of the splitter, which expects each data_... section to start on a
new line. It may fail on some CIF files that do not follow such convention. For splitting of any correctly
formatted CIF files, one must do full CIF parsing using CIF grammar and tokenisation of the file.

Installation Currently cod-tools package is distributed via source code only. To prepare the package for usage (as
of source revision 2930) one has to follow these steps:

* Retrieve the source from the Subversion repository:

svn co svn://www.crystallography.net/cod-tools/trunk cod-tools

* Install the dependencies:

bash —-e cod-tools/dependencies/Ubuntu-12.04/install.sh ‘

Note: the dependency installer is written for Ubuntu 12.04, but works fine on some older or newer Ubuntu as
well as Debian distributions.

¢ Build and test:

make —-C cod-tools ‘

* Prepare the environment: Described below are two methods of setting the environment for cod-tools as of
source revision 3393:

— Using Bash:

36 Chapter 1. User’s guide

ftp://ftp.iucr.ac.uk/pub/dvntests
ftp://ftp.iucr.org/pub/dvntests
https://subversion.apache.org

AiiDA documentation, Release 0.5.0

CODTOOLS_SRC=~/src/cod-tools

export PATH=${CODTOOLS_SRC}/scripts:${PATH}
export PERLSLIB=${CODTOOLS_SRC}/src/lib/perl5:${PERL5LIB}

These commands can be pasted to ~/ .bashrc file, which is sourced automatically by the AiiDA
before each calculation.

Note: Be sure to restart the AiiDA daemon after modifying the ~/ .bashrc.

— Using modulefile:

#sModulel . O#f###H4#f 44444 #4444 #HHHHHHHHHHHHHHHHHHHAHHHHH S HHHEHHSHH RS H S HHH
module-whatis loads the cod-tools environment

set CODTOOLS_SRC ~/src/cod-tools

prepend-path PATH ${CODTOOLS_SRC}/scripts

prepend-path PERL5LIB ${CODTOOLS_SRC}/src/lib/perl5

EEEE

Examples

* Fix a syntactically incorrect structure:

Some simple common CIF syntax errors can be fixed automatically using cif_filter with ——fix-syntax
option. In example, such structure:

data_broken

_publ_section_title "Runaway quote
loop_

_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z

cC 00O

can be fixed (provided it’s stored in test .cif):

cif filter —-—-fix test.cif

Obtained structure:

data_broken

_publ_section_title 'Runaway quote'
loop_

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

co0oO0o0

A warning message tells what was done:

cif filter: test.cif(2) data_broken: warning, double-quoted string is missing a closing quote -—-

where:
— cif_filter is the name of the used script;

— test.cif is the name of the CIF file;

1.1.

User’s guide 37

http://linux.die.net/man/4/modulefile

AiiDA documentation, Release 0.5.0

2 is the number of a line in the file;

data_broken is the CIF datablock name;

— warning is the level of severity;

rest is the message text.

* Fetch a structure from Web, filter and fix it, restore the crystal contents and calculate summary formulae per
each compound in a crystal:

curl --silent http://www.crystallography.net/cod/2231955.cif \
cif filter \

cif_fix_values \

cif_molecule \

cif_cell_contents --use-attached-hydrogens

Obtained result:

C9 H14 N
Cl0 H6 06 S2
H2 O

As well as a warning message:

cif_molecule: - data_2231955: WARNING, multiplicity ratios are given instead of mulitiplicities f

* Fetch a structure from Web and mark alternative atoms sharing same site:

curl --silent http://www.crystallography.net/2018107.cif \
| cif_mark_disorder \
| cif_select --cif --tag _atom_site_label

Obtained result:

data_2018107

loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_u_iso_or_equiv
_atom_site_adp_type
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_occupancy
_atom_site_symmetry multiplicity
_atom_site_disorder_assembly
_atom_site_disorder_group

Mo Mol 0.0000 0.5000 0.2500
O 01 0.2344(13
O 02 0.2338(14

.018(3) Uani d S 1 4

Pb Pbl 0.5000 0.0000 0.2500 0.0213(13) Uani d s 1 4
Mo Moz 0.0000 0.0000 0.0000 0.022(4) Uani d S 1 4
Pb Pb3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.881(8) 4 A 1
Mo Mo3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.119(8) 4 A 2
0
0

) —0.1372(14) .0806(6) 0.0302(17) Uani d . 1 1
) 0.3648(14) 0.1697(6) 0.0307(17) Uani d . 1 1

As well as output messages:

38 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

cif_mark_disorder: - data_2018107: NOTE, atoms 'Mo3', 'Pb3' were marked as alternat|ives.
cif_mark_disorder: - data_2018107: NOTE, 1 site(s) were marked as disorder assembliles.
Note: atoms Mo3 and Pb3 share the same site, as can be found out by checking their coordi-

nates. Moreover, sum of their occupancies are close to 1. In the original CIF file these sites have both
_atom_site_disorder_assemblyand _atom_site_disorder_group setto ‘. "

Plugins

codtools.ciffilter

Description This plugin is designed for filter-like codes from the cod-tools package, but can be adapted to any com-
mand line utilities, accepting CIF file as standard input and producing CIF file as standard output and messages/errors
in the standard output (if any), without modifications.

Supported codes
e cif_adjust_journal_name_volume
« cif_CODity
e cif_correct_tags
o cif_create_ AMCSD_pressure_temp_tags
* cif_estimate_spacegroup
e cif_eval numbers
o cif_fillcell
e cif_filter
o cif fix_values
e cif_hkl_check
e cif _mark_disorder
* cif_molecule
e cif_pl
¢ cif_reformat_ AMCSD_author_names
e cif_reformat_pubmed_author_names
* cif_reformat_uppercase_author_names
e cif_select '
e cif _set_value

e cif_symop_apply

! Only with the ——output-cif command line option.

1.1. User’s guide 39

AiiDA documentation, Release 0.5.0

Inputs
e CcifData A CIF file.

* ParameterData (optional) Contains the command line parameters, specified in key-value fashion. Leading
dashes (single or double) must be stripped from the keys. Values can be arrays with multiple items. Keys
without values should point to boolean True value. In example:

calc = Code.get_from_string('cif filter').new_calc()
calc.use_parameters (ParameterData (dict={

's! : True,

'exclude—-empty-tags' : True,
'dont-reformat-spacegroup': True,

'add-cif-header' : ['standard.txt', 'user.txt'],
'bibliography' : 'bibliography.cif',

1))

is equivallent to command line:

cif_filter \
_S\
——exclude-empty-tags \
——-dont-reformat-spacegroup \
-—add-cif-header standard.txt \
-—add-cif-header user.txt \
—-bibliography bibliography.cif

Note: it should be kept in mind that no escaping of Shell metacharacters are performed by the plugin.
AiiDA encloses each command line argument with single quotes and that’s being relied on.

Outputs
e CifData A CIF file.

* ParameterData (optional) Contains lines of output messages and/or errors. For example:

print load_node(l, parent_class=ParameterData) .get_dict () ‘

would print:

{u'output_messages': [u'cif_cod_check: test.cif data_4000000: Apublisectionitidle is undefir

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifcellcontents

Description This plugin is used for chemical formula calculations from the CIF files, as being done by
cif cell_ contents code from the cod-tools package.

Supported codes

e cif_cell_contents

40 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

Inputs
e CcifData A CIF file.

e ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Qutputs

* ParameterData Contains formulae in (CIF datablock name,formula®) pairs. For example:

print load_node(l, parent_class=ParameterData) .get_dict ()

would print:

{u'formulae': {
u'4000001': u'C24 H17 F5 Fe',
u'4000002': u'C24 H17 F5 Fe',
u'4000003': u'C24 H17 F5 Fe',
u'4000004"': u'C22 H8 F10 Fe'
PH)

Note: data_ is not prepended to the CIF datablock name — the CIF file, used for the example above,
contains CIF datablocks data_4000001, data_4000002, data_4000003 and data_4000004.

* ParameterData Contains lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifcodcheck

Description This plugin is specific for cif_cod_check script.

Supported codes

e cif_cod_check

Inputs
e cifData A CIF file.

e ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Outputs

e ParameterData Contains lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifcoddeposit

1.1. User’s guide a

AiiDA documentation, Release 0.5.0

Description This plugin is specific for cif_cod_deposit script.

Supported codes

* cif_cod_deposit

Inputs

e CcifData A CIF file.

* ParameterData Contains deposition information, such as user name, password and deposition type:

Outputs

username: depositor’s user name to access the *COD deposition interface;

password: depositor’s password to access the *COD deposition interface;

deposition-type: determines a type of the deposited CIF file, which can be one of the following:
#* published: CIF file is already published in a scientific paper;

* prepublication: CIF file is a prepublication material and should not be revealed to the public
until the publication of a scientific paper. In this case, a hold_period also has to be specified;

* personal: CIF file is personal communication.

url: URL of *COD deposition API (optional, default URL is http://test.crystallography.net/cgi-bin/cif-
deposit.pl);

journal: name of the journal, where the CIF is/will be published;
user_email: depositor’s e-mail address;

author_name: name of the CIF file author;

author_email: e-mail of the CIF file author;

hold_period: a period (in number months) for the structure to be kept on-hold (only for
deposition_type == ’'prepublication’).

e ParameterData Contains the result of deposition:

output_messages: lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

status: a string, one of the following:

* SUCCESS: a deposition is successful, newly assigned *COD number(s) is/are present in
output_messages field,;

% DUPLICATE: submitted data is already in the *COD database thus is not deposited once more;

* UNCHANGED: the redeposition of the data is unnecessary, as nothing was changed in the contents of
file to be replaced;

INPUTERROR: an error, related to the input, has occurred, detailed reason may be present in
output_messages field,

* SERVERERROR: an internal server error has occurred, detailed reason may be present in
output_messages field;

UNKNOWN: the result of the deposition is unknown.

42

Chapter 1. User’s guide

http://test.crystallography.net/cgi-bin/cif-deposit.pl
http://test.crystallography.net/cgi-bin/cif-deposit.pl

AiiDA documentation, Release 0.5.0

Errors Run-time errors are returned line-by-line in the output_messages field of ParameterData object.

codtools.cifcodnumbers

Description This plugin is specific for cif_cod_numbers script.

Supported codes

e cif cod_numbers

Inputs
e CifData A CIF file.

e ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Outputs

e ParameterData Contains two subdictionaries: duplicates and errors. In duplicates correspon-
dence between the database and supplied file(s) is described. Example:

{

"duplicates": [
{
"codid": "4000099",
"count": 1,
"formula": "C50_H44_N2_Ni_04"
}
]I
"errors": []

}

Here codid is numeric ID of a hit in the database, count is total number of hits for the particular
datablock and formula is the summary formula of the described datablock.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifsplitprimitive

Description This plugin is used by cif_split and cif_split_primitive codes from the cod-tools pack-
age.

Supported codes
e cif_split 2

e cif_split_primitive

2 Incompatible with ——output-prefixed and ——output—tar command line options.

1.1. User’s guide 43

AiiDA documentation, Release 0.5.0

Inputs
e CcifData A CIF file.

e ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information, refer to inputs for codtools.ciffilter plugin.

Outputs
e List of CifData One or more CIF files.

* ParameterData (optional) Contains lines of output messages and/or errors.

Errors Run-time errors are returned line-by-line in the ParameterData object.

ASE

Note: The ASE plugin referenced below is available in the EPFL version.

Description ASE (Atomic Simulation Environment) is a set of tools and Python modules for setting up, manipulat-
ing, running, visualizing and analyzing atomistic simulations. The ASE code is freely available under the GNU LGPL
license (the ASE installation guide and the source can be found here).

Besides the manipulation of structures (At oms objects), one can attach calculators to a structure and run it to
compute, as an example, energies or forces. Multiple calculators are currently supported by ASE, like GPAW, Vasp,
Abinit and many others.

In AiiDA, we have developed a plugin which currently supports the use of ASE calculators for total energy calculations
and structure optimizations.

Plugins

ASE

Note: The ASE plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of ASE structure optimizations and of total energy calculations. Re-
quires the installation of ASE on the computer where AiiDA is running.

Supported codes

* tested on ASE v3.8.1 and on GPAW v0.10.0. ASE back compatibility is not guaranteed. Calculators different
from GPAW should work, if they follow the interface description of ASE calculators, but have not been tested.
Usage requires the installation of both ASE and of the software used by the calculator.

Inputs

 kpoints, class KpointsData (optional) Reciprocal space points on which to build the wavefunctions. Only
kpoints meshes are currently supported.

* parameters, class ParameterData Input parameters that defines the calculations to be performed, and their
parameters. See the ASE documentation for more details.

44 Chapter 1. User’s guide

http://wiki.fysik.dtu.dk/ase/

AiiDA documentation, Release 0.5.0

e structure, class St ructureData

* settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

— ‘CMDLINE?’: list of strings. parameters to be put after the executable and before the input file. Example:
[*-npool”,’4”’] will produce gpaw -npool 4 < aiida_input

— ‘ADDITIONAL_RETRIEVE_LIST”: list of strings. Specify additional files to be retrieved. By default,
the output file and the xml file are already retrieved.

Outputs Actual output production depends on the input provided.

* output_parameters ParameterData (accessed by calculation. res) Contains the scalar properties. Ex-
ample: energy (in eV) or warnings (possible error messages generated in the run).

e output_array ArrayData Stores vectorial quantities (lists, tuples, arrays), if requested in output. Example:
forces, stresses, positions. Units are those produced by the calculator.

* output_structure St ructureData Present only if the structure is optimized.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Examples The following example briefly describe the usage of GPAW within AiiDA, assuming that both ASE and
GPAW have been installed on the remote machine. Note that ASE calculators, at times, require the definition of
environment variables. Take your time to find them and make sure that they are loaded by the submission script of
AiiDA (use the prepend text fields of a Code, for example).

First of all install the AiiDA Code as usual, noting that, if you plan to use the serial version of GPAW (applies to all
other calculators) the remote absolute path of the code has to point to the python executable (i.e. the output of which
python on the remote machine, typically it might be /usr/bin/python). If the parallel version of GPAW is
used, set instead the path to gpaw-python.

To understand the plugin, it is probably easier to try to run one test, to see the python script which is produced and
executed on the remote machine. We describe in the following some example script, which can be called through
the verdi run command (example: verdi run test_script.py). You should see a folder submit_test
created in the location from which you run the command. Here there is the input script that is going to be executed in
the remote machine, with the syntax of the ASE software.

Inthis first example script and execute it with the verdi run command. This is a minimal script that
uses GPAW and a plane-wave basis to compute the total energy of a structure. Note that for a serial calculation, it is
necessary to run the calculation.set_with_mpi (False) method. Note also, that by default, only the total
energy of the structure is computed and retrieved.

This second example instead shows a demo of all possible options supported by the current plugin. By specify-
ing an optimizer key in the dictionary, the ASE optimizers are run. In the example, the QuasiNewton algorithm is run
to minimize the forces and find the equilibrium structures. By specifying the key “calculator_getters”, the code will
get from the calculator, the properties which are specified in the value, using the get method of the calculator; similar
applies for the atoms_getters, which will call the atoms . get method. extra_lines and post_lines are
used to insert python commands that are executed before or after the call to the calculators. extra_imports is used
to specify the import of more modules.

Lastly, this script is an example of how to run GPAW parallel. Essentially, nothing has to be changed in input,
except that there is no need to call the method calculation.set_with_mpi (False).

1.1. User’s guide 45

AiiDA documentation, Release 0.5.0

NWChem

Description NWChem is an open-source high performance computational chemistry tool.

Plugins

nwchem.basic

Description A very simple plugin for main NWChem’s nwchem executable.

Inputs
e StructureData A structure.

e ParameterData (optional) A dictionary with control variables. An example (default values):

{

"abbreviation": "aiida_calc", # Short name for the computation
"title": "AiiDA NWChem calculation", # Long name for the computation
"basis": # Basis per chemical type
{
"Ba": "library 6-31g",
"Ti": "library 6-31g",
"o": "library 6-31g",
}y
"task": "scf", # Computation task
"add_cell": True, # Include cell parameters?

QOutputs

* ParameterData A dictionary with energy values. For example:

{

"nuclear_repulsion_energy": "9.194980930276",
"one_electron_energy": "-122.979939235872",
"total_scf_energy": "-75.983997570474",
"two_electron_energy": "37.800960735123"
}
nwchem.nwcpymatgen

Description pymatgen-based input plugin for main NWChem‘s nwchem executable.

Inputs
e StructureData (optional) A structure.

* ParameterData A dictionary with control variables.

46 Chapter 1. User’s guide

http://www.nwchem-sw.org

AiiDA documentation, Release 0.5.0

Outputs

* job_info: ParameterData A dictionary of general parameters of the computation, like details of compi-
lation, used time and memory.

May also contain one or more of the following:

* output: ParameterData A dictionary describing the job. An example:

{

"basis_set": {},

"corrections": {},

"energies": [],

"errors": [],

"frequencies": null,

"has_error": false,

"Job_type": "NWChem Geometry Optimization"

}

* trajectory: TrajectoryData (optional) A trajectory, made of structures, produced in the steps of ge-
ometry optimization.

Note: Functionality to extract structures from NWChem's output is not present in pymatgen 3.0.13 or
earlier.

Errors Errors are reported in the errors field of output ParameterData dictionary. Additionally, there’s a
boolean flag has_error in the same dictionary.

1.1.6 Scripting with AiiDA

While many common functionalities are provided by either command-line tools (via verdi) or the web interface, for
fine tuning (or automatization) it is useful to directly access the python objects and call their methods.

This is possible in two ways, either via an interactive shell, or writing and running a script. Both methods are described
below.

verdi shell

By running verdi shell on the terminal, a new interactive IPython shell will be opened (this requires that IPython
is installed on your computer).

Note that simply opening [Python and loading the AiiDA modules will not work (unless you perform the operations
described in the following section) because the database settings are not loaded by default and AiiDA does not know
how to access the database.

Moreover, by calling verdi shell, you have the additional advantage that some classes and modules are automat-
ically loaded. In particular the following modules/classes are already loaded and available:

from aiida.orm import (Node, Calculation, JobCalculation, Code, Data,
Computer, Group, DataFactory, CalculationFactory)
from aiida.djsite.db import models

Note: It is possible to customize the shell by adding modules to be loaded automatically, thanks to the verdi
devel setproperty verdishell.modules command. See here for more information.

1.1. User’s guide a7

http://ipython.org/

AiiDA documentation, Release 0.5.0

A further advantage is that bash completion is enabled, allowing to press the TAB key to see available submethods of
a given object (see for instance the documentation of the ResultManager).

Writing python scripts for AiiDA

Alternatively, if you do not need an interactive shell but you prefer to write a script and then launch it from the
command line, you can just write a standard python . py file. The only modification that you need to do is to add, at
the beginning of the file and before loading any other AiiDA module, the following two lines:

from aiida import load_dbenv
load_dbenv ()

that will load the database settings and allow AiiDA to reach your database. Then, you can load as usual python
and AiiDA modules and classes, and use them. If you want to have the same environment of the verdi shell
interactive shell, you can also add (below the 10ad_dbenv call) the following lines:

from aiida.orm import Calculation, Code, Computer, Data, Node
from aiida.orm import CalculationFactory, DataFactory
from aiida.djsite.db import models

or simply import the only modules that you will need in the script.

While this method will work, we strongly suggest to use instead the verdi run command, described here below.

The verdi run command and the runaiida executable

In order to simplify the procedure described above, it is possible to execute a python file using verdi run: this
command will accept as parameter the name of a file, and will execute it after having loaded the modules described
above.

The command verdi run has the additional advantage of adding all stored nodes to suitable special groups, of type
autogroup. run, for later usage. You can get the list of all these groups with the command:

verdi group list -t autogroup.run

Some further command line options of verdi run allow the user to fine-tune the autogrouping behavior; for more
details, refer to the output of verdi run -h. Note also that further command line parameters to verdi run are
passed to the script as sys.argv.

Note: It is not possible to run multiple times the 1oad_dbenv () command. Since calling verdi run will
automatically call the 1load_dbenv () command, you cannot run a script that contains this call (this is instead

needed if you want to run the script simply via python scriptname.py). If you want to allow for both options,
use the following method to discover if the db environment was already loaded:

from aiida import load_dbenv, is_dbenv_loaded

if not is_dbenv_loaded() :
load_dbenv ()

Finally, we also defined a runaiida command, that simply will pass all its parameters to verdi run. The reason
for this is that one can define a new script to be run with verdi run, add as the first line the shebang command
#!/usr/bin/env runaiida, and give to the file execution permissions, and the file will become an executable
that is run using AiiDA. A simple example could be:

48 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

#!/usr/bin/env runaiida
import sys

pk = int(sys.argv[1l])
node = load_node (pk)
print "Node {} is: {}".format (pk, repr (node))

import aiida
print "AiiDA version is: {}".format (aiida.get_version())

1.1.7 StructureData tutorial

General comments

This section contains an example of how you can use the St ructureDat a object to create complex crystals.

With the St ructureData class we did not try to have a full set of features to manipulate crystal structures. Indeed,
other libraries such as ASE exist, and we simply provide easy ways to convert between the ASE and the AiiDA
formats. On the other hand, we tried to define a “standard” format for structures in AiiDA, that can be used across
different codes.

Tutorial

Take a look at the following example:

alat = 4. # angstrom
cell = [[alat, 0., 0.,1,

[0., alat, 0.,1,

(0., 0., alat,]1,

1

s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.), symbols='Fe')
s.append_atom (position=(alat/2.,alat/2.,alat/2.), symbols='0")

With the commands above, we have created a crystal structure s with a cubic unit cell and lattice parameter of 4
angstrom, and two atoms in the cell: one iron (Fe) atom in the origin, and one oxygen (O) at the center of the cube
(this cell has been just chosen as an example and most probably does not exist).

Note: As you can see in the example above, both the cell coordinates and the atom coordinates are expressed in
angstrom, and the position of the atoms are given in a global absolute reference frame.

In this way, any periodic structure can be defined. If you want to import from ASE in order to specify the coordinates,
e.g., in terms of the crystal lattice vectors, see the guide on the conversion to/from ASE below.

When using the append_atom () method, further parameters can be passed. In particular, one can specify the
mass of the atom, particularly important if you want e.g. to run a phonon calculation. If no mass is specified, the
mass provided by NIST (retrieved in October 2014) is going to be used. The list of masses is stored in the module
aiida.common.constants,inthe elements dictionary.

Moreover, in the St ructureData class of AiiDA we also support the storage of crystal structures with alloys,
vacancies or partial occupancies. In this case, the argument of the parameter symbols should be a list of symbols, if
you want to consider an alloy; moreover, you must pass a weights list, with the same length as symbols, and with
values between 0. (no occupancy) and 1. (full occupancy), to specify the fractional occupancy of that site for each of
the symbols specified in the symbols list. The sum of all occupancies must be lower or equal to one; if the sum is
lower than one, it means that there is a given probability of having a vacancy at that specific site position.

1.1. User’s guide 49

https://wiki.fysik.dtu.dk/ase/
http://www.nist.gov/pml/data/index.cfm

AiiDA documentation, Release 0.5.0

As an example, you could use:

s.append_atom(position=(0.,0.,0.),symbols=["'Ba’','Ca'],weights=[0.9,0.17)

to add a site at the origin of a structure s consisting of an alloy of 90% of Barium and 10% of Calcium (again, just an
example).

The following line instead:

s.append_atom(position=(0.,0.,0.),symbols="'Ca',weights=0.9)

would create a site with 90% probability of being occupied by Calcium, and 10% of being a vacancy.

Utility methods s.is_alloy () and s.has_vacancies () can be used to verify, respectively, if more than one
element if given in the symbols list, and if the sum of all weights is smaller than one.

Note: if you pass more than one symbol, the method s.is_alloy () will always return True, even if only one
symbol has occupancy 1. and all others have occupancy zero:

>>> g = StructureData(cell=[[4,0,01,1[0,4,0]1,[0,0,411)

>>> s.append_atom(position=(0.,0.,0.), symbols=['Fe', 'O'], weights=[1.,0.1)
>>> s.is_alloy ()

True

Internals: Kinds and Sites

Internally, the append_atom () method works by manipulating the kinds and sites of the current structure. Kinds are
instances of the Kind class and represent a chemical species, with given properties (composing element or elements,
occupancies, mass, ...) and identified by a label (normally, simply the element chemical symbol).

Sites are instances of the Site class and represent instead each single site. Each site refers to a Kind to identify its
properties (which element it is, the mass, ...) and to its three spatial coordinates.

The append_atom () works in the following way:
* It creates a new Kind class with the properties passed as parameters (i.e., all parameters except position).

o It tries to identify if an identical Kind already exists in the list of kinds of the structure (e.g., in the
same atom with the same mass was already previously added). Comparison of kinds is performed using
aiida.orm.data.structure.Kind.compare_with (), and in particular it returns True if the mass
and the list of symbols and of weights are identical (within a threshold). If an identical kind k is found, it simply
adds a new site referencing to kind k and with the provided position. Otherwise, it appends k to the list
of kinds of the current structure and then creates the site referencing to k. The name of the kind is chosen, by
default, equal to the name of the chemical symbol (e.g., “Fe” for iron).

* If you pass more than one species for the same chemical symbol, but e.g. with different masses, a new kind is
created and the name is obtained postponing an integer to the chemical symbol name. For instance, the following

lines:

s.append_atom(position = [0,0,0], symbols='Fe', mass = 55.8)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 57)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 59)

will automatically create three kinds, all for iron, with names Fe, Fel and Fe2, and masses 55.8, 57. and 59.
respecively.

¢ In case of alloys, the kind name is obtained concatenating all chemical symbols names (and a X is the sum of
weights is less than one). The same rules as above are used to append a digit to the kind name, if needed.

50 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

* Finally, you can simply specify the kind_name to automatically generate a new kind with a specific name. This
is the case if you want a name different from the automatically generated one, or for instance if you want to
create two different species with the same properties (same mass, symbols, ...). This is for instance the case
in Quantum ESPRESSO in order to describe an antiferromagnetic cyrstal, with different magnetizations on the
different atoms in the unit cell.

In this case, you can for instance use:

s.append_atom(position = [0,0,0], symbols='Fe', mass
s.append_atom(position = [2,2,2], symbols='Fe', mass

55.845, name='Fel')
55.845, name='Fe2')

To create two species Fel and Fe2 for iron, with the same mass.

Note: You do not need to specify explicitly the mass if the default one is ok for you. However, when you pass
explicitly a name and it coincides with the name of an existing species, all properties that you specify must be

identical to the ones of the existing species, or the method will raise an exception.

Note: If you prefer to work with the internal Kind and Site classes, you can obtain the same result of the
two lines above with:

from aiida.orm.data.structure import Kind, Site

s.append_kind (Kind (symbols='Fe', mass=55.845, name='Fel')
s.append_kind (Kind(symbols="'Fe', mass=55.845, name='Fel'))
s.append_site (Site(kind_name='Fel', position=[0.,0.,0.]))
s.append_site (Site (kind_name='Fe2', position=[2.,2.,2.]))

Conversion to/from ASE

If you have an AiiDA structure, you can get an ase . At om object by just calling the get_ase method:

‘ase_atoms aiida_structure.get_ase ()

Note: As we support alloys and vacancies in AiiDA, while ase . At om does not, it is not possible to export to ASE
a structure with vacancies or alloys.

If instead you have as ASE Atoms object and you want to load the structure from it, just pass it when initializing the
class:

StructureData = DataFactory('structure')

or:

from aiida.orm.data.structure import StructureData
aiida_structure = StructureData(ase = ase_atoms)

Creating multiple species

We implemented the possibility of specifying different Kinds (species) in the ase.atoms and then importing them.

In particular, if you specify atoms with different mass in ASE, during the import phase different kinds will be created:

>>> import ase

>>> StructureData = DataFactory ("structure™)
>>> asecell = ase.Atoms ('Fe2')

>>> asecell[0] .mass = 55.

>>> asecell[l] .mass = 56.

1.1. User’s guide 51

AiiDA documentation, Release 0.5.0

>>> s = StructureData (ase=asecell)
>>> for kind in s.kinds:

>>> print kind.name, kind.mass
Fe 55.0

Fel 56.0

Moreover, even if the mass is the same, but you want to get different species, you can use the ASE tags to specify
the number to append to the element symbol in order to get the species name:

>>> import ase

>>> StructureData = DataFactory ("structure™)
>>> asecell = ase.Atoms ('Fe2'")

>>> asecell[0] .tag 1

>>> asecell[l].tag = 2

>>> s = StructureData (ase=asecell)
>>> for kind in s.kinds:

>>> print kind.name

Fel

Fe2

Note: in complicated cases (multiple tags, masses, ...), it is possible that exporting a AiiDA structure to ASE and then
importing it again will not perfectly preserve the kinds and kind names.

Conversion to/from pymatgen

AiiDA structure can be converted to pymatgen’s Molecule and Structure objects by using, accordingly,
get_pymatgen _molecule and get_pymatgen_structure methods:

pymatgen_molecule = aiida_structure.get_pymatgen_molecule ()
pymatgen_structure = aiida_structure.get_pymatgen_structure ()

A single method get_pymatgen can be used for both tasks: converting periodic structures (periodic boundary
conditions are met in all three directions) to pymatgen’s Structure and other structures to pymatgen’s Molecule:

pymatgen_object = aiida_structure.get_pymatgen ()

It is also possible to convert pymatgen’s Molecule and Structure objects to AiiDA structures:

StructureData = DataFactory("structure")
from _mol StructureData (pymatgen_molecule=mol)
from_struct = StructureData (pymatgen_structure=struct)

Also in this case, a generic converter is provided:

StructureData = DataFactory ("structure™)
from_mol StructureData (pymatgen=mol)
from_struct StructureData (pymatgen=struct)

Note: Converters work with version 3.0.13 or later of pymatgen. Earlier versions may cause errors.

1.1.8 Quantum Espresso PWscf user-tutorial

This chapter will show how to launch a single PWscf (pw . x) calculation. It is assumed that you have already per-
formed the installation, and that you already setup a computer (with verdi), installed Quantum Espresso on the

52 Chapter 1. User’s guide

http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Molecule
http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Structure

AiiDA documentation, Release 0.5.0

cluster and in AiiDA. Although the code could be quite readable, a basic knowledge of Python and object program-
ming is useful.

Your classic pw.x input file

This is the input file of Quantum Espresso that we will try to execute. It consists in the total energy calculation of a 5
atom cubic cell of BaTiO3. Note also that AiiDA is a tool to use other codes: if the following input is not clear to you,
please refer to the Quantum Espresso Documentation.

&CONTROL
calculation = 'scf'
outdir = './out/'
prefix = 'aiida'
pseudo_dir = './pseudo/'
restart_mode = 'from_scratch'
verbosity = 'high'
wf_collect = .true.
/
&SYSTEM
ecutrho = 2.4000000000d+02
ecutwfc = 3.0000000000d+01
ibrav = 0
nat = 5
ntyp = 3
/
&ELECTRONS
conv_thr = 1.0000000000d-06
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
o] 15.9994 O.pbesol-n-rrkjus_psl.0.l-tested-pslib030.UPF
ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
0 2.0000000000 2.0000000000 0.0000000000
0 2.0000000000 0.0000000000 2.0000000000
o] 0.0000000000 2.0000000000 2.0000000000
K_POINTS automatic
4 44000
CELL_PARAMETERS angstrom
4.0000000000 0.0000000000 0.0000000000
0.0000000000 4.0000000000 0.0000000000
0.0000000000 0.0000000000 4.0000000000

In the old way, not only you had to prepare ‘manually’ this file, but also prepare the scheduler submission script, send
everything on the cluster, etc. We are going instead to prepare everything in a more programmatic way.

Quantum Espresso Pw Walkthrough

We’ve got to prepare a script to submit a job to your local installation of AiiDA. This example will be a rather long
script: in fact there is still nothing in your database, so that we will have to load everything, like the pseudopotential
files and the structure. In a more practical situation, you might load data from the database and perform a small
modification to re-use it.

Let’s say that through the verdi command you have already installed a cluster, say TheHive, and that you also
compiled Quantum Espresso on the cluster, and installed the code pw.x with verdi with label pw-5. 1 for instance,

1.1. User’s guide 53

AiiDA documentation, Release 0.5.0

so that in the rest of this tutorial we will reference to the code as pw—5.1@TheHive.

Let’s start writing the python script. First of all, we need to load the configuration concerning your particular installa-
tion, in particular, the details of your database installation:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv ()

Code

Now we have to select the code. Note that in AiiDA the object ‘code’ in the database is meant to represent a specific
executable, i.e. a given compiled version of a code. This means that if you install Quantum Espresso (QE) on two
computers A and B, you will need to have two different ‘codes’ in the database (although the source of the code is the
same, the binary file is different).

If you setup the code pw—5. 1 on machine TheHive correctly, then it is sufficient to write:

codename = 'pw-5.1@TheHive'
from aiida.orm import Code
code = Code.get_from_string(codename)

Where in the last line we just load the database object representing the code.

Note: the .get_from string () method is just a helper method for user convenience, but there are some
weird cases that cannot be dealt in a simple way (duplicated labels, code names that are an integer number, code

names containing the ‘@’ symbol, ...: try to not do this! This is not an error, but does not allow to use the
.get_from_string () method to get those calculations). In this case, you can use directly the . get () method,
for instance:

code = Code.get (label="pw-5.1", machinename='TheHive',
useremail="user@domain.com")

or even more generally get the code from its (integer) PK:

code = load_node (PK)

Structure

We now proceed in setting up the structure.

Note: Here we discuss only the main features of structures in AiiDA, needed to run a Quantum ESPRESSO PW
calculation.

For more detailed information, give a look to the StructureData tutorial.

There are two ways to do that in AiiDA, a first one is to use the AiiDA Structure, which we will explain in the fol-
lowing; the second choice is the Atomic Simulation Environment (ASE) which provides excellent tools to manipulate
structures (the ASE Atoms object needs to be converted into an AiiDA Structure, see the note at the end of the section).

We first have to load the abstract object class that describes a structure. We do it in the following way: we load the
DataFactory, which is a tool to load the classes by their name, and then call StructureData the abstract class that we
loaded. (NB: it’s not yet a class instance!) (If you are not familiar with the terminology of object programming, we
could take Wikipedia and see their short explanation: in common speech that one refers to « file as a class, while
the file is the object or the class instance. In other words, the class is our definition of the object Structure, while its
instance is what will be saved as an object in the database):

54 Chapter 1. User’s guide

http://wiki.fysik.dtu.dk/ase/
http://en.wikipedia.org/wiki/Object_(computer_science)

AiiDA documentation, Release 0.5.0

from aiida.orm import DataFactory
StructureData = DataFactory ('structure')

We define the cell with a 3x3 matrix (we choose the convention where each ROW represents a lattice vector), which
in this case is just a cube of size 4 Angstroms:

alat = 4. # angstrom
cell = [[alat, O., O0.,1,
[0., alat, 0.,1,
(0., 0., alat,],
]

Now, we create the StructureData instance, assigning immediately the cell. Then, we append to the empty crystal cell
the atoms, specifying their element name and their positions:

BaTiO3 cubic structure

s = StructureData (cell=cell)
s.append_atom(position=(0.,0.,0.),symbols="Ba')

s.append_atom (position=(alat/2.,alat/2.,alat/2.),symbols="Ti")
s.append_atom(position=(alat/2.,alat/2.,0.),symbols="0")
s.append_atom(position=(alat/2.,0.,alat/2.),symbols="0")

s ((

.append_atom(position=(0.,alat/2.,alat/2.),symbols="0")

To see more methods associated to the class StructureData, look at the Structure documentation.

Note: When you create a node (in this case a St ructureData node) as described above, you are just creating
it in the computer memory, and not in the database. This is particularly useful to run tests without filling the AiiDA

database with garbage.

You will see how to store all the nodes in one shot toward the end of this tutorial; if, however, you want to directly
store the structure in the database for later use, you can just call the store () method of the Node:

s.store ()

For an extended tutorial about the creation of Structure objects, check this tutorial.

Note: AiiDA supports also ASE structures. Once you created your structure with ASE, in an object instance called
say ase_s, you can straightforwardly use it to create the AiiDA StructureData, as:

s = StructureData (ase=ase_s)

and then save it s. store ().

Parameters

Now we need to provide also the parameters of a Quantum Espresso calculation, like the cutoff for the wavefunctions,
some convergence threshold, etc... The Quantum ESPRESSO pw.x plugin requires to pass this information within
a ParameterData object, that is a specific AiiDA data node that can store a dictionary (even nested) of basic data
types: integers, floats, strings, lists, dates, ... We first load the class through the DataFactory, just like we did for the
Structure. Then we create the instance of the object parameter. To represent closely the structure of the QE input
file, ParameterData is a nested dictionary, at the first level the namelists (capitalized), and then the variables with their
values (in lower case).

Note also that numbers and booleans are written in Python, i.e. False and not the Fortran string . false.!

1.1. User’s guide 55

AiiDA documentation, Release 0.5.0

ParameterData = DataFactory ('parameter')

parameters = ParameterData (dict={

'"CONTROL': {
'calculation': 'scf',
'restart_mode': 'from_scratch',
'wf_collect': True,
}I

'SYSTEM': {
'ecutwfc': 30.,

'ecutrho': 240.,
by

'"ELECTRONS': {
'conv_thr': 1l.e-6,

)

Note: also in this case, we chose not to store the parameters node. If we wanted, we could even have done it in a
single line:

parameters = ParameterData(dict={...}) .store()

The experienced QE user will have noticed also that a couple of variables are missing: the prefix, the pseudo directory
and the scratch directory are reserved to the plugin which will use default values, and there are specific AiiDA methods
to restart from a previous calculation.

The k-points have to be saved in another kind of data, namely KpointsData:

KpointsData = DataFactory('array.kpoints')
kpoints = KpointsData()
kpoints.set_kpoints_mesh ([4,4,4])

In this case it generates a 4*4*4 mesh without offset. To add an offset one can replace the last line by:

kpoints.set_kpoints_mesh([4,4,4],0ffset=(0.5,0.5,0.5))

Note: Only offsets of 0 or 0.5 are possible (this is imposed by PWscf).

You can also specify kpoints manually, by inputing a list of points in crystal coordinates (here they all have equal
weights):

import numpy
kpoints.set_kpoints([[i,1,0] for i in numpy.linspace(0,1,10)],
weights = [1. for i1 in range(10)])

Note: It is also possible to generate a gamma-only computation. To do so one has to specify additional settings, of
type ParameterData, putting gamma-only to True:

‘settings = ParameterData (dict={"'gamma_only':True})

then set the kpoints mesh to a single point (gamma):

‘kpoints.set_kpoints_mesh([1,1,1])

and in the end add (after calc = code.new_calc (), see below) a line to use these settings:

‘calc.use_settings(settings)

56 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

As a further comment, this is specific to the way the plugin for Quantum Espresso works. Other codes may need
more than two ParameterData, or even none of them. And also how this parameters have to be written depends on the
plugin: what is discussed here is just the format that we decided for the Quantum Espresso plugins.

Calculation

Now we proceed to set up the calculation. Since during the setup of the code we already set the code to be a
quantumespresso.pw code, there is a simple method to create a new calculation:

calc = code.new_calc()

We have to specify the details required by the scheduler. For example, on a SLURM or PBS scheduler,
we have to specify the number of nodes (num_machines), possibly the number of MPI processes per node
(num_mpiprocs_per_machine) if we want to run with a different number of MPI processes with respect to
the default value configured when setting up the computer in AiiDA, the job walltime, the queue name (if desired), ...:

calc.set_max_wallclock_seconds (30+60) # 30 min

calc.set_resources ({"num_machines": 1})

OPTIONAL, use only if you need to explicitly specify a queue name
calc.set_queue_name ("the_queue_name")

(For the complete scheduler documentation, see Supported schedulers)

Note: an alternative way of calling a method starting with the string set
.new_calc () method. This is to say that the following lines:

is to pass directly the value to the

-

calc = code.new_calc()
calc.set_max_wallclock_seconds (3600)
calc.set_resources ({"num _machines": 1})

is equivalent to:

calc = code.new_calc (max_wallclock_seconds=3600,
resources={"num_machines": 1})

At this point, we just created a “lone” calculation, that still does not know anything about the inputs that we created
before. We need therefore to tell the calculation to use the parameters that we prepared before, by properly linking
them using the use_ methods:

calc.use_structure (s)
calc.use_code (code)
calc.use_parameters (parameters)
calc.use_kpoints (kpoints)

In practice, when you say calc.use_structure (s), you are setting a link between the two nodes (s and calc),
that means that s is the input structure for calculation calc. Also these links are cached and do not require to store
anything in the database yet.

In the case of the gamma-only computation (see above), you also need to add:

calc.use_settings (settings)

Pseudopotentials

There is still one missing piece of information, that is the pseudopotential files, one for each element of the structure.

1.1. User’s guide 57

AiiDA documentation, Release 0.5.0

In AiiDA, it is possible to specify manually which pseudopotential files to use for each atomic species. However,
for any practical use, it is convenient to use the pseudopotential families. Its use is documented in Pseudopotential
Jamilies tutorial. If you got one installed, you can simply tell the calculation to use the pseudopotential family with a
given name, and AiiDA will take care of linking the proper pseudopotentials to the calculation, one for each atomic
species present in the input structure. This can be done using:

’calc.use_pseudos_from_family('my_pseudo_family')

Labels and comments

Sometimes it is useful to attach some notes to the calculation, that may help you later understand why you did such a
calculation, or note down what you understood out of it. Comments are a special set of properties of the calculation,
in the sense that it is one of the few properties that can be changed, even after the calculation has run.

Comments come in various flavours. The most basic one is the label property, a string of max 255 characters, which
is meant to be the title of the calculation. To create it, simply write:

‘calc.label = "A generic title"

The label can be later accessed as a class property, i.e. the command:

‘calc.label

will return the string you previously set (empty by default). Another important property to set is the description, which
instead does not have a limitation on the maximum number of characters:

’calc.description = "A much longer description"

And finally, there is the possibility to add comments to any calculation (actually, to any node). The peculiarity of
comments is that they are user dependent (like the comments that you can post on facebook pages), so it is best suited
to calculation exposed on a website, where you want to remember the comments of each user. To set a comment, you
need first to import the django user, and then write it with a dedicated method:

from aiida.djsite.utils import get_automatic_user
calc.add_comment ("Some comment", user=get_automatic_user())

The comments can be accessed with this function:

calc.get_comments_tuple ()

Execute

If we are satisfied with what you created, it is time to store everything in the database. Note that after storing it, it will
not be possible to modify it (nor you should: you risk of compromising the integrity of the database)!

Unless you already stored all the inputs beforehand, you will need to store the inputs before being able to store the
calculation itself. Since this is a very common operation, there is an utility method that will automatically store both
all the input nodes of calc and then calc itself:

’calc.store_all()

Once we store the calculation, it is useful to print its PK (principal key, that is its identifier) that is useful in the
following to interact with it:

’print "created calculation; with uuid='{}"' and PK={}".format (calc.uuid,calc.pk)

58 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

Note: the PK will change if you give the calculation to someone else, while the UUID (the Universally Unique
[Dentifier) is a string that is assured to be always the same also if you share your data with collaborators.

Summarizing, we created all the inputs needed by a PW calculation, that are: parameters, kpoints, pseudopotential
files and the structure. We then created the calculation, where we specified that it is a PW calculation and we specified
the details of the remote cluster. We set the links between the inputs and the calculation (calc.use_* %) and finally
we stored all this objects in the database (. store_all ()).

That’s all that the calculation needs. Now we just need to submit it:

calc.submit ()

Everything else will be managed by AiiDA: the inputs will be checked to verify that it is consistent with a PW input.
If the input is complete, the pw input file will be prepared in a folder together with all the other files required for
the execution (pseudopotentials, etc.). It will be then sent on cluster, submitted, and after execution automatically
retrieved and parsed.

To know how to monitor and check the state of submitted calculations, go to Calculations.

To continue the tutorial with the ph.x phonon code of Quantum ESPRESSO, continue here: Quantum Espresso
Phonon user-tutorial.

Script: source code

In this section you’ll find two scripts that do what explained in the tutorial. The compact is a script with a min-
imal configuration required. You can copy and paste it (or download it), modify the two strings codename and
pseudo_ family with the correct values, and execute it with:

’python pw_short_example.py

(It requires to have one family of pseudopotentials configured).

You will also find a longer version, with more exception checks, error management and user interaction. Note that the
configuration of the computer resources (like number of nodes and machines) is hardware and scheduler dependent.
The configuration used below should work for a pbspro or slurm cluster, asking to run on 1 node only.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv ()

from aiida.orm import Code, DataFactory
StructureData = DataFactory ('structure')
ParameterData = DataFactory ('parameter')
KpointsData = DataFactory('array.kpoints')

#E#AF A AHAAAAA AR RAAAAFAAAEAA
Set your values here

codename = 'pw-5.1@TheHive'
pseudo_family = 'lda_pslibrary'
#H#HF A AFAAAAARAARAHARAAFAFAAAA

code = Code.get_from_string(codename)

1.1. User’s guide 59

AiiDA documentation, Release 0.5.0

BaTiO3 cubic structure
alat = 4. # angstrom
cell = [[alat, O., O0.,1,

[0., alat, 0.,1],

(0., 0., alat,],

]

= StructureData (cell=cell)
.append_atom(position=(0.,0.,0.),symbols="Ba')
.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols="Ti")
.append_atom (position=(alat/2.,alat/2.,0.),symbols="'0")
.append_atom (position=(alat/2.,0.,alat/2.),symbols='0")
.append_atom (position=(0.,alat/2.,alat/2.),symbols='0")

n n n n n n

parameters = ParameterData (dict={

'"CONTROL'": {
'calculation': 'scf',
'restart_mode': 'from_scratch',
'wf_collect': True,
}I

"SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
}I

'"ELECTRONS': {
'conv_thr': 1l.e-6,

)

kpoints = KpointsData ()
kpoints.set_kpoints_mesh([4,4,4])

calc = code.new_calc (max_wallclock_seconds=3600,
resources={"num_machines": 1})

calc.label = "A generic title"

calc.description = "A much longer description"”

calc.use_structure (s)

calc.use_code (code)

calc.use_parameters (parameters)
calc.use_kpoints (kpoints)
calc.use_pseudos_from_family (pseudo_family)

calc.store_all()
print "created calculation with PK={}".format (calc.pk)
calc.submit ()

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error messages inside
your AiiDA folder, under examples/submission/test_pw.py.

1.1.9 Importing previously run Quantum ESPRESSO pw.x calculations: Pwimmi-
grant

Once you start using AiiDA to run simulations, we believe that you will find it so convenient that you will use it for
all your calculations.

60 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

At the beginning, however, you may have some calculations that you already have run and are sitting in some folders,
and that you want to import inside AiiDA.

This can be achieved with the PwImmigrant class described below.

Quantum Espresso PWscf immigration user-tutorial

If you are a new AiiDA user, it’s likely you already have a large number of calculations that you ran before installing
AiiDA. This tutorial will show you how to immigrate any of these PWscf (pw.x) calculations into your AiiDA
database. They will then exist there as if you had actually run them using AiiDA (with the exception of the times and
dates the calculations were run).

It is assumed that you have already performed the installation, that you already setup a computer (with verdi), and
that you have installed Quantum Espresso on the cluster and pw. x as a code in AiiDA. You should also be familiar
with using AiiDA to run a PWscf calculation and the various input and output nodes of a PwCalculation. Please go
through Quantum Espresso PWscf user-tutorial before proceeding.

Example details

The rest of the tutorial will detail the steps of immigrating two example pw.x calculations that were run in
/scratch/, using the code named ’ pw_on_TheHive’, on 1 node with 1 mpi process. The input/output file
names of these calculations are

* pw_jobl.in/pw_jobl.out

* pw_job2.in/pw_job2.out

Imports and database environement

As usual, we load the database environment and load the PwimmigrantCalculation class using the
CalculationFactory.

from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv ()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory ('quantumespresso.pwimmigrant')

Code, computer, and resources

Important: It is up to the user to setup and link the following calculation inputs manually:

¢ the code
* the computer
e the resources

These input nodes should be created to be representative of those that were used for the calculation that is to be
immigrated. (Eg. If the job was run using version 5.1 of Quantum-Espresso, the user should have already run verdi
code setup to create the code’s node and should load and pass this code when initializing the calculation node.)

1.1. User’s guide 61

AiiDA documentation, Release 0.5.0

If any of these input nodes are not representative of the actual properties the calculation was run with, there may be
errors when performing a calculation restart of an immigrated calculation, for example.

Next, we load the code and computer that have already been configured to be representative of those used to perform
the calculation. We also define the resources representive of those that were used to run the calculation.

Load the Code node representative of the one used to perform the calculations.
code = Code.get ('pw_on_TheHive'")

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer ()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialization of the calculation

Now, we are ready to initialize the immigrated calculation objects from the PwimmigrantCalculation class.
We will pass the necessary parameters as keywords during the initialization calls. Then, we link the code from above
as an input node.

Initialize the pw_jobl calculation node.

calcl = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/',
input_file_name='pw_jobl.in'",
output_file_name='pw_jobl.out")

Initialize the pw_job2 calculation node.

calc2 = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/"',
input_file_name='pw_job2.in"',
output_file_name='pw_job2.out")

Link the code that was used to run the calculations.
calcl.use_code (code)
calc2.use_code (code)

The wuser may have noticed the additional initialization keywords/parameters—remote_wordir,
input_file_name, and output_file_name—passed here. These are necessary in order to tell AiiDA
which files to use to automatically generate the calculation‘s input nodes in the next step.

The immigration

Now that AiiDA knows where to look for the input files of the calculations we are immigrating, all we need to do in
order to generate all the input nodes is call the create_input_nodes method. This method is the most helpful
method of the PwimmigrantCalculation class. It parses the job’s input file and creates and links the follow
types of input nodes:

* ParameterData — based on the namelists and their variable-value pairs
* KpointsData — based on the K_POINTS card

e SturctureData — based on the ATOMIC_POSITIONS and CELI_PARAMETERS cards (and the a or
celldm (1) of the s SYSTEM namelist, if alat is specified through these variables)

62 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

e UpfData — one for each of the atomic species, based on the pseudopotential files specified in the
ATOMIC_SPECIES card

* settings ParameterData — if there are any fixed coordinates, or if the gamma kpoint is used

All units conversion and/or coordinate transformations are handled automatically, and the input nodes are generated
in the correct units and coordinates required by AiiDA.

Note: Any existing UpfData nodes are simply linked without recreation; no duplicates are generated during this
method call.

Note: After this method call, the calculation and the generated input nodes are still in the cached state and are not
yet stored in the database. Therefore, the user may examine the input nodes that were generated (by examining the

attributes of the NodeInputManager, calc. inp) and edit or replace any of them. The immigration can also be
canceled at this point, in which case the calculation and the input nodes would not be stored in the database.

Finally, the last step of the immigration is to call the prepare_for_retrieval_and_parsing method. This
method stores the calculation and it’s input nodes in the database, copies the original input file to the calculation’s
repository folder, and then tells the daemon to retrieve and parse the calculation’s output files.

Note: If the daemon is not currently running, the retrieval and parsing process will not begin until it is
started.

Because the input and pseudopotential files need to be retrieved from the computer, the computer’s trans-
port plugin needs to be open. Rather than opening and closing the transport for each calculation, we in-
stead require the user to pass an open transport instance as a parameter to the create_input_nodes and
prepare_for_retrieval_and_parsing methods. This minimizes the number of transport opening and clos-
ings, which is highly beneficial when immigrating a large number of calculations.

Calling these methods with an open transport is performed as follows:

Get the computer's transport and create an instance.
Transport = computer.get_transport_class|()
transport = Transport ()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This 1is best performed using the transport's
context guard through the "~ “with'' statement.

with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.

calcl.create_input_nodes (open_transport)

calc2.create_input_nodes (open_transport)

Store the calculations and their input nodes and tell the daeomon the output
1is ready to be retrieved and parsed.
calcl.prepare_for_retrieval_and_parsing(open_transport)
calc2.prepare_for_retrieval_and_parsing(open_transport)

The process above is easily expanded to large-scale immigrations of multiple jobs.

Compact script

Download: this example script

1.1. User’s guide 63

AiiDA documentation, Release 0.5.0

#!/usr/bin/env python

from aiida import load_dbenv

from aiida.orm.code import Code

from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv ()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory ('quantumespresso.pwimmigrant')

Load the Code node representative of the one used to perform the calculations.
code = Code.get ('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer ()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialize the pw_jobl calculation node.

calcl = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/"',
input_file_name='pw_jobl.in',
output_file_name='pw_Jobl.out'")

Initialize the pw_job2 calculation node.

calc2 = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/",
input_file_name='pw_job2.in"',
output_file_name='pw_Jjob2.out')

Link the code that was used to run the calculations.
calcl.use_code (code)
calc2.use_code (code)

Get the computer's transport and create an instance.
Transport = computer.get_transport_class|()
transport = Transport ()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the "~ "with' statement.

with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.

calcl.create_input_nodes (open_transport)

calc2.create_input_nodes (open_transport)

Store the calculations and their input nodes and tell the daeomon the output
1is ready to be retrieved and parsed.

calcl.prepare_for_retrieval_and_parsing (open_transport)
calc2.prepare_for_retrieval_and_parsing(open_transport)

64 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

1.1.10 Quantum Espresso PWscf immigration user-tutorial

If you are a new AiiDA user, it’s likely you already have a large number of calculations that you ran before installing
AiiDA. This tutorial will show you how to immigrate any of these PWscf (pw.x) calculations into your AiiDA
database. They will then exist there as if you had actually run them using AiiDA (with the exception of the times and
dates the calculations were run).

It is assumed that you have already performed the installation, that you already setup a computer (with verdi), and
that you have installed Quantum Espresso on the cluster and pw . x as a code in AiiDA. You should also be familiar
with using AiiDA to run a PWscf calculation and the various input and output nodes of a PwCalculation. Please go
through Quantum Espresso PWscf user-tutorial before proceeding.

Example details

The rest of the tutorial will detail the steps of immigrating two example pw.x calculations that were run in
/scratch/, using the code named ' pw_on_TheHive’, on 1 node with 1 mpi process. The input/output file
names of these calculations are

* pw_jobl.in/pw_jobl.out

* pw_Jjob2.in/pw_job2.out

Imports and database environement

As usual, we load the database environment and load the PwimmigrantCalculation class using the
CalculationFactory.

from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv ()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory ('quantumespresso.pwimmigrant')

Code, computer, and resources

Important: It is up to the user to setup and link the following calculation inputs manually:

e the code
e the computer
¢ the resources

These input nodes should be created to be representative of those that were used for the calculation that is to be
immigrated. (Eg. If the job was run using version 5.1 of Quantum-Espresso, the user should have already run verdi
code setup to create the code’s node and should load and pass this code when initializing the calculation node.)
If any of these input nodes are not representative of the actual properties the calculation was run with, there may be
errors when performing a calculation restart of an immigrated calculation, for example.

Next, we load the code and computer that have already been configured to be representative of those used to perform
the calculation. We also define the resources representive of those that were used to run the calculation.

1.1. User’s guide 65

AiiDA documentation, Release 0.5.0

Load the Code node representative of the one used to perform the calculations.
code = Code.get ('pw_on_TheHive'")

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer ()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialization of the calculation

Now, we are ready to initialize the immigrated calculation objects from the PwimmigrantCalculation class.
We will pass the necessary parameters as keywords during the initialization calls. Then, we link the code from above
as an input node.

Initialize the pw_jobl calculation node.

calcl = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/"',
input_file_name='pw_jobl.in"',
output_file_name='pw_jobl.out')

Initialize the pw_job2 calculation node.

calc2 = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/',
input_file_name='pw_job2.in'",
output_file_name='pw_job2.out")

Link the code that was used to run the calculations.
calcl.use_code (code)
calc2.use_code (code)

The wuser may have noticed the additional initialization keywords/parameters—remote_wordir,
input_file_name, and output_file_name—passed here. These are necessary in order to tell AiiDA
which files to use to automatically generate the calculation‘s input nodes in the next step.

The immigration

Now that AiiDA knows where to look for the input files of the calculations we are immigrating, all we need to do in
order to generate all the input nodes is call the create_input_nodes method. This method is the most helpful
method of the PwimmigrantCalculation class. It parses the job’s input file and creates and links the follow
types of input nodes:

¢ ParameterData — based on the namelists and their variable-value pairs
* KpointsData — based on the K_POINTS card

e SturctureData — based on the ATOMIC_POSITIONS and CELIL_PARAMETERS cards (and the a or
celldm (1) of the s SYSTEM namelist, if alat is specified through these variables)

e UpfData — one for each of the atomic species, based on the pseudopotential files specified in the
ATOMIC_SPECIES card

* settings ParameterData — if there are any fixed coordinates, or if the gamma kpoint is used

66 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

All units conversion and/or coordinate transformations are handled automatically, and the input nodes are generated
in the correct units and coordinates required by AiiDA.

Note: Any existing UpfData nodes are simply linked without recreation; no duplicates are generated during this
method call.

Note: After this method call, the calculation and the generated input nodes are still in the cached state and are not
yet stored in the database. Therefore, the user may examine the input nodes that were generated (by examining the

attributes of the NodeInputManager, calc. inp) and edit or replace any of them. The immigration can also be
canceled at this point, in which case the calculation and the input nodes would not be stored in the database.

Finally, the last step of the immigration is to call the prepare_for_retrieval_and_parsing method. This
method stores the calculation and it’s input nodes in the database, copies the original input file to the calculation’s
repository folder, and then tells the daemon to retrieve and parse the calculation’s output files.

Note: If the daemon is not currently running, the retrieval and parsing process will not begin until it is
started.

Because the input and pseudopotential files need to be retrieved from the computer, the computer’s trans-
port plugin needs to be open. Rather than opening and closing the transport for each calculation, we in-
stead require the user to pass an open transport instance as a parameter to the create_input_nodes and
prepare_for_retrieval_and_parsing methods. This minimizes the number of transport opening and clos-
ings, which is highly beneficial when immigrating a large number of calculations.

Calling these methods with an open transport is performed as follows:

Get the computer's transport and create an instance.
Transport = computer.get_transport_class|()
transport = Transport ()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the "~ “with' ' statement.

with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.

calcl.create_input_nodes (open_transport)

calc2.create_input_nodes (open_transport)

Store the calculations and their input nodes and tell the daeomon the output
1is ready to be retrieved and parsed.
calcl.prepare_for_retrieval_and_parsing(open_transport)
calc2.prepare_for_retrieval_and_parsing (open_transport)

The process above is easily expanded to large-scale immigrations of multiple jobs.

Compact script

Download: this example script

#!/usr/bin/env python

from aiida import load_dbenv

from aiida.orm.code import Code

from aiida.orm import CalculationFactory

1.1. User’s guide 67

AiiDA documentation, Release 0.5.0

Load the database environment.
load_dbenv ()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory ('quantumespresso.pwimmigrant')

Load the Code node representative of the one used to perform the calculations.
code = Code.get ('pw_on_TheHive'")

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer ()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialize the pw_jobl calculation node.

calcl = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/"',
input_file_name='pw_jobl.in',
output_file_name='pw_Jjobl.out')

Initialize the pw_job2 calculation node.

calc2 = PwimmigrantCalculation (computer=computer,
resources=resources,
remote_workdir="'/scratch/',
input_file_name='pw_job2.in',
output_file_name='pw_Jjob2.out'")

Link the code that was used to run the calculations.
calcl.use_code (code)
calc2.use_code (code)

Get the computer's transport and create an instance.
Transport = computer.get_transport_class|()
transport = Transport ()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the " ‘with'' statement.

with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.

calcl.create_input_nodes (open_transport)

calc2.create_input_nodes (open_transport)

Store the calculations and their input nodes and tell the daeomon the output
1is ready to be retrieved and parsed.
calcl.prepare_for_retrieval_and_parsing(open_transport)
calc2.prepare_for_retrieval_and_parsing(open_transport)

1.1.11 Quantum Espresso Phonon user-tutorial

Note: The Phonon plugin referenced below is available in the EPFL version.

68 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

In this chapter will get you through the launching of a phonon calculation with Quantum Espresso, with ph.x, a
density functional perturbation theory code. For this tutorial, it is required that you managed to launch the pw. x
calculation, which is at the base of the phonon code; and of course it is assumed that you already know how to use the
QE code.

The input of a phonon calculation can be actually simple, the only care that has to be taken, is to point to the same
scratch of the previous pw calculation. Here we will try to compute the dynamical matrix on a mesh of points (actually
consisting of a 1x1x1 mesh for brevity). The input file that we should create is more or less this one:

AiiDA calculation

&INPUTPH

epsil = .true.

fildyn = 'DYN_MAT/dynamical-matrix-—'

iverbosity =1

ldisp = .true.

ngl =1

ng2 =1

ng3 = 1

outdir = './out/'

prefix = 'aiida'

tr2_ph = 1.0000000000d-08
/

Walkthrough

This input is much simpler than the previous PWscf work, here the only novel thing you will have to learn is how to
set a parent calculation.

As before, we write a script step-by-step.

We first load a couple of useful modules that you already met in the previous tutorial, and load the database settings:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv ()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

So, you were able to launch previously a pw . x calculation.

Code

Again, you need to have compiled the code on the cluster and configured a new code ph . x in AiiDA in the very same
way you installed pw. x (see). Then we load the Code class-instance from the database:

codename = 'my-ph.x'
code = Code.get_from_string(codename)
Parameter

Just like the PWscf calculation, here we load the class ParameterData and we instanciate it in parameters. Again,
ParameterData will simply represent a nested dictionary in the database, namelists at the first level, and then
variables and values. But this time of course, we need to use the variables of PHonon!

1.1. User’s guide 69

AiiDA documentation, Release 0.5.0

ParameterData = DataFactory ('parameter')
parameters = ParameterData (dict={
'INPUTPH': {
'tr2_ph' : 1.0e-8,
'epsil' : True,
'ldisp' : True,
'ngl' : 1,
'ng2' : 1,
'ng3' : 1,
)
Calculation

Now we create the object PH-calculation. As for pw . x, we simply do:

‘calc = code.new_calc()

and we set the parameters of the scheduler (and just like the PWscf, this is a configuration valid for the PBSpro and
slurm schedulers only, see Supported schedulers).

calc.set_max_wallclock_seconds (30+«60) # 30 min
calc.set_resources ({"num_machines": 1})

We then tell the calculation to use the code and the parameters that we prepared above:

calc.use_parameters (parameters)

Parent calculation

The phonon calculation needs to know on which PWscf do the perturbation theory calculation. From the database
point of view, it means that the PHonon calculation is always a child of a PWscf. In practice, this means that when
you want to impose this relationship, you decided to take the input parameters of the parent PWscf calculation, take
its charge density and use them in the phonon run. That’s way we need to set the parent calculation.

You first need to remember the ID of the parent calculation that you launched before (let’s say it’s #6): so that you
can load the class of a QE-PWscf calculation (with the CalculationFactory), and load the object that represent the
QE-PWscf calculation with ID #6:

from aiida.orm import CalculationFactory

PwCalculation = CalculationFactory ('quantumespresso.pw')
parent_id = 6

parentcalc = load_node (parent_id)

Now that we loaded the parent calculation, we can set the phonon calc to inherit the right information from it:

calc.use_parent_calculation(parentcalc)

Note that in our database schema relations between two calculation objects are prohibited. The link between the two
is indirect and is mediated by a third Data object, which represent the scratch folder on the remote cluster. Therefore
the relation between the parent Pw and the child Ph appears like: Pw -> remotescratch -> Ph.

Execution

Now, everything is ready, and just like PWscf, you just need to store all the nodes and submit this input to AiiDA, and
the calculation will launch!

70 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

calc.store_all()
calc.submit ()

Script to execute

This is the script described in the tutorial above. You can use it, just remember to customize it using the right parent_id,
the code, and the proper scheduler info.

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv ()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

rHAFHAFAFHAHAFHAHAFHA
ADAPT TO YOUR NEEDS
parent_id = 6
codename = 'my-ph.x'
tHA# A HAF A RAF A EAFAA

code = Code.get_from_string(codename)

ParameterData = DataFactory ('parameter')

parameters = ParameterData (dict={
'"INPUTPH': {

'tr2_ph' : 1.0e-8,
'epsil' : True,
'ldisp' : True,
'ngl' : 1,
'ng2' : 1,
'ng3' : 1,

Hh

QEPwCalc = CalculationFactory ('quantumespresso.pw')

parentcalc = load_node (parent_id)

calc = code.new_calc()
calc.set_max_wallclock_seconds (30+«60) # 30 min
calc.set_resources ({"num _machines": 1})

calc.use_parameters (parameters)
calc.use_code (code)
calc.use_parent_calculation (parentcalc)

calc.store_all()
print "created calculation with PK={}".format (calc.pk)
calc.submit ()

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error messages inside
your AiiDA folder, under examples/submission/test_ph.py.

1.1. User’s guide 4

AiiDA documentation, Release 0.5.0

1.1.12 Quantum Espresso Car-Parrinello user-tutorial

This chapter will teach you how to set up a Car-Parrinello (CP) calculation as implemented in the Quantum Espresso
distribution. Again, AiiDA is not meant to teach you how to use a Quantum-Espresso code, it is assumed that you
already know CP.

It is recommended that you first learn how to launch a PWscf calculation before proceeding in this tutorial (see
Quantum Espresso PWscf user-tutorial), since here we will only emphasize the differences with respect to launching
a PW calculation.

We want to setup a CP run of a 5 atom cell of BaTiO3. The input file that we should create is more or less this one:

&CONTROL
calculation = 'cp'
dt = 3.0000000000d+00
iprint =1
isave = 100
max_seconds =
ndr = 50
ndw = 50
nstep = 10
outdir = './out/'
prefix = 'aiida'
pseudo_dir = './pseudo/'
restart_mode = 'from_scratch'
verbosity = 'high'
wf_collect = .false.

/

&SYSTEM
ecutrho =
ecutwfc =
ibrav =
nat = 5
nrlb = 24
nr2b = 24
nr3b = 24
ntyp = 3

/

S&ELECTRONS
electron_damping =
electron_dynamics =

1500

2.4000000000d+02
3.0000000000d+01

o

1.0000000000d-01
'damp'

emass = 4.0000000000d+02

emass_cutoff = 3.0000000000d+00
/
&IONS

ion_dynamics = 'none'
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkijus_psl.0.2.3-tot-pslib030.UPF
0 15.9994 O.pbesol-n-rrkijus_psl.0.l-tested-pslib030.UPF
ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
o} 2.0000000000 2.0000000000 0.0000000000
o] 2.0000000000 0.0000000000 2.0000000000
o] 0.0000000000 2.0000000000 2.0000000000

CELL_PARAMETERS angstrom
4.0000000000

0.0000000000

0.0000000000

72

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

0.0000000000 4.0000000000 0.0000000000
0.0000000000 0.0000000000 4.0000000000

You can immediately see that the structure of this input file closely resembles that of the PWscf: only some variables
are different.

Walkthrough

Everything works like the PW calculation: you need to get the code from the database:

codename = 'my_cp'
code = Code.get_from_string(codename)

Then create the StructureData with the structure, and a ParameterData node for the inputs. This time, of course, you
have to specify the correct variables for a cp . x calculation:

StructureData = DataFactory('structure')
alat = 4. # angstrom
cell = [[alat, 0., O0.,1,

[0., alat, 0.,1,

(0., 0., alat,1],

]

= StructureData (cell=cell)
.append_atom(position=(0.,0.,0.),symbols=["'Ba'])
.append_atom (position=(alat/2.,alat/2.,alat/2.),symbols=["Ti'])
.append_atom (position=(alat/2.,alat/2.,0.),symbols=["'0"])
.append_atom(position=(alat/2.,0.,alat/2.),symbols=["'0"])
.append_atom (position=(0.,alat/2.,alat/2.),symbols=["'0"'])

n n n n n n

ParameterData = DataFactory ('parameter')
parameters = ParameterData (dict={
'"CONTROL'": {
'calculation': 'cp',
'restart_mode': 'from_scratch',
'wf_collect': False,
'iprint': 1,
'isave': 100,
'dtt': 3.,
'max_seconds': 25%60,
'nstep': 10,
}I
'SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
'nrlb': 24,
'nr2b': 24,
'nr3b': 24,
}I
'"ELECTRONS': {
'electron_damping': 1l.e-1,
'electron_dynamics': 'damp',
'emass': 400.,
'emass_cutoff': 3.,
}I
'"IONS': {
'ion_dynamics': 'none',
}}) .store ()

1.1. User’s guide 73

AiiDA documentation, Release 0.5.0

We then create a new calculation with the proper settings:

calc = code.new_calc()
calc.set_max_wallclock_seconds (30+60) # 30 min
calc.set_resources ({"num_machines": 1, "num_mpiprocs_per_machine": 16})

And we link the input data to the calculation (and therefore set the links in the database). The main difference here is
that CP does not support k-points, so you should not (and cannot) link any kpoint as input:

calc.use_structure (s)
calc.use_code (code)
calc.use_parameters (parameters)

Finally, load the proper pseudopotentials using e.g. a pseudopotential family (see Pseudopotential families tutorial):

pseudo_family = 'lda_pslib'
calc.use_pseudos_from_family (pseudo_family)

and store everything and submit:

calc.store_all()
calc.submit ()

And now, the calculation will be executed and saved in the database automatically.

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error messages inside
your AiiDA folder, under examples/submission/test_cp.py.

1.1.13 Getting parsed calculation results

In this section, we describe how to get the results of a calculation, after AiiDA parsed the output of the calculation.

When a calculation is done on the remote computer, AiiDA will retrieve the results and try to parse the re-
sults with the default parser, if one is available for the given calculation. These results are stored in new
nodes, and connected as output of the calculation. Of course, it is possible for a given calculation to check
output nodes and get their content. However, AiiDA provides a way to directly access the results, using the
aiida.orm.calculation. job.CalculationResultManager class, described in the next section.

The CalculationResultManager

Note: In the following, we assume that calc is a correctly finished and parsed Quantum ESPRESSO pw.x calcula-
tion. You can load such a calculation for instance with the command:

calc = load_node (YOURPK)

either in verdi shell, orin a python script (see here for more information on how to use verdi shell or how
to run python scripts for AiiDA), and where YOURPK is substituted by a valid calculation PK in your database.

Each JobCalculation has a res attribute thatis a CalculationResultManager object and gives direct access to
parsed data.

To use it, you can just use then:

74 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

calc.res

that will however just return the class. You can however convert it to a list, to get all the possible keys that were parsed.
For instance, if you type:

‘print list (calc.res)

you will get something like this:

’[u'rho_cutoff’, u'energy', u'energy_units', ...]

(the list of keys has been cut for clarity: you will get many more keys).

Once you know which keys have been parsed, you can access the parsed value simply as an attribute of the res
ResultManager. For instance, to get the final total energy, you can use:

’print calc.res.energy

that will print the total energy in units of eV, as also stated in the energy_units key:

‘print calc.res.energy_units

Similarly, you can get any other parsed value, for any code that provides a parser.

Note: the CalculationResultManager is also integrated with iPython/verdi shell completion mechanism: if
calc is avalid JobCalculation, you can type:

‘calc.res.

and then press the TAB key of the keyboard to get/complete the list of valid parsed properties for the calculation calc.

1.1.14 Pseudopotential families tutorial
What is a pseudopotential family

As you might have seen in the previous PWscf tutorial, the procedure of attaching a pseudopotential file to each
atomic species could be a bit tedious. In many situations, you will not produce a different pseudopotential file for
every calculation you do. More likely, when you start a project you will stick to a pseudopotential file for as long as
possible. Moreover, in a high-throughput calculation, you will like to do calculation over several elements keeping
the same functional. That’s also part of the reason why there are several projects (like PSLibrary or GBRV to name a
few), that intend to develop a set of pseudopotentials that covers most of the periodic table for different functionals.

That’s why we introduced the pseudopotential families. They are basically a set of pseudopotentials that are grouped
together in a special type of AiiDA Group of nodes, with the requirement that at most one pseudopotential can be
present for a given chemical element.

Of course, no requirements are enforced on the complete coverage of the periodic table (also because really complete
pseudopotential sets for the whole periodic table do not exist). In other words, this means that you can create a
pseudopotential family containing the pseudopotentials only for a few elements that you are interested in.

Note: it is your responsibility to group together pseudopotentials of the same type, or obtained using the same
functionals, approximations and/or levels of theory.

1.1. User’s guide 75

http://qe-forge.org/gf/project/pslibrary/frs/
http://www.physics.rutgers.edu/gbrv/

AiiDA documentation, Release 0.5.0

How to create a pseudopotential family

Let’s say for example that we want to create a family of LDA ultrasoft pseudopotentials. As the first step, you need to
get all the pseudopotential files in a single folder. For your convenience, it is useful to use a common name for your
files, for example with a structure like ‘Element.a-short-description.UPF’.

The utility to upload a family of pseudopotentials is accessed via verdi:

verdi data upf uploadfamily path/to/folder name_of_the_family "some description for you# convenience

where path/to/folder is the path to the folder where you collected all the UPF files that you want to add to the
AiiDA database and to the family with name name_of_the_family, and the final parameter is a string that is set
in the description field of the group.

Note: This command will first check the MDS5 checksum of each file, and it will not create a new UPFData node if
the pseudopotential is already present in the DB. In this case, it will simply add that UpfData node to the group with

name name_of_the_ family.

Note: if you add the optional flag ——stop-if-existing, the code will stop (without creating any new UPFData
node, nor creating a group) if at least one of the files in the folder is already found in the AiiDA DB.

After the upload (which may take some seconds, so please be patient) the upffamily will be ready to be used.

Note that if you pass as name_of_the_family a name that already exists, the pseudopotentials in the folder will
be added to the existing group. The code will raise an error if you try to add two (different) pseudopotentials for the
same element.

Get the list of existing families

If you want to know what are the pseudopotential families already existing in the DB, type:

‘verdi data upf listfamilies

Add a —-d (or ——with-description) flag if you want to read also the description of the family.

You can also filter the groups to get only a list of those containing a set of given elements using the —e option. For
instance, if you want to get only the families containing the elements Ba, Ti and O, use:

’verdi data upf listfamilies -e Ba Ti O ‘

For more help on the command line options, type:

’verdi data upf listfamilies -h ‘

1.1.15 Manually loading pseudopotentials
If you do not want to use pseudopotentials from a family, it is also possible to load them manually (even if this is, in
general, discouraged by us).

A possible way of doing it is the following: we start by creating a list of pseudopotential filenames that we need to
use:

raw_pseudos = [
"Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
"Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
"O.pbesol-n-rrkjus_psl.0.l-tested-pslib030.UPF"]

76 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

(in this simple example, we expect the pseudopotentials to be in the same folder of the script). Then, we loop over
the filenames and add them to the AiiDA database. The get_or_create method checks if the pseudopotential is
already in the database (by checking its MD5 checksum) and either stores it, or just returns the node already present
in the database (the second value returned is a boolean and tells us if the pseudo was already present or not). We also
store the returned nodes in a list (pseudos_to_use).

UpfData = DataFactory ('upf')
pseudos_to_use = []

for filename in raw_pseudos:
absname = os.path.abspath (filename)
pseudo, created = UpfData.get_or_create (absname,use_first=True)
pseudos_to_use.append (pseudo)

As the last step, we make a loop over the pseudopotentials, and attach its pseudopotential object to the calculation:

for pseudo in pseudos_to_use:
calc.use_pseudo (pseudo, kind=pseudo.element)

Note: when the pseudopotential is created, it is parsed and the elements to which it refers is stored in the database
and can be accessed using the pseudo . element property, as shown above.

1.1.16 The verdi commands

For some the most common operations on the AiiDA software, you can work directly on the command line using the
set of verdi commands. You already used the verdi install when installing the software. There are quite some
more functionalities attached to this command, here’s a list:

* calculation: query and interact with calculations

* code: setup and manage codes to be used

* comment: manage general properties of nodes in the database

* completioncommand: return the bash completion function to put in ~/.bashrc
* computer: setup and manage computers to be used

* daemon: manage the AiiDA daemon

* data: setup and manage data specific types

* devel: AiiDA commands for developers

* export: export nodes and group of nodes

* group: setup and manage groups

* import: export nodes and group of nodes

* install: install/setup aiida for the current user/create a new profile
* node: manage operations on AiiDA nodes

* profile: list and manage AiiDA profiles

e run: execute an AiiDA script

* runserver: run the AiiDA webserver on localhost

e shell: run the interactive shell with the Django environment

* user: list and configure new AiiDA users.

1.1. User’s guide 77

AiiDA documentation, Release 0.5.0

workflow: manage the AiiDA worflow manager

Each command above can be preceded by the —-p <profile>or ——profile=<profile> option, as in:

verdi -p <profile> calculation list

This allows to select a specific AiiDA profile, and therefore a specific database, on which the command is executed.
Thus several databases can be handled and accessed simultaneously by AiiDA. To install a new profile, use the install
command.

Note:

This profile selection has no effect on the verdi daemon commands.

Following below, a list with the subcommands available.

verdi calculation

kill: stop the execution on the cluster of a calculation.

logshow: shows the logs/errors produced by a calculation

plugins: lists the supported calculation plugins

inputcat: shows an input file of a calculation node.

inputls: shows the list of the input files of a calculation node.

list: list the AiiDA calculations. By default, lists only the running calculations.
outputcat: shows an ouput file of a calculation node.

outputls: shows the list of the output files of a calculation node.

show: shows the database information related to the calculation: used code, all the input nodes and all the output
nodes.

gotocomputer: open a shell to the calc folder on the cluster
label: view / set the label of a calculation

description: view / set the description of a calculation

Note:

When using gotocomputer, be careful not to change any file that AiiDA created, nor to modify the output files

or resubmit the calculation, unless you really know what you are doing, otherwise AiiDA may get very confused!

verdi code

show: shows the information of the installed code.
list: lists the installed codes

hide: hide codes from verdi code list

reveal: un-hide codes for verdi code list

setup: setup a new code

rename: change the label (name) of a code. If you like to load codes based on their labels and not on their
UUID’s or PK’s, take care of using unique labels!

update: change (some of) the installation description of the code given at the moment of the setup.

78

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

* delete: delete a code from the database. Only possible for disconnected codes (i.e. a code that has not been used
yet)

verdi comment

Manages the comments attached to a database node.
* add: add a new comment
* update: change an existing comment
* remove: remove a comment

¢ show: show the comments attached to a node.

verdi completioncommand

Prints the string to be copied and pasted to the bashrc in order to allow for autocompletion of the verdi commands.

verdi computer

* setup: creates a new computer object
 configure: set up some extra info that can be used in the connection with that computer.

* enable: to enable a computer. If the computer is disabled, the daemon will not try to connect to the computer,
so it will not retrieve or launch calculations. Useful if a computer is under mantainance.

* rename: changes the name of a computer.

* disable: disable a computer (see enable for a larger description)
» show: shows the details of an installed computer

« list: list all installed computers

* delete: deletes a computer node. Works only if the computer node is a disconnected node in the database (has
not been used yet)

* test: tests if the current user (or a given user) can connect to the computer and if basic operations perform as
expected (file copy, getting the list of jobs in the scheduler queue, ...)

verdi daemon

Manages the daemon, i.e. the process that runs in background and that manages submission/retrieval of calculations.

* status: see the status of the daemon. Typically, it will either show Daemon not running or you will see
two processes with state RUNNING.

* stop: stops the daemon

* configureuser: sets the user which is running the daemon. See the installation guide for more details.
* start: starts the daemon.

* logshow: show the last lines of the daemon log (use for debugging)

e restart: restarts the daemon.

1.1. User’s guide 79

AiiDA documentation, Release 0.5.0

verdi data

Manages database data objects.

 upf: handles the Pseudopotential Datas

listfamilies: list presently stored families of pseudopotentials

uploadfamily: install a new family (group) of pseudopotentials

import: create or return (if already present) a database node, having the contents of a supplied file

exportfamily: export a family of pseudopotential files into a folder

e structure: handles the StructureData

list: list currently saved nodes of StructureData kind

show: use a third-party visualizer (like vimd or xcrysden) to graphically show the StructureData

export: export the node as a string of a specified format

deposit: deposit the node to a remote database
» parameter: handles the ParameterData objects
— show: output the content of the python dictionary in different formats.

« cif: handles the CifData objects

list: list currently saved nodes of CifData kind

show: use third-party visualizer (like jmol) to graphically show the CifData

import: create or return (if already present) a database node, having the contents of a supplied file

export: export the node as a string of a specified format

deposit: deposit the node to a remote database

* trajectory: handles the TrajectoryData objects

list: list currently saved nodes of TrajectoryData kind

show: use third-party visualizer (like jmol) to graphically show the TrajectoryData

export: export the node as a string of a specified format

deposit: deposit the node to a remote database
* label: view / set the label of a data

* description: view / set the description of a data

verdi devel

Here there are some functions that are in the development stage, and that might eventually find their way outside of
this placeholder. As such, they are buggy, possibly difficult to use, not necessarily documented, and they might be
subject to non back-compatible changes.

* delproperty, describeproperties, getproperty, listproperties, setproperty: handle the properties, see here for
more information.

verdi export

Export data from the AiiDA database to a file. See also verdi import to import this data on another database.

80 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

verdi group

« list: list all the groups in the database.

¢ description: show or change the description of a group

» show: show the content of a group.

* create: create a new empty group.

* delete: delete an existing group (but not the nodes belonging to it).
¢ addnodes: add nodes to a group.

* removenodes: remove nodes from a group.

verdi import

Imports data (coming from other AiiDA databases) in the current database

verdi install

Used in the installation to configure the database. If it finds an already installed database, it updates the tables migrating
them to the new schema.

Note: One can also create a new profile with this command:

verdi -p <new_profile_name> install

The install procedure then works as usual, and one can select there a new database. See also the profile command.

verdi node

* repo: Show files and their contents in the local repository

» show: Show basic node information (PK, UUID, class, inputs and outputs)
verdi profile

« list: Show the list of currently available profiles, indicating which one is the default one, and showing the current
one with a > symbol

 setdefault: Set the default profile, i.e. the one to be used when no —p option is specified before the verdi
command

verdi run

Run a python script for AiiDA. This is the command line equivalent of the verdi shell. Has also features of autogroupin:
by default, every node created in one a call of verdi run will be grouped together.

verdi runserver

Starts a lightweight Web server for development and also serves static files. Currently in ongoing development.

1.1. User’s guide 81

AiiDA documentation, Release 0.5.0

verdi shell

Runs a Python interactive interpreter. Tries to use IPython or bpython, if one of them is available. Loads on start a
good part of the AiiDA infrastructure (see here for information on how to customize it).

verdi user

Manages the AiiDA users. Two valid subcommands.
« list: list existing users configured for your AiiDA installation.
* configure: configure a new AiiDA user.

verdi workflow

Manages the workflow. Valid subcommands:
* report: display the information on how the workflow is evolving.
« Kkill: kills a workflow.

e list: lists the workflows present in the database. By default, shows only the running ones.

1.1.17 AiiDA schedulers

Supported schedulers

The list below describes the supported schedulers, i.e. the batch job schedulers that manage the job queues and
execution on any given computer.

PBSPro

The PBSPro scheduler is supported (and it has been tested with version 12.1).
All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-like)

SLURM

Note: The Slurm plugin referenced below is available in the EPFL version.

The SLURM scheduler is supported (and it has been tested with version 2.5.4).
All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-like)

82 Chapter 1. User’s guide

http://www.pbsworks.com/Product.aspx?id=1
https://computing.llnl.gov/linux/slurm/

AiiDA documentation, Release 0.5.0

SGE

Note: The SGE plugin referenced below is available in the EPFL version.

The SGE scheduler (Sun Grid Engine, now called Oracle Grid Engine) is supported (and it has been tested with version
GE 6.2u3), together with some of the main variants/forks.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the ParEnvJobResource (SGE-like)

PBS/Torque & Loadleveler

PBS/Torque and Loadleveler are not fully supported yet, even if their support is one of our top priorities. For the
moment, you can try the PBSPro plugin instead of PBS/Torque, that may also work for PBS/Torque (even if there will
probably be some small issues).

Direct execution (bypassing schedulers)

The direct scheduler, to be used mainly for debugging, is an implementation of a scheduler plugin that does not require
areal scheduler installed, but instead directly executes a command, puts it in the background, and checks for its process
ID (PID) to discover if the execution is completed.

Warning: The direct execution mode is very fragile. Currently, it spawns a separate Bash shell to execute a job
and track each shell by process ID (PID). This poses following problems:
* PID numeration is reset during reboots;
¢ PID numeration is different from machine to machine, thus direct execution is not possible in multi-machine
clusters, redirecting each SSH login to a different node in round-robin fashion;
* there is no real queueing, hence, all calculation started will be run in parallel.

Warning: Direct execution bypasses schedulers, so it should be used with care in order not to disturb the func-
tioning of machines.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-like)

Job resources

When asking a scheduler to allocate some nodes/machines for a given job, we have to specify some job resources
(that typically include information as, for instance, the number of required nodes or the numbers of MPI processes per
node).

Unfortunately, the way of specifying this piece of information is different on different clusters. Instead of having one
only abstract class, we chose to adopt different subclasses, keeping in this way the specification of the resources as
similar as possible to what the user would do when writing a scheduler script. Note that only one subclass can be used,
given a specific scheduler.

The base class, from which all job resource subclasses inherit, is aiida. scheduler.datastructures. JobResource.
All classes define at least one method, get_tot_num mpiprocs (), thatreturns the total number of MPI processes
requested.

1.1. User’s guide 83

http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

AiiDA documentation, Release 0.5.0

Note: to load a specific job resource subclass, you can load it manually by directly loading the correct class, e..g.:

from aiida.scheduler.datastructures import NodeNumberJobResource

However, in general, you will pass the fields to set directly to the set_resources () method of a
JobCalculation object. For instance:

calc = JobCalculation (computer=...) # select here a given computer configured
in AIiiDA

This assumes that the computer is configured to use a scheduler with
job resources of type NodeNumberJobResource
calc.set_resources ({"num_machines": 4, "num mpiprocs_per_machine": 16})

NodeNumberJobResource (PBS-like)

This is the way of specifying the job resources in PBS and SLURM. The class is
aiida.scheduler.datastructures.NodeNumberJobResource.

Once an instance of the class is obtained, you have the following fields that you can set:
* res.num_machines: specify the number of machines (also called nodes) on which the code should run
* res.num_mpiprocs_per_machine: number of MPI processes to use on each machine
* res.tot_num mpiprocs: the total number of MPI processes that this job is requesting
* res.num_cores_per_machine: specify the number of cores to use on each machine
* res.num_cores_per_mpiproc: specify the number of cores to run each MPI process

Note that you need to specify only two among the first three fields above, for instance:

res NodeNumberJobResource ()

res.num_machines = 4

res.num_mpiprocs_per_machine = 16

asks the scheduler to allocate 4 machines, with 16 MPI processes on each machine. This will automatically ask for a
total of 4+16=64 total number of MPI processes.

The same can be achieved passing the fields directly to the constructor:

’res NodeNumberJobResource (num_machines=4, num_mpiprocs_per_machine=16)

or, even better, directly calling the set_resources () method of the JobCalculation class (assuming here
that calc is your calculation object):

‘calc.set_resources({"numfmachines": 4, "num_mpiprocs_per_machine": 16})

Note:

If you specify res.num_machines, res.num_mpiprocs_per_machine, and res.tot_num_mpiprocs fields (not recom-
mended), make sure that they satisfy:

res.num_machines * res.num_mpiprocs_per_machine

res.tot_num_mpiprocs

Moreover, if you specify res.tot_num_mpiprocs, make sure that this is a multiple of res.num_machines
and/or res.num_mpiprocs_per_machine.

84 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

Note: When creating a new computer, you will be asked for a default_mpiprocs_per_machine. If you
specify it, then you can avoid to specify num_mpiprocs_per_machine when creating the resources for that

computer, and the default number will be used.

Of course, all the requirements between num_machines, num_mpiprocs_per_machine and
tot_num_mpiprocs still apply.

Moreover, you can explicitly specify num_mpiprocs_per_machine if you want to use a value different from the
default one.

The num_cores_per_machine and num_cores_per_mpiproc fields are optional. If you specify
num_mpiprocs_per_machine and num_cores_per_machine fields, make sure that:

res.num_cores_per_mpiproc * res.num_mpiprocs_per_machine = res.num_cores_per_machine

If you want to specifiy single value in num_mpiprocs_per_machine and num_cores_per_machine, please make sure
that res.num_cores_per_machine is multiple of res.num_cores_per_mpiproc and/or res.num_mpiprocs_per_machine.

Note: In PBSPro, the num_mpiprocs_per_machine and num_cores_per_machine fields are used for mpiprocs and
ppn respectively.

Note: In Torque, the num_mpiprocs_per_machine field is used for ppn unless the num_mpiprocs_per_machine is
specified.

ParEnvJobResource (SGE-like)

In SGE and similar schedulers, one has to specify a parallel environment and the total number of CPUs requested.
The classis aiida. scheduler.datastructures.ParEnvJobResource.

Once an instance of the class is obtained, you have the following fields that you can set:
* res.parallel_env: specify the parallel environment in which you want to run your job (a string)
* res.tot_num_mpiprocs: the total number of MPI processes that this job is requesting

Remember to always specify both fields. No checks are done on the consistency between the specified parallel envi-
ronment and the total number of MPI processes requested (for instance, some parallel environments may have been
configured by your cluster administrator to run on a single machine). It is your responsibility to make sure that the
information is valid, otherwise the submission will fail.

Some examples:

* setting the fields one by one:

res = ParEnvJobResource ()
res.parallel_env = 'mpi'
res.tot_num_mpiprocs = 64

setting the fields directly in the class constructor:

res = ParEnvJobResource (parallel_env='mpi', tot_num_mpiprocs=64)

even better, directly calling the set_resources () method of the JobCalculation class (assuming here
that calc is your calculation object):

calc.set_resources ({"parallel_env": 'mpi', "tot_num mpiprocs": 64})

1.1. User’s guide 85

AiiDA documentation, Release 0.5.0

1.1.18 Calculations

AiiDA calculations can be of two kinds:
e JobCalculation: those who need to be run on a scheduler
e InlineCalculation: rapid executions that are executed by the daemon itself, on your local machine.

In the following, we will refer to the JobCalculations as a Calculation for the sake of simplicity, unless we explicitly
say otherwise. In the same way, also the command verdi calculation refers to JobCalculation’s.

1.1.19 Check the state of calculations

Once a calculation has been submitted to AiiDA, everything else will be managed by AiiDA: the inputs will be checked
to verify that they are consistent. If the inputs are complete, the input files will be prepared, sent on cluster, and a job
will be submitted. The AiiDA daemon with then monitor the scheduler, and after execution the outputs automatically
retrieved and parsed.

During these phases, it is useful to be able to check and verify the state of a calculation. There are different ways to
perform such an operation, described below.

The verdi calculation command

The simplest way to check the state of submitted calculations is to use the verdi calculation list command
from the command line. To get help on its use and command line options, run it with the —h or ——he 1p option:

verdi calculation list —--help

Possible calculation states

The calculation could be in several states. The most common you should see:
1. NEW: the calculation node has been created, but has not been submitted yet.

2. WITHSCHEDULER: the job is in some queue on the remote computer. Note that this does not mean that the job
is waiting in a queue, but it may be running or finishing, but it did not finish yet. AiiDA has to wait.

3. FINISHED: the job on the cluster was finished, AiiDA already retrieved it and stored the results in the database.
In most cases, this also means that the parser managed to parse the output file.

4. FAILED: something went wrong, and AiiDA rose an exception. The error could be of various nature: the inputs
were not enough or were not correct, the execution on the cluster failed, or (depending on the output plugin)
the code ended without completing successfully or producing a valid output file. Other possible more specific
“failed” states include SUBMISSIONFAILED, RETRIEVALFATILED and PARSINGFATLED.

5. For very short times, when the job completes on the remote computer and AiiDA retrieves and parses it, you
may happen to see a calculation in the COMPUTED, RETRIEVING and PARSING states.

Eventually, when the calculation has finished, you will find the computed quantities in the database, and you will be
able to query the database for the results that were parsed!

Directly in python

If you prefer to have more flexibility or to check the state of a calculation programmatically, you can execute a script
like the following, where you just need to specify the ID of the calculation you are interested in:

86 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

from aiida import load_dbenv
load_dbenv ()

from aiida.orm import JobCalculation

pk must be a valid integer pk

calc = load_node (pk)

Alternatively, with the UUID (uuid must be a valid UUID string)

calc = load _node (uuid)

print "AiiDA state:", calc.get_state()

print "Last scheduler state seen by the AiiDA deamon:", calc.get_scheduler_state()

Note that, as specified in the comments, you can also get a code by knowing its UUID; the advantage is that, while the
numeric ID will typically change after a sync of two databases, the UUID is a unique identifier and will be preserved
across different AiiDA instances.

Note: calc.get_scheduler_state () returns the state on the scheduler (queued, held, running, ...) as seen
the last time that the daemon connected to the remote computer. The time at which the last check was performed is

returned by the calc.get_scheduler_lastchecktime () method (that returns None if no check has been
performed yet).

The verdi calculation gotocomputer command

Sometimes, it may be useful to directly go to the folder on which the calculation is running, for instance to check if
the output file has been created.

In this case, it is possible to run:

verdi calculation gotocomputer CALCULATIONPK

where CALCULATIONPK is the PK of the calculation. This will open a new connection to the computer (either simply
a bash shell or a ssh connection, depending on the transport) and directly change directory to the appropriate folder
where the code is running.

Note: Be careful not to change any file that AiiDA created, nor to modify the output files or resubmit the calculation,
unless you really know what you are doing, otherwise AiiDA may get very confused!

1.1.20 Set calculation properties

There are various methods which specify the calculation properties. Here follows a brief documentation of their action.
* c.set_max_memory_kb: require explicitely the memory to be allocated to the scheduler job.

e c.set_append_text: write a set of bash commands to be executed after the call to the executable. These
commands are executed only for this instance of calculations. Look also at the computer and code append_text
to write bash commands for any job run on that computer or with that code.

* c.set_max_wallclock_seconds: set (as integer) the scheduler-job wall-time in seconds.

e c.set_computer: set the computer on which the calculation is run. Unnecessary if the calculation has been
created from a code.

* c.set_mpirun_extra_params: set as a list of strings the parameters to be passed to the mpirun com-
mand. Example: mpirun -np 8 extra_params[0] extra_params[l] ... exec.x Note:the
process number is set by the resources.

1.1. User’s guide 87

AiiDA documentation, Release 0.5.0

* c.set_custom_scheduler_commands: set a string (even multiline) which contains personalized job-
scheduling commands. These commands are set at the beginning of the job-scheduling script, before any non-
scheduler command. (prepend_texts instead are set after all job-scheduling commands).

* c.set_parser_name: set the name of the parser to be used on the output. Typically, a plugin will have
already a default plugin set, use this command to change it.

* c.set_environment_variables: seta dictionary, whose key and values will be used to set new environ-
ment variables in the job-scheduling script before the execution of the calculation. The dictionary is translated
to: export ’'keys’='values’.

* c.set_prepend_text: set a string that contains bash commands, to be written in the job-scheduling script
for this calculation, right before the call to the executable. (it is used for example to load modules). Note that
there are also prepend text for the computer (that are used for any job-scheduling script on the given computer)
and for the code (that are used for any scheduling script using the given code), the prepend_text here is used
only for this instance of the calculation: be careful in avoiding duplication of bash commands.

* c.set_extra: pass a key and a value, to be stored in the Ext ra attribute table in the database.
* c.set_extras: like set extra, but you can pass a dictionary with multiple keys and values.

* c.set_priority: setthe job-scheduler priority of the calculation (AiiDA does not have internal priorities).
The function accepts a value that depends on the scheduler. plugin (but typically is an integer).

* c.set_qgueue_name: pass in a string the name of the queue to use on the job-scheduler.

* c.set_import_sys_environment: default=True. If True, the job-scheduling script will load the envi-
ronment variables.

* c.set_resources: set the resources to be used by the calculation like the number of nodes, wall-time,
..., by passing a dictionary to this method. The keys of this dictionary, i.e. the resources, depend on the
specific scheduler plugin that has to run them. Look at the documentation of the scheduler (type is given
by: calc.get_computer () .get_scheduler_type ()).

e c.set_withmpi: True or False, if True (the default) it will call the executable as a parallel run.

1.1.21 Comments

There are various ways of attaching notes/comments to a node within AiiDA. In the first examples of scripting, you
should already have notices the possibility of storing a 1abel or a description to any AiiDA Node. However,
these properties are defined at the creation of the Node, and it is not possible to modify them after the Node has been
stored.

The Node comment provides a simple way to have a more dynamic management of comments, in which any user can
write a comment on the Node, or modify it or delete it.

The verdi comment provides a set of methods that are used to manipulate the comments:

* add: add a new comment to a Node.
¢ update: modify a comment.
» show: show the existing comments attached to the Node.

* remove: remove a comment.

1.1.22 Extracting data from the Database

In this section we will overview some of the tools provided by AiiDA by means of you can navigate through the data
inside the AiiDA database.

88

Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

Finding input and output nodes

Let’s start with a reference node that you loaded from the database, for example the node with PK 17:

\ n = load _node (17)

Now, we want to find the nodes which have a direct link to this node. There are several methods to extract
this information (for developers see all the methods and their docstring: get_outputs, get_outputs_dict,
c.get_inputsand c.get_inputs_dict). The most practical way to access this information, especially when
working on the verdi shell, is by means of the inp and out methods.

The inp method is used to list and access the nodes with a direct link to n in input. The names of the input links
can be printed by 1ist (n.inp) orinteractively by n.inp. + TAB. As an example, suppose that n has an input
KpointsData object under the linkname kpoints. The command:

n.inp.kpoints

returns the Kpoint sData object.

Similar methods exists for the out method, which will display the names of links in output from n and can be used
to access such output nodes. Suppose that n has an output FolderData with linkname retrieved, than the
command:

’n.out.retrieved

returns the FolderData object.

Note: At variance with input, there can be more than one output objects with the same linkname (for example: a code
object can be used by several calculations always with the same linkname code). As such, for every output linkname,

we append the string _pk, with the pk of the output node. There is also a linkname without pk appended, which is
assigned to the oldest link. As an example, imagine that n is a code, which is used by calculation #18 and #19, the
linknames shown by n . out are:

n.out. >>
* code
* code_18
* code_19

The method n.out.code_18 and n.out.code_19 will return two different calculation objects, and
n.out .code will return the oldest (the reference is the creation time) between calculation 18 and 19. If one calcu-
lation (say 18) exist only in output, there is then less ambiguity, and you are sure that the output of n.out.code
coincides with n.out .code_18.

1.1.23 Querying in AiiDA

The advantage of storing information in a database is that questions can be asked on the data, and an answer can be
rapidly provided.

Here we describe different approaches to query the data in AiiDA.

Note: This section is still only a stub and will be significantly improved in the next versions.

Directly querying in Django

If you know how AiiDA stores the data internally in the database, you can directly use Django to query the database (or
even use directly SQL commands, if you really feel the urge to do so). Documentation on how queries work in Django

1.1. User’s guide 89

AiiDA documentation, Release 0.5.0

can be found on the official Django documentation. The models can be foundin aiida.djsite.db.models and
are directly accessible as models in the verdi shell orviaverdi run.

Using the querytool

We provide a Python class (a1ida.orm. querytool.QueryTool) to perform the most common types of queries
(mainly on nodes, links and their attributes) through an easy Python class interface, without the need to know anything
about the SQL query language.

Note: We are working a lot on the interface for querying through the QueryTool, so the interface could change
significantly in the future to allow for more advanced querying capabilities.

To use it, in your script (or within the verdi shell) you need first to load the QueryTool class:

‘from aiida.orm.querytool import QueryTool

Then, create an instance of this class, which will represent your query (you need to create a new instance for each
different query you want to execute):

‘q = QueryTool ()

Now, you can call a set of methods on the g object to decide the filters you want to apply. The first type of filter one
may want to apply is on the type of nodes you want to obtain (the QueryTool, in the current version, always queries
only nodes in the DB). You can do so passing the correct Node subclass to the set_class () method, for instance:

‘q.set_class(Calculation)

Then, if you want to query only calculations within a given group:

‘q.set_group(group_name, exclude=False)

where group_name is the name of the group you want to select. The exclude parameter, if True, negates the
query (i.e., considers all objects not included in the give group). You can call the set_group () method multiple
times to add more filters.

The most important query specification, though, is on the attributes of a given node.

If you want to query for attributes in the DbAttribute table, use the add_attr_filter () method:

g.add_attr_filter ("energy", "<=", 0., relnode="res")

At this point, the query g describes a query you still have to run, which will return each calculation calc for which
the result node calc.res.energy is less or equal to O.

The relnode parameter allows the user to perform queries not only on the nodes you want to get out of the query (in
this case, do not specify any relnode parameter) but also on the value of the attributes of nodes linked to the result
nodes. For instance, specifying "res" as relnode, one gets as result of the query nodes whose output result has a
negative energy.

Also in this case, you can add multiple filters on attributes, or you can use the same syntax also on data you stored in
the DbExtra table using add_extra_filter ().

Note: We remind here that while attributes are properties that describe a node, are used internally by AiiDA and
cannot be changed after the node is stored — for instance, the coordinates of atoms in a crystal structure, the input

parameters for a calculation, ... — extras (stored in DbExt ra) have the same format and are at full disposal of the user
for adding metadata to each node, tagging, and later quick querying.

920 Chapter 1. User’s guide

https://docs.djangoproject.com/en/1.7/topics/db/queries/

AiiDA documentation, Release 0.5.0

Finally, to run the query and get the results, you can use the run_guery () method, that will return an iterator over
the results of the query. For instance, if you stored A and B as extra data of a given node, you can get a list of the
energy of each calculation, and the value of A and B, using the following command:

res = [(node.res.energy,
node.get_extra ("A"),
node.get_extra ("B"))
for node in g.run_gquery ()]

Note: After having run a query, if you want to run a new one, even if it is a simple modification of the current one,
please discard the g object and create a new one with the new filters.

The transitive closure table

Another type of query that is very common is the discovery of whether two nodes are linked through a path in the
AiiDA graph database, regardless of how many nodes are in between.

This is particularly important because, for instance, you may be interested in discovering which crystal structures
have, say, all phonon frequencies that are positive; but the information on the phonon frequencies is in a node that is
typically not directly linked to the crystal structure (you typically have in between at least a SCF calculation, a phonon
calculation on a coarse grid, and an interpolation of the phonon bands on a denser grid; moreover, each calculation
may include multiple restarts).

In order to make these queries very efficient (and since we expect that typical workflows, especially in Physics and
Materials Science, involve a lot of relatively small, disconnected graphs), we have implemented triggers at the database
SQL level to automatically generate a transitive closure table, i.e., a table that for each node contains all his parents
(at any depth level) and all the children (at any depth level). This means that, every time two nodes are joined by a
link, this table is automatically updated to contain all the new available paths.

With the aid of such a table, discovering if two nodes are connected or not becomes a matter of a single query. This
table is accessible using Django commands, and is called DbPath.

Transitive closure paths contain a parent and a child. Moreover, they also contain a depth, giving how many nodes
have to be traversed to connect the two parent and child nodes (to make this possible, an entry in the DbPath table
is stored for each possible path in the graph). The depth does not include the first and last node (so, a depth of zero
means that two nodes are directly connected through a link).

Three further columns are stored, and they are mainly used to quickly (and recursively) discover which are the nodes
that have been traversed.

Todo

The description of the exact meaning of the three additional columns (entry_edge_id, direct_edge_id, and
exit_edge_1id, will be added soon; in the meatime, you can give a look to the implementation of the expand ()
method).

Finally, given a DbPath object, we provide a expand () method to get a list of all the nodes (in the correct order)
that are traversed by the specific path. List elements are AiiDA nodes.

Here we present a simple example of how you can use the transitive closure table, imagining that you want to get the
path between two nodes n1 and n2. We will assume that only a single path exists between the two nodes. If no path
exists, an exception will be raised in the line marked below. If more than one path exists, only the first one will be
returned. The extension to manage the exception and to manage multiple paths is straightforward:

nl = load_node (NODEPK1)
n2 = load_node (NODEPK2)
In the following line, we are choosing only the first

1.1. User’s guide 91

AiiDA documentation, Release 0.5.0

path returned by the query (with [0]).

Change here to manage zero or multiple paths!

dbpath = models.DbPath.objects.filter (parent=nl, child=n2) [0]
Print all nodes in the path

print dbpath.expand()

1.1.24 AiiDA workflows

Workflows are one of the most important components for real high-throughput calculations, allowing the user to scale
well defined chains of calculations on any number of input structures, both generated or acquired from an external
source.

Instead of offering a limited number of automatization schemes, crafted for some specific functions (equation of states,
phonons, etc...) in AiiDA a complete workflow engine is present, where the user can script in principle any possible
interaction with all the AiiDA components, from the submission engine to the materials databases connections. In
AiiDA a workflow is a python script executed by a daemon, containing several user defined functions called steps.
In each step all the AiiDA functions are available and calculations and launched and retrieved, as well as other sub-
workflows.

In this document we’ll introduce the main workflow infrastructure from the user perspective, discussing and presenting
some examples that will cover all the features implemented in the code. A more detailed description of each function
can be found in the developer documentation.

How it works

The rationale of the entire workflow infrastructure is to make efficient, reproducible and scriptable anything a user can
do in the AiiDA shell. A workflow in this sense is nothing more than a list of AiiDA commands, split in different
steps that depend one on each other and that are executed in a specific order. A workflow step is written with the same
python language, using the same commands and libraries you use in the shell, stored in a file as a python class and
managed by a daemon process.

Before starting to analyze our first workflow we should summarize very shortly the main working logic of a typical
workflow execution, starting with the definition of the management daemon. The AiiDA daemon handles all the
operations of a workflow, script loading, error handling and reporting, state monitoring and user interaction with the
execution queue.

The daemon works essentially as an infinite loop, iterating several simple operations:

1. It checks the running step in all the active workflows, if there are new calculations attached to a step it submits
them.

2. Itretrieves all the finished calculations. If one step of one workflow exists where all the calculations are correctly
finished it reloads the workflow and executes the next step as indicated in the script.

3. If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

This simplified process is the very heart of the workflow engine, and while the process loops a user can submit a new
workflow to be managed from the Verdi shell (or through a script loading the necessary Verdi environment). In the
next chapter we’ll initialize the daemon and analyze a simple workflow, submitting it and retrieving the results.

Note: The workflow engine of AiiDA is now fully operational but will undergo major improvements in a near future.
Therefore, some of the methods or functionalities described in the following might change.

92 Chapter 1. User’s guide

20

21

22

23

24

25

26

27

28

29

30

AiiDA documentation, Release 0.5.0

The AiiDA daemon

As explained the daemon must be running to allow the execution of workflows, so the first thing needed to start it to
launch the daemon. We can use the verdi script facility from your computer’s shell:

‘>> verdi daemon start

This command will launch a background job (a daemon in fact) that will continuously check for new or running
workflow to manage. Thanks to the asynchronous structure of AiiDA if the daemon gets interrupted (or the computer
running the daemon restarted for example), once it will be restarted all the workflow will proceed automatically without
any problem. The only thing you need to do to restart the workflow it’s exactly the same command above. To stop the
daemon instead we use the same command with the st op directive, and to have a very fast check about the execution
we can use the state directive to obtain more information.

A workflow demo

Now that the daemon is running we can focus on how to write our first workflow. As explained a workflow is essentially
a python class, stored in a file accessible by AiiDA (in the same AiiDA path). By convention workflows are stored
in .py files inside the aiida/workflows directory; in the distribution you’ll find some examples (some of them
analyzed here) and a user directory where user defined workflows can be stored. Since the daemon is aware only of the
classes present at the time of its launch, remember to restart the daemon (verdi daemon restart) every time
you add a new workflow to let AiiDA see it.

We can now study a very first example workflow, contained in the wf_demo.py file inside the distribution’s
workflows directory. Even if this is just a toy model, it helps us to introduce all the features and details on how a
workflow works, helping us to understand the more sophisticated examples reported later.

import aiida.common
from aiida.common import aiidalogger
from aiida.orm.workflow import Workflow
from aiida.orm import Code, Computer
logger = aiidalogger.getChild('WorkflowDemo")
class WorkflowDemo (Workflow) :

def _ _init__ (self, x+xkwargs):

super (WorkflowDemo, self).__init__ (x+xkwargs)

def generate_calc(self):

from aiida.orm import Code, Computer, CalculationFactory
from aiida.common.datastructures import calc_states

CustomCalc = CalculationFactory('simpleplugins.templatereplacer')
computer = Computer.get ("localhost")

calc = CustomCalc (computer=computer,withmpi=True)
calc.set_resources (num_machines=1, num_mpiprocs_per_machine=1)
calc._set_state(calc_states.FINISHED)

calc.store()

return calc

@Workflow.step

1.1. User’s guide 93

40

41

42

43

44

45

46

47

48

49

51

52

54

55

56

57

58

59

60

AiiDA documentation, Release 0.5.0

def start (self):
from aiida.orm.node import Node

Testing parameters
p = self.get_parameters()

Testing calculations
self.attach_calculation(self.generate_calc())
self.attach_calculation(self.generate_calc())

Testing report
self.append_to_report ("Starting workflow with params: {0}".format (p))

Testing attachments

n = Node ()

attrs = {"a": [1,2,3], "n": n}
self.add_attributes (attrs)

Test process
self.next (self.second_step)

@Workflow.step
def second_step(self):

Test retrieval
calcs = self.get_step_calculations(self.start)
self.append_to_report ("Retrieved calculation 0 (uuid): {0}".format (calcs[0].uuid))

Testing report
a = self.get_attributes|()

self.append_to_report ("Execution second_step with attachments: {0}".format (a))

Test results
self.add_result ("scf_converged", calcs[0])

self.next (self.exit)

As discussed before this is native python code, meaning that a user can load any library or script accessible from their
PYTHONPATH and interacting with any database or service of preference inside the workflow. We’ll now go through
all the details of the first workflow, line by line, discussing the most important methods and discovering along the way
all the features available.

lines 1-7 Module imports. Some are necessary for the Workflow objects but many more can be added for user defined
functions and libraries.

lines 8-12 Superclass definition, a workflow MUST extend the Work f1ow class from the aiida.orm.workflow.
This is a fundamental requirement, since the subclassing is the way AiiDA understand if a class inside the file is an Ai-
iDA workflow or a simple utility class. Note that for back-compatibility with python 2.7 also the explicit initialization
of line 12 is necessary to make things work correctly.

lines 14-28 Once the class is defined a user can add as many methods as he wishes, to generate calculations or to
download structures or to compute new ones starting form a query in previous AiiDA calculations present in the
DB. In the script above the method generate_calc will simply prepare a dummy calculation, setting it’s state to
finished and returning the object after having it stored in the repository. This utility function will allow the dummy
workflow run without the need of any code or machine except for localhost configured. In real cases, as we’ll see, a
calculation will be set up with parameters and structures defined in more sophisticated ways, but the logic underneath
is identical as far as the workflow inner working is concerned.

94 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

lines 30-51 This is the first step, one of the main components in the workflow logic. As you can see the st art method
is decorated as a Workflow. step making it a very unique kind of method, automatically stored in the database as a
container of calculations and sub-workflows. Several functions are available to the user when coding a workflow step,
and in this method we can see most of the basic ones:

line36 self.get_parameters (). With this method we can retrieve the parameters passed to the workflow
when it was initialized. Parameters cannot be modified during an execution, while attributes can be added and
removed.

lines 39-40 self.attach_calculation (JobCalculation). This is akey point in the workflow, and
something possible only inside a step method. JobCalculations, generated in the methods or retrieved from other
utility methods, are attached to the workflow’s step, launched and executed completely by the daemon, without
the need of user interaction. Failures, re-launching and queue management are all handled by the daemon, and
thousands of calculations can be attached. The daemon will poll the servers until all the step calculations will
be finished, and only after that it will pass to the next step.

line 43 self.append_to_report (string). Once the workflow will be launched, the user interactions
are limited to some events (stop, relaunch, list of the calculations) and most of the times is very useful to have
custom messages during the execution. For this each workflow is equipped with a reporting facility, where the
user can fill with any text and can retrieve both live and at the end of the execution.

lines 45-48 self.add_attributes (dict). Since the workflow is instantiated every step from scratch, if
a user wants to pass arguments between steps he must use the attributes facility, where a dictionary of values
(accepted values are basic types and AiiDA nodes) can be saved and retrieved from other steps during future
executions.

line 52 self.next (Workflow.step). This is the final part of a step, where the user points the engine
about what to do after all the calculations in the steps (on possible sub-workflows, as we’ll see later) are termi-
nated. The argument of this function has to be a Workflow. step decorated method of the same workflow
class, or in case this is the last step to be executed you can use the common method self.exit, always present
in each Workflow subclass.

Note: make sure to store () all input nodes for the attached calculations, as unstored nodes will be lost
during the transition from one step to another.

lines 53-67 When the workflow will be launched through the st art method, the AiiDA daemon will load the work-
flow, execute the step, launch all the calculations and monitor their state. Once all the calculations in start will be
finished the daemon will then load and execute the next step, in this case the one called second_step. In this step
new features are shown:

line 57 self.get_step_calculations (Workflow.step). Anywhere after the first step we may
need to retrieve and analyze calculations executed in a previous steps. With this method we can have access to
the list of calculations of a specific workflows step, passed as an argument.

line 61 self.get_attributes (). With this call we can retrieve the attributes stored in previous steps.
Remember that this is the only way to pass arguments between different steps, adding them as we did in line 48.

line 65 self.add_result (). When all the calculations are done it’s useful to tag some of them as results,
using custom string to be later searched and retrieved. Similarly to the get_step_calculations, this
method works on the entire workflow and not on a single step.

line 67 self.next (self.exit). This is the final part of each workflow, setting the exit. Every workflow
inheritate a fictitious step called exit that can be set as a next to any step. As the names suggest, this implies the
workflow execution to finish correctly.

1.1. User’s guide 95

AiiDA documentation, Release 0.5.0

Running a workflow

After saving the workflow inside a python file located in the aiida/workflows directory, we can launch the
workflow simply invoking the specific workflow class and executing the start () method inside the Verdi shell. It’s
important to remember that all the AiiDA framework needs to be accessible for the workflow to be launched, and this
can be achieved either with the verdi shell or by any other python environment that has previously loaded the AiiDA
framework (see the developer manual for this).

To launch the verdi shell execute verdi shell from the command line; once inside the shell we have to import
the workflow class we want to launch (this command depends on the file location and the class name we decided). In
this case we expect we’ll launch the WorkflowDemo presented before, located in the wf_demo . py file in the clean
AiiDA distribution. In the shell we execute:

>> from aiida.workflows.wf_demo import WorkflowDemo
>> params = {"a":[1,2,3]}

>> wf = WorkflowDemo (params=params)

>> wf.start ()

Note: If you want to write the above script in a file, remember to run it with verdi run and not simply with python,
or otherwise to use the other techniques described here.

In these four lines we loaded the class, we created some fictitious parameter and we initialized the workflow. Finally
we launched it with the start () method, a lazy command that in the backgroud adds the workflow to the execution
queue monitored by the verdi daemon. In the backgroud the daemon will handle all the workflow processes, stepping
each method, launching and retrieving calculations and monitoring possible errors and problems.

Since the workflow is now managed by the daemon, to interact with it we need special methods. There are basically
two ways to see how the workflows are running: by printing the workflow 1ist orits report.

¢ Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step and each calculation (and, when present,
each sub-workflow - see below). It is the fastest way to have a snapshot of what your AiiDA workflow daemon
is working on. An example output right after the WorkflowDemo submission should be

+ Workflow WorkflowDemo (pk: 1) is RUNNING [0Oh:05m:04s]
|-« Step: start [->second_step] is RUNNING

| | Calculation (pk: 1) is FINISHED

| | Calculation (pk: 2) is FINISHED

For each workflow is reported the pk number, a unique id identifying that specific execution of the workflow,
something necessary to retrieve it at any other time in the future (as explained in the next point).

Note: You can also print the 11 st of any individual workflow from the verdi shell (here in the shell where you
defined your workflow as wf, see above):

>> import aiida.orm.workflow as wfs
>> print "\n".join(wfs.get_workflow_info (wf._dbworkflowinstance))

¢ Workflow report

As explained, each workflow is equipped with a reporting facility the user can use to log any important inter-
mediate information, useful to debug the state or show some details. Moreover the report is also used by AiiDA
as an error reporting tool: in case of errors encountered during the execution, the AiiDA daemon will copy the

96 Chapter 1. User’s guide

AiiDA documentation, Release 0.5.0

entire stack trace in the workflow report before halting it’s execution. To access the report we need the specific
pk of the workflow. From the command line we would run:

‘ >> verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the get_report () method:

‘ >> load_workflow (PK_NUMBER) .get_report ()

In both variants, PK_NUMBER is the pk number of the workflow we want the report of. The
load_workflow function loads a Workflow instance from its pk number, or from its uuid (given as a
string).

Note: It’s always recommended to get the workflow instance from load_workflow (or from the
Workflow.get_subclass_from_pk method) without saving this object in a variable. The information

generated in the report may change and the user calling a get_report method of a class instantiated in the
past will probably lose the most recent additions to the report.

Once launched, the workflows will be handled by the daemon until the final step or until some error occurs. In the last
case, the workflow gets halted and the report can be checked to understand what happened.

* Killing a workflow

A user can also kill a workflow while it’s running. This can be done with the following verdi command:

>> verdi workflow kill PK_NUMBER 1 PK_NUMBER 2 PK_NUMBER_N

where several pk numbers can be given. A prompt will ask for a confirmation; this can be avoided by using the —f
option.

An alternative way to kill an individual workflow is to use the ki 11 method. In the verdi shell type:

] >> load_workflow (PK_NUMBER) .kill ()

or, equivalently:

’ >> Workflow.get_subclass_from_pk (PK_NUMBER) .kill ()

Note: Sometimes the ki11 operation might fail because one calculation cannot be killed (e.g. if it’s running but not
in the WITHSCHEDULER, TOSUBMIT or NEW state), or because one workflow step is in the CREATED state. In that

case the workflow is put to the SLEEP state, such that no more workflow steps will be launched by the daemon. One
can then simply wait until the calculation or step changes state, and try to kill it again.

A more sophisticated workflow

In the previous chapter we’ve been able to see almost all the workflow features, and we’re now ready to work on
some more sophisticated examples, where real calculations are performed and common real-life issues are solved.
As areal case example we’ll compute the equation of state of a simple class of materials, XTiO3; the workflow will
accept as an input the X material, it will build several structures with different crystal parameters, run and retrieve all
the simulations, fit the curve and run an optimized final structure saving it as the workflow results, aside to the final
optimal cell parameter value.

==—======
WorkflowXTiO3 _EOS
===============m=s=—==s——sm———s—————————=———=====

class WorkflowXTiO3 EOS (Workflow) :

1.1. User’s guide 97

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

51

53

54

56

57

59

60

61

62

63

AiiDA documentation, Release 0.5.0

def _ _init__ (self, »xkwargs) :

super (WorkflowXTiO3_EOS, self).__init__ (xxkwargs)
============mmmmms—m———ms—m——————————————————aa
Object generators
===
def get_structure(self, alat = 4, x_material = 'Ba'):

cell = [[alat, 0., O0.,1,
[0., alat, 0.,1,
[0., 0., alat,],

BaTiO3 cubic structure
= StructureData (cell=cell)
.append_atom (position=(0.,0.,0.),symbols=x_material)

.append_atom (position=(alat/2.,alat/2.,0.),symbols=["'0"])
.append_atom(position=(alat/2.,0.,alat/2.),symbols=["'0"])
.append_atom (position=(0.,alat/2.,alat/2.),symbols=['0"])
.store ()

n n n n n n 0 %

return s
def get_pw_parameters(self):

parameters = ParameterData (dict={

'"CONTROL'": {
'calculation': 'scf',
'restart_mode': 'from_scratch',
'wf_collect': True,
}I

"SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
}I

'"ELECTRONS': {
'conv_thr': 1l.e-6,
}}) .store ()

return parameters

def get_kpoints(self):
kpoints = KpointsData()
kpoints.set_kpoints_mesh ([4,4,4])

kpoints.store ()

return kpoints

def get_pw_calculation(self, pw_structure, pw_parameters, pw_kpoint):

params = self.get_parameters ()

pw_codename = params|['pw_codename']

98

Chapter 1. User’s guide

.append_atom (position=(alat/2.,alat/2.,alat/2.),symbols=["Ti'])

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

AiiDA documentation, Release 0.5.0

num_machines = params ['num_machines']
num_mpiprocs_per_machine = params|['num_mpiprocs_per_machine']
max_wallclock_seconds = params|['max_wallclock_ seconds']
pseudo_family = params|['pseudo_family']

code = Code.get_from_string (pw_codename)
computer = code.get_remote_computer ()

QECalc = CalculationFactory ('quantumespresso.pw')

calc = QECalc (computer=computer)
calc.set_max_wallclock_seconds (max_wallclock_seconds)

calc.set_resources ({"num_machines": num_machines, "num _mpiprocs_per_machine":

calc.store ()

calc.use_code (code)

calc.use_structure (pw_structure)
calc.use_pseudos_from_family (pseudo_family)
calc.use_parameters (pw_parameters)

calc.use_kpoints (pw_kpoint)

return calc

@Workflow.step
def start (self):

params = self.get_parameters()
x_material = params|['x_material']

self.append_to_report (x_material+"Ti03 EOS started")
self.next (self.eos)

@Workflow.step
def ecos(self):

from aiida.orm import Code, Computer, CalculationFactory
import numpy as np

params = self.get_parameters()

x_material = params|['x_material']

starting_alat
alat_steps = params['alat_steps']

params|['starting alat']

a_sweep = np.linspace(starting_alat+0.85,starting_alatx1.15,alat_steps) .tolist

aiidalogger.info ("Storing a_sweep as "+str (a_sweep))
self.add_attribute('a_sweep', a_sweep)

for a in a_sweep:

1.1. User’s guide

99

num_mpiprocs.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

AiiDA documentation, Release 0.5.0

self.append_to_report ("Preparing structure {0} with alat {1}".format (x_mat
calc = self.get_pw_calculation(self.get_structure(alat=a, x_material=x_mat
self.get_pw_parameters(),

self.get_kpoints())

self.attach_calculation(calc)

self.next (self.optimize)

@Workflow.step
def optimize(self):

from aiida.orm.data.parameter import ParameterData

x_material = self.get_parameter ("x_material")
a_sweep = self.get_attribute ("a_sweep")

aiidalogger.info ("Retrieving a_sweep as {0}".format (a_sweep))

Get calculations
start_calcs = self.get_step_calculations(self.eos) #.get_calculations/()

Calculate results

,,,
e_calcs = [c.res.energy for c in start_calcs]
v_calcs = [c.res.volume for c in start_calcs]
e_calcs = zip(*sorted(zip(a_sweep, e_calcs))) [1]
v_calcs = zip(*sorted(zip(a_sweep, v_calcs)))[1]

Add to report

for i in range (len(a_sweep)):

self.append_to_report (x_material+"Ti03 simulated with a="+str (a_sweep[i])+

Find optimal alat

murnpars, ier = Murnaghan_fit (e_calcs, v_calcs)

New optimal alat
optimal_alat = murnpars[3]*+ (1 / 3.0)
self.add_attribute('optimal_alat',optimal_alat)

Build last calculation
calc = self.get_pw_calculation(self.get_structure(alat=optimal_alat, x_materid
self.get_pw_parameters(),

self.get_kpoints())
self.attach_calculation(calc)

self.next (self.final_step)

100

Chapter 1. User’s guide

erial+"Ti03",

erial),

", e="+str (e

l=x_material

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

AiiDA documentation, Release 0.5.0

@Workflow.step
def final_ step(self):

from aiida.orm.data.parameter import ParameterData

x_material = self.get_parameter ("x_material™)
optimal_alat = self.get_attribute ("optimal_alat™)

opt_calc = self.get_step_calculations(self.optimize) [0] #.get_calculations() [{]

opt_e = opt_calc.get_outputs (type=ParameterData) [0] .get_dict () ['energy']
self.append_to_report (x_material+"Ti03 optimal with a="+str (optimal_alat)+", ¢4
self.add_result ("scf_converged", opt_calc)

self.next (self.exit)

Before getting into details, you’ll notice that this workflow is devided into sections by comments in the script. This is
not necessary, but helps the user to differentiate the main parts of the code. In general it’s useful to be able to recognize
immediately which functions are steps and which are instead utility or support functions that either generate structure,
modify them, add special parameters for the calculations, etc. In this case the support functions are reported first,
under the Object generators part, while Workflow steps are reported later in the soundy Workflow steps
section. Lets now get in deeper details for each function.

e _ init__ Usual initialization function, notice again the necessary super class initialization for back compatibility.

« start The workflow tries to get the X material from the parameters, called in this case x_material. If the
entry is not present in the dictionary an error will be thrown and the workflow will hang, reporting the error
in the report. After that a simple line in the report is added to notify the correct start and the eos step will be
chained to the execution.

¢ eos This step is the heart of this workflow. At the beginning parameters needed to investigate the equation of
states are retrieved. In this case we chose a very simple structure with only one interesting cell parameter, called
starting_alat. The code will take this alat as the central point of a linear mesh going from 0.85 alat to 1.15
alat where only a total of alat_steps will be generated. This decision is very much problem dependent, and
your workflows will certanly need more parameters or more sophisticated meshes to run a satisfactory equation
of state analysis, but again this is only a tutorial and the scope is to learn the basic concepts.

After retrieving the parameters, a linear interpolation is generated between the values of interest and for each of
these values a calculation is generated by the support function (see later). Each calculation is then attached to
the step and finally the step chains opt imize as the step. As told, the manager will handle all the job execution
and retrieval for all the step’s calculation before calling the next step, and this ensures that no optimization will
be done before all the alat steps are computed with success.

* optimize In the first lines the step will retrieve the initial parameters, the a_ sweep attribute computed in the
previous step and all the calculations launched and succesfully retrieved. Energy and volume in each calculation
is retrieved thanks to the output parser functions mentioned in the other chapters, and a simple message is added
to the report for each calculation.

Having the volume and the energy for each simulation we can run a Murnaghan fit to obtain the optimal cell
parameter and expected energy, to do this we use a simple fitting function Murnaghan_ fit defined at the bot-
tom of the workflow file wf_XTi03.py. The optimal alat is then saved in the attributes and a new calculation
is generated for it. The calculation is attached to the step and the final_step is attached to the execution.

« final_step In this step the main result is collected and stored. Parameters and attributes are retrieved, a new entry
in the report is stored pointing to the optimal alat and to the final energy of the structure. Finally the calculation
is added to the workflow results and the exit step is chained for execution.

» get_pw_calculation (get_kpoints, get_pw_parameters, get_structure) As you noticed to let the code clean

1.1. User’s guide 101

="+str (opt_e;

AiiDA documentation, Release 0.5.0

all the functions needed to generate AiiDA Calculation objects have been factored in the utility functions. These
functions are highly specific for the task needed, and unrelated to the workflow functions. Nevertheless they’re
a good example of best practise on how to write clean and reusable workflows, and we’ll comment the most
important feature.

get_pw_calculationiscalled in the workflow’s steps, and it handles the entire Calculation object creation.
First it extracts the parameters from the workflow initialization necessary for the execution (the machine, the
code, and the number of core, pseudos, etc..) and then it generates and stores the JobCalculation objects,
returning it for later use.

get_kpoints genetates a k-point mesh suitable for the calculation, in this case a fixed MP mesh 4x4x4.
In a real case scenario this needs much more sophisticated calculations to ensure a correct convergence, not
necessary for the tutorial.

get_pw_parameters builds the minimum set of parameters necessary to run the Quantum Espresso simu-
lations. In this case as well parameters are not for production.

get_structure generates the real atomic arrangement for the specific calculation. In this case the configu-
ration is extremely simple, but in principle this can be substituted with an external funtion, implementing even
very sophisticated approaches such as genetic algorithm evolution or semi-randomic modifications, or any other
structure evolution function the user wants to test.

As you noticed this workflow needs several parameters to be correctly executed, something natural for real case
scenarios. Nevertheless the launching procedure is identical as for the simple example before, with just a little longer
dictionary of parameters:

>> from aiida.workflows.wf_XTiO3 import WorkflowXTiO3_EOS

>> params = {'pw_codename':'PWcode', 'num_machines':1l, 'num_mpiprocs_per_machine':8, 'ma
>> wf = WorkflowXTiO3_EOS (params=params)

>> wf.start ()

To run this workflow remember to update the params dictionary with the correct values for your AiiDA installation
(namely pw_codename and pseudo_family).

Chaining workflows

After the previous chapter we’re now able to write a real case workflow that runs in a fully automatic way EOS
analysis for simple structures. This covers almost all the workflow engine’s features implemented in AiiDA, except
for workflow chaining.

Thanks to their modular structure a user can write task-specific workflows very easly. An example is the EOS before,
or an energy convergence procedure to find optimal cutoffs, or any other necessity the user can code. These self
contained workflows can easily become a library of result-oriented scripts that a user would be happy to reuse in
several ways. This is exactly where sub-workflows come in handy.

Workflows, in an abstract sense, are in fact calculations, that accept as input some parameters and that produce results
as output. The way this calculations are handled is competely transparent for the user and the engine, and if a workflow
could launch other workflows it would just be a natural extension of the step’s calculation concept. This is in fact how
workflow chaining has been implemented in AiiDA. Just as with calculations, in each step a workflow can attach
another workflow for executions, and the AiiDA daemon will handle its execution waiting for its successful end (in
case of errors in any subworkflow, such errors will be reported and the entire workflow tree will be halted, exactly as
when a calculation fails).

To introduce this function we analyze our last example, where the WorkflowXTiO3_EOS is used as a sub workflow.
The general idea of this new workflow is simple: if we’re now able to compute the EOS of any XTiO3 structure we
can build a workflow to loop among several X materials, obtain the relaxed structure for each material and run some
more sophisticated calculation. In this case we’ll compute phonon vibrational frequncies for some XTiO3 materials,
namely Ba, Sr and Pb.

102 Chapter 1. User’s guide

x_wallclock_:

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

AiiDA documentation, Release 0.5.0

==== ======= ======= ======= ==
WorkflowXTi03
===

class WorkflowXTiO3 (Workflow) :

def _ init_ (self, xxkwargs):

super (WorkflowXTiO3, self).__init__ (»+xkwargs)
=========================== ============ ======= =
Calculations generators
========== s=========== ============ ============ =

def get_ph_parameters(self):

parameters = ParameterData (dict={
'"INPUTPH': {

'tr2_ph' : 1.0e-8,
'epsil' : True,

'ldisp' : True,

'ngl' : 1,

'ng2' : 1,

'ng3' : 1,

}}) .store ()

return parameters

def get_ph_calculation(self, pw_calc, ph_parameters):

params = self.get_parameters()

ph_codename = params ['ph_codename']

num_machines = params ['num _machines']
num_mpiprocs_per_machine = params|['num_mpiprocs_per_machine']
max_wallclock_seconds = params|['max_wallclock_ seconds']

code = Code.get_from_string(ph_codename)
computer = code.get_remote_computer ()

QEPhCalc = CalculationFactory ('quantumespresso.ph')
calc = QEPhCalc (computer=computer)

calc.set_max_wallclock_seconds (max_wallclock_seconds) # 30 min

calc.set_resources ({"num_machines": num_machines, "num mpiprocs_per_machine":

calc.store ()
calc.use_parameters (ph_parameters)
calc.use_code (code)

calc.use_parent_calculation (pw_calc)

return calc

@Workflow.step

1.1. User’s guide

103

num_mpiprocs.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

3

74

75

76

77

78

79

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

AiiDA documentation, Release 0.5.0

def start (self):

params = self.get_parameters()
elements_alat = [('Ba',4.0), ('Sr', 3.89), ('Pb', 3.9)]

for x in elements_alat:

params.update ({'x_material':x[0]})
params.update ({'starting_ alat':x[1]})

aiidalogger.info ("Launching workflow WorkflowXTi0O3_EOS for {0} with alat
w = WorkflowXTiO3_EOS (params=params)

w.start ()

self.attach_workflow (w)

self.next (self.run_ph)

@Workflow.step
def run_ph(self):

Get calculations
sub_wfs = self.get_step(self.start) .get_sub_workflows ()

for sub_wf in sub_wfs:

Retrieve the pw optimized calculation
pw_calc = sub_wf.get_step("optimize") .get_calculations () [0]

aiidalogger.info ("Launching PH for PW {0}".format (pw_calc.get_job_id()))
ph_calc = self.get_ph_calculation(pw_calc, self.get_ph_parameters())
self.attach_calculation (ph_calc)

self.next (self.final_step)

@Workflow.step
def final_step(self):

#self.append _to_report (x_material+"Ti03 EOS started")
from aiida.orm.data.parameter import ParameterData
import aiida.tools.physics as ps

params = self.get_parameters ()

Get calculations
run_ph_calcs = self.get_step_calculations(self.run_ph) #.get_calculations/()

for ¢ in run_ph_calcs:
dm = c.get_outputs (type=ParameterData) [0] .get_dict () ['dynamical_matrix_1"']
self.append_to_report ("Point g: {0} Frequencies: {1}".format (dm['g point']

self.next (self.exit)

Most of the code is now simple adaptation of previous examples, so we’re going to comment only the most relevant
differences where workflow chaining plays an important role.

« start This workflow accepts the same input as the WorkflowXTiO3_EOS, but right at the beginning the workflow
a list of X materials is defined, with their respective initial alat. This list is iterated and for each material a new

104 Chapter 1. User’s guide

1}".format (x

,dm[' frequent

AiiDA documentation, Release 0.5.0

Workflow is both generated, started and attached to the step. At the end run_ph is chained as the following
step.

* run_ph Only after all the subworkflows in start are succesfully completed this step will be executed, and it
will immediately retrieve all the subworkflow, and from each of them it will get the result calculations. As you
noticed the result can be stored with any user defined key, and this is necessary when someone wants to retrieve
it from a completed workflow. For each result a phonon calculation is launched and then the final_step step
is chained.

To launch this new workflow we have only to add a simple entry in the previous parameter dictionary, specifing the
phonon code, as reported here:

>> from aiida.workflows.wf_ XTiO3 import WorkflowXTiO3
>> params = {'pw_codename': 'PWcode', 'ph_codename':'PHcode', 'num_machines':1l, 'num_mpiprocs_per_macl]
>> wf = WorkflowXTiO3 (params=params)
>> wf.start ()

1.1.25 Import structures from external databases

We support the import of structures from external databases. The base class that defines the API for the importers can
be found here: DbImporter. Below, you can find a list of existing plugins that have already been implemented.

Available plugins

ICSD database importer

In this section we explain how to import CIF files from the ICSD database using the TcsdDbImporter class.

Before being able to query ICSD, provided by FIZ Karlsruhe, you should have the intranet database installed on a
server (http://www.fiz-karlsruhe.de/icsd_intranet.html). Follow the installation as decsribed in the manual.

It is necessary to know the webpage of the icsd web interface and have access to the full database from the local
machine.

You can either query the mysql database or the web page, the latter is restricted to a maximum of 1000 search results,
which makes it unsuitable for data mining. So better set up the mysql connection.

Setup An instance of the TcsdDbImporter can be created as follows:

importer = aiida.tools.dbimporters.plugins.icsd‘IcsdDbImporter(server:"http://ICSDSERVE#.com/", host:

Here is a list of the most important input parameters with an explanation.
For both connection types (web and SQL):

 server: address of web interface of the icsd database; it should contain both the protocol and the domain name
and end with a slash; example:

server = "http://ICSDSERVER.com/"

The following parameters are required only for the mysql query:

¢ host: database host name address.

Tip: If the database is not hosted on your local machine, it can be useful to create an ssh tunnel to
the 3306 port of the database host:

1.1. User’s guide 105

http://www.fiz-karlsruhe.de/icsd_intranet.html

AiiDA documentation, Release 0.5.0

ssh —-L 3306:1localhost:3306 username@icsddbhostname.com

If you get an URLError with Errno 111 (Connection refused) when you query the database, try to
use instead:

ssh -L 3306:1localhost:3306 -L 8010:1localhost:80 username@icsddbhostname.com ‘

The database can then be accessed using “127.0.0.1” as host:

host = "127.0.0.1" |

* user / pass_wd / db / port: Login username, password, name of database and port of your mysql database.
If the standard installation of ICSD intranet version has been followed, the default values should work.
Otherwise contact your system administrator to get the required information:

user = "dba", pass_wd = "sqgl", db = "icsd", port = 3306

Other settings:
* querydb: If True (default) the mysql database is queried, otherwise the web page is queried.

A more detailed documentation and additional settings are found under IcsdDbImporter.

How to do a query If the setup worked, you can do your first query:

cif_nr list = ["50542","617290","35538"]

queryresults = importer.query (id= cif_nr_list)

All supported keywords can be obtained using:

importer.get_supported_keywords ()

More information on the keywords are found under http://www.fiz-karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf
A query returns an instance of TcsdSearchResults

The IcsdEntry at position i can be accessed using:

queryresults.at (1)

You can also iterate through all query results:

for entry in query_results:
do something

Instances of IcsdEnt ry have following methods:
* get_cif_node(): Return an instance of Ci fData, which can be used in an AiiDA workflow.
» get_aiida_structure(): Return an AiiDA structure
* get_ase_structure(): Return an ASE structure

The most convenient format can be chosen for further processing.

Full example Here is a full example how the icsd importer can be used:

106 Chapter 1. User’s guide

http://www.fiz-karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf

AiiDA documentation, Release 0.5.0

import aiida.tools.dbimporters.plugins.icsd

cif_nr_list = [
"50542",
"617290",
"35538 ",
"165226",
"158366"

1

importer = aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter (server="http://ICSDSERVEH
host= "127.0.0.1")
query_results = importer.query (id=cif_nr_list)
for result in query_results:
print result.source['db_id']
aiida_structure = result.get_aiida_structure()
#do something with the structure

.com/",

Troubleshooting: Testing the mysql connection To test your mysql connection, first make sure that you can con-
nect to the 3306 port of the machine hosting the database. If the database is not hosted by your local machine, use the
local port tunneling provided by ssh, as follows:

‘ssh -L 3306:1localhost:3306 username@icsddbhostname.com ‘

Note: If you get an URLError with Errno 111 (Connection refused) when you query the database, try to use instead:

‘ssh -L 3306:1localhost:3306 -L 8010:1localhost:80 username@icsddbhostname.com ‘

Note: You need an account on the host machine.

Note: There are plenty of explanations online explaining how to setup an tunnel over a SSH connection using the —L
option, just google for it in case you need more information.

Then open a new verdi shell and type:

import MySQLdb

db = MySQLdb.connect (host = "127.0.0.1", user ="dba", passwd = "sqgl", db = "icsd", portH

$3306)

If you do not get an error and it does not hang, you have successfully established your connection to the mysql
database.

COD database importer

COD database importer is used to import crystal structures from the Crystallography Open Database (COD) to AiiDA.

Setup An instance of CodDbImporter is created as follows:

from aiida.tools.dbimporters.plugins.cod import CodDbImporter
importer = CodDbImporter ()

No additional parameters are required for standard queries on the main COD server.

1.1. User’s guide 107

http://www.crystallography.net

AiiDA documentation, Release 0.5.0

How to do a query A search is initiated by supplying query statements using keyword=value syntax:

‘results = importer.query (chemical_name="caffeine")

List of possible keywords can be listed using:

‘importer.get_supported_keywords()

Values for the most of the keywords can be list. In that case the query will return entries, that match any of the values
(binary OR) from the list. Moreover, in the case of multiple keywords, entries, that match all the conditions imposed
by the keywords, will be returned (binary AND).

Example:

results = importer.query(chemical_name=["caffeine", "serotonin"],
year=[2000,20017)

is equivalent to the following SQL statement:

results = SELECT % FROM data WHERE
(chemical_name == "caffeine" OR chemical_name == "serotonin") AND
(year = 2000 OR year = 2001)

A query returns an instance of CodSearchResults, which can be used in a same way as a list of CodEntry
instances:

print len(results)

for entry in results:
print entry

Using data from CodEntry CodEntry has afew functions to access the contents of it’s instances:

CodEntry.get_aiida_structure ()
CodEntry.get_ase_structure ()
CodEntry.get_cif_node ()
CodEntry.get_parsed_cif ()
CodEntry.get_raw_cif ()

1.1.26 Export data to external databases
We support the export of data to external databases. In the most general way, the export to external databases can be

viewed as a subworkflow, taking data as input and resulting in the deposition of it to external database(s). Below is a
list of supported databases with deposition routines described in comments-type style.

Supported databases

TCOD database exporter

TCOD database exporter is used to export computation results of StructureData, CifData and
TrajectoryData (or any other data type, which can be converted to them) to the Theoretical Crystallography
Open Database (TCOD).

Setup To be able to export data to TCOD, one has to install dependencies for CIF manipulation as well as cod-tools
package, and set up an AiiDA Code for cif_cod_deposit script from cod-tools.

108 Chapter 1. User’s guide

http://www.crystallography.net/tcod/
http://www.crystallography.net/tcod/

AiiDA documentation, Release 0.5.0

How to deposit a structure Best way to deposit data is to use the command line interface:

verdi DATATYPE structure deposit tcod

—-—type {published,prepublication,personal}]
——username USERNAME] [—--password]
—-—user—-email USER_EMAIL] [--title TITLE]
——author—-name AUTHOR_NAME]
——author—-email AUTHOR_EMAIL]
——code CODE_LABEL]
——computer COMPUTER_NAME]
——replace REPLACE] [-m MESSAGE]
——reduce-symmetry] [—-—no-reduce-symmetry]
—-—parameter-data PARAMETER_DATA]
——dump-aiida-database]
—-—-no-dump-aiida-database]
—-—exclude—-external-contents]
—-no-exclude—-external-contents]

[-—url URL]

[--gzip]
—--no-gzip]
—-—gzip-threshold GZIP_THRESHOLD]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
PK

Where:

* DATATYPE — one of AiiDA structural data types (at the moment of writing, they were St ructureData,

CifDataand TrajectoryData);

e TITLE - the title of the publication, where the exported data is/will be published; in case of personal commu-
nication, the title should be chosen so as to reflect the exported dataset the best;

* CODE_LABEL - label of AiiDA Code, associated with cif_cod_deposit;

e COMPUTER_NAME — name of AiiDA Computer, where cif_cod_deposit script is to be launched;

e REPLACE — TCOD ID of the replaced entry in the event of redeposition;

* MESSAGE - string to describe changes for redeposited structures;

e ——reduce-symmetry, ——no-reduce-symmetry — turn on/off symmetry reduction of the exported

structure (on by default);

e ——parameter-data — specify the PK of ParameterData object, describing the result of the final (or

single) calculation step of the workflow;

¢ ——dump-aiida-database, ——no-dump-aiida—-database — turn on/off addition of relevant AiiDA

database dump (on by default).

Warning: be aware that TCOD is an open database, thus no copyright-protected data should be de-
posited unless permission is given by the owner of the rights.

Note: data, which is deposited as pre-publication material, will be kept private on TCOD server and will not
be disclosed to anyone without depositor’s permission.

e ——exclude—-external-contents, ——no-exclude-external-contents — exclude contents of
initial input files, that contain source property with definitions on how to obtain the contents from external

resources (on by default);

* ——gzip, —no-gzip‘ — turn on/off gzip compression for large files (off by default); ~—gzip-threshold sets

the minimum file size to be compressed.

Other command line options correspond to the options of cif_cod_deposit of the same name. To ease the use of TCOD
exporter, one can define persistent parameters in AiiDA properties. Corresponding command line parameters and

AiiDA properties are presented in the table:

1.1. User’s guide

109

http://wiki.crystallography.net/tcod_id/

AiiDA documentation, Release 0.5.0

Command line parameter

AiiDA property

—-—author-email

tcod.depositor_author_email

——author—-name

tcod.depositor_author_name

—-—user-email

tcod.depositor_email

——username tcod.depositor_password
—-—password tcod.depositor_username
Note: —-password does not accept any value; instead, the option will prompt the user to enter one’s password in

the terminal.

Note: command line parameters can be used to override AiiDA properties even if properties are set.

Return values The deposition process,

cif cod_deposit, wrapped in ParameterData.

which is of JobCalculation type, returns the output of

110

Chapter 1. User’s guide

CHAPTER 2

Other guide resources

2.1 Other guide resources

2.1.1 AiiDA cookbook (useful code snippets)

This cookbook is intended to be a collection of useful short scripts and code snippets that may be useful in the everyday
usage of AiiDA. Please read carefully the nodes (if any) before running the scripts!

Deletion of nodes

At the moment, we do not support natively the deletion of nodes. This is mainly because it is very dangerous to delete
data, as this is cannot be undone.

If you really feel the need to delete some code, you can use the function below.

Note: WARNING! In order to preserve the provenance, this function will delete not only the list of specified nodes,
but also all the children nodes! So please be sure to double check what is going to be deleted before running this

function.

Here is the function, pass a list of PKs as parameter to delete those nodes and all the children nodes:

def delete_nodes (pks_to_delete):

mmn

Delete a set of nodes.

:note: The script will also delete
all children calculations generated from the specified nodes.

:param pks_to_delete: a list of the PKs of the nodes to delete
mrmamn

from django.db import transaction

from django.db.models import Q

from aiida.djsite.db import models

from aiida.orm import load_node

Delete also all children of the given calculations
Here I get a set of all pks to actually delete, including
all children nodes.
all _pks_to_delete = set (pks_to_delete)
for pk in pks_to_delete:
all pks_to_delete.update (models.DbNode.objects.filter (

111

AiiDA documentation, Release 0.5.0

parents__in=pks_to_delete) .values_list ('pk', flat=True))

print "I am going to delete {} nodes, including ALL THE CHILDREN".format (
len(all_pks_to_delete))

print "of the nodes you specified. Do you want to continue? [y/N]"

answer = raw_input ()

if answer.strip().lower() == 'y':

Recover the list of folders to delete before actually deleting

the nodes. I will delete the folders only later, so that if

there is a problem during the deletion of the nodes in

the DB, I don't delete the folders

folders = [load_node (pk).folder for pk in all_pks_to_delete]

with transaction.atomic () :
Delete all links pointing to or from a given node
models.DbLink.objects.filter (
Q(input__in=all_pks_to_delete)
Q(output__in=all_pks_to_delete)) .delete()
now delete nodes
models.DbNode.objects.filter (pk__in=all_pks_to_delete) .delete ()

If we are here, we managed to delete the entries from the DB.
I can now delete the folders
for f in folders:

f.erase()

2.1.2 Troubleshooting and tricks

Some tricks

Using the proxy_command option with ssh

This page explains how to use the proxy_ command feature of ssh. This feature is needed when you want to connect
to a computer B, but you are not allowed to connect directly to it; instead, you have to connect to computer A first, and
then perform a further connection from A to B.

Requirements The idea is that you ask ssh to connect to computer B by using a proxy to create a sort of tunnel.
One way to perform such an operation is to use netcat, a tool that simply takes the standard input and redirects it to
a given TCP port.

Therefore, a requirement is to install net cat on computer A. You can already check if the netcat or nc command
is available on you computer, since some distributions include it (if it is already installed, the output of the command:

’which netcat ‘

or:

’which nc ‘

will return the absolute path to the executable).

If this is not the case, you will need to install it on your own. Typically, it will be sufficient to look for a netcat
distribution on the web, unzip the downloaded package, cd into the folder and execute something like:

112 Chapter 2. Other guide resources

AiiDA documentation, Release 0.5.0

./configure —--prefix=.
make
make install

This usually creates a subfolder bin, containing the net cat and nc executables. Write down the full path to nc that
we will need later.

ssh/config You can now test the proxy command with ssh. Edit the ~/.ssh/config file on the computer on
which you installed AiiDA (or create it if missing) and add the following lines:

Host FULLHOSTNAME_B

Hostname FULLHOSTNAME_B

User USER_B

ProxyCommand ssh USER_AW@FULLHOSTNAME_A ABSPATH_NETCAT %h %p

where you have to replace:

e FULLHOSTNAMEA and FULLHOSTNAMER with the fully-qualified hostnames of computer A and B (remem-
bering that B is the computer you want to actually connect to, and A is the intermediate computer to which you
have direct access)

* USER_A and USER_B are the usernames on the two machines (that can possibly be the same).
e ABSPATH_NETCAT is the absolute path to the nc executable that you obtained in the previous step.

Remember also to configure passwordless ssh connections using ssh keys both from your computer to A, and from A
to B.

Once you add this lines and save the file, try to execute:

ssh FULLHOSTNAME_B

which should allow you to directly connect to B.

WARNING There are several versions of netcat available on the web. We found at least one case in which the
executable wasn’t working properly. At the end of the connection, the net cat executable might still be running: as
a result, you may rapidly leave the cluster with hundreds of opened ssh connections, one for every time you connect
to the cluster B. Therefore, check on both computers A and B that the number of processes netcat and ssh are
disappearing if you close the connection. To check if such processes are running, you can execute:

ps —aux | grep <username>

Remember that a cluster might have more than one login node, and the ssh connection will randomly connect to any
of them.

AiiDA config If the above steps work, setup and configure now the computer as explained /ere.

If you properly set up the ~/ . ssh/config file in the previous step, AiiDA should properly parse the information in
the file and provide the correct default value for the proxy_ command during the verdi computer configure
step.

Some notes on the proxy_command option

e Inthe ~/.ssh/config file, you can leave the $h and %$p placeholders, that are then automatically replaced
by ssh with the hostname and the port of the machine B when creating the proxy. However, in the AiiDA
proxy_command option, you need to put the actual hostname and port. If you start from a properly configured

2.1. Other guide resources 113

AiiDA documentation, Release 0.5.0

~/.ssh/config file, AiiDA will already replace these placeholders with the correct values. However, if you
input the proxy_ command value manually, remember to write the hostname and the port and not $h and %$p.

e In the ~/.ssh/config file, you can also insert stdout and stderr redirection, e.g. 2> /dev/null to hide
any error that may occur during the proxying/tunneling. However, you should only give AiiDA the actual com-
mand to be executed, without any redirection. Again, AiiDA will remove the redirection when it automatically
reads the ~/ . ssh/config file, but be careful if entering manually the content in this field.

Connection problems
* When AiiDA tries to connect to the remote computer, it says paramiko.SSHException: Server
u’ FULLHOSTNAME’ not found in known_hosts

AiiDA uses the paramiko library to establish SSH connections. paramiko is able to read the remote host
keys from the ~/ . ssh/known_hosts of the user under which the AiiDA daemon is running. You therefore
have to make sure that the key of the remote host is stored in the file.

— As afirst check, login as the user under which the AiiDA daemon is running and run a:

ssh FULLHOSTNAME

command, where FULLHOSTNAME is the complete host name of the remote computer configured in Ai-
iDA. If the key of the remote host is not in the known_hosts file, SSH will ask confirmation and then
add it to the file.

— If the above point is not sufficient, check the format of the remote host key. On some machines (we know
that this issue happens at least on recent Ubuntu distributions) the default format is not RSA but ECDSA.
However, paramiko is still not able to read keys written in this format.

To discover the format, run the following command:

ssh-keygen -F FULLHOSTNAME

that will print the remote host key. If the output contains the string ecdsa-sha2-nistp256, then
paramiko will not be able to use this key (see below for a solution). If instead ssh-rsa, the key should
be OK and paramiko will be able to use it.

In case your key is in ecdsa format, you have to first delete the key by using the command:

ssh-keygen —-R FULLHOSTNAME

Then, in your ~/ . ssh/config file (create it if it does not exist) add the following lines:

Host =
HostKeyAlgorithms ssh-rsa

(use the same indentation, and leave an empty line before and one after). This will set the RSA algorithm
as the default one for all remote hosts. In case, you can set the HostKeyAlgorithms attribute only to
the relevant computers (use man ssh_config for more information).

Then, run a:

ssh FULLHOSTNAME

command. SSH will ask confirmation and then add it to the file, but this time it should use the ssh-rsa
format (it will say so in the prompt messsage). You can also double-check that the host key was correctly
inserted using the ssh-keygen -F FULLHOSTNAME command as described above. Now, the error
messsage should not appear anymore.

114 Chapter 2. Other guide resources

AiiDA documentation, Release 0.5.0

Increasing the debug level

By default, the logging level of AiiDA is minimal to avoid filling logfiles. Only warnings and errors are logged (to the
~/.aiida/daemon/log/aiida_daemon. log file), while info and debug messages are discarded.

If you are experiencing a problem, you can change the default minimum logging level of AiiDA messages (and celery
messages — celery is the library that we use to manage the daemon process) using, on the command line, the two
following commands:

verdi devel setproperty logging.celery_loglevel DEBUG
verdi devel setproperty logging.aiida_loglevel DEBUG

After rebooting the daemon (verdi daemon restart), the number of messages logged will increase significantly
and may help in understanding the source of the problem.

Note: In the command above, you can use a different level than DEBUG. The list of the levels and their order is the
same of the standard python logging module.

Note: When the problem is solved, we suggest to bring back the default logging level, using the two commands:

verdi devel delproperty logging.celery_loglevel
verdi devel delproperty logging.aiida_loglevel

to avoid to fill the logfiles.

Tips to ease the life of the hard drive (for large databases)

Those tips are useful when your database is very large, i.e. several hundreds of thousands of nodes and workflows
or more. With such large databases the hard drive may be constantly working and the computer slowed down a lot.
Below are some solutions to take care of the most typical reasons.

Repository backup

The backup of the repository takes an extensively long time if it is done through a standard rsync or backup software,
since it contains as many folders as the number of nodes plus the number of workflows (and each folder can contain
many files!). A solution is to use instead the incremental backup described in the repository backup section.

mlocate cron job

Under typical Linux distributions, there is a cron job (called updatedb.mlocate) running every day to update a
database of files and folders — this is to be used by the 1locate command. This might become problematic since
the repository contains many folders and will be scanned everyday. The net effect is a hard drive almost constantly
working.

To avoid this issue, edit as root the file /et c/updatedb. conf and put in PRUNEPATHS the name of the repository
folder.

2.1.3 Using AiiDA in multi-user mode

Note: multi-user mode is still not fully supported, and the way it works will change significantly soon. Do not use
unless you know what you are doing.

2.1. Other guide resources 115

https://docs.python.org/2/library/logging.html#logging-levels

AiiDA documentation, Release 0.5.0

Todo

To be documented.
Discuss:
* Security issues
* Under which linux user (aiida) to run, and remove the pwd with passwd -d aiida.

* How to setup each user (aiida@localhost for the daemon user, correct email for the others using verdi
install --only-config)

* How to configure a given user (verdi user configure)

* How to list users (also the —color option, and the meaning of colors)
* How to setup the daemon user (verdi daemon configureuser)

* How to start the daemon

* How to configure the permissions! (all AiiDA in the same group, and set the ‘chmod -R g+s’ flag to all folders
and subfolders of the AiiDA repository) (comment that by default now we have a flag (harcoded to True) in
aiida.common.folders to give write permissions to the group both to files and folders created using the Folder
class.

* Some configuration example:

{u'compress': True,

u'key_filename': u'/home/aiida/.aiida/sshkeys/KEYFILE',
u'key_policy': u'RejectPolicy',
u'load_system_host_keys': True,

u'port': 22,

u'proxy_command': u'ssh -i /home/aiida/.aiida/sshkeys/KEYFILE USERNAMEGMIDDLECOMPUTER /bin/nc E
u'timeout': 60,
u'username': u'xxx'}

* Moreover, on the remote computer do:

ssh-keyscan FINALCOMPUTER

and append the output to the known_hosts of the aiida daemon account. Do the same also for the MIDDLE-
COMPUTER if a proxy_command is user.

2.1.4 Deploying AiiDA using Apache

Note: At this stage, this section is meant for developers only.

Todo

To be documented.

Some notes:

* Configure your default site of Apache (check in /etc/apache2/sites—enabled, probably it is called
000-default).

116 Chapter 2. Other guide resources

mailto:aiida@localhost

AiiDA documentation, Release 0.5.0

Add the full ServerName outside of any <VirtualHost> section:

ServerName FULLSERVERNAMEHERE

and inside the VirtualHost that provide access, specifiy the email of the server administrator (note that the email
will be accessible, e.g. it is shown if a INTERNAL ERROR 500 page is shown):

<VirtualHost *:80>
ServerAdmin administratoremail@xxxX.Xx

</VirtualHost>

Login as the user running apache, e.g. www—data in Ubuntu; use something like:

sudo su www-data —-s /bin/bash
and run "~ “verdi install’" to configure where the DB and the files stay, etc.

Be also sure to check that this apache user belongs to the group that has
read/write permissions to the AiiDA repository.

If you home directory is set to /var/www, and this is published by Apache, double check that nobody can
access the .aiida subfolder! By default, during verdi install AiiDA puts inside the folder a .htaccess file
to disallow access, but this file is not read by some default Apache configurations.

To have Apache honor the . htaccess file, in the default Apache site (probably the same file as above) you
need to set the AllowOverride all flag in the proper VirtualHost and Directory (note that there can be
more than one, e.g. if you have both HTTP and HTTPS).

You should have something like:

<VirtualHost *:80>
ServerAdmin xxx@xxx.xx

DocumentRoot /var/www
<Directory /var/www/>
AllowOverride all
</Directory>
</VirtualHost>

Note: Of course, you will typically have other configurations as well, the snippet above just shows where the
AllowOverride all line should appear.

Double check if you cannot list/read the files (e.g. connecting to http://YOURSERVER/ .aiida).

Todo

Allow to have a trick to have only one file in .aiida, containing the url where the actual configuration stuff resides
(or some other trick to physically move the configuration files out of /var/www).

Create a /etc/apache2/sites—available/wsgi-aiida file, with content:

Alias /static/awi /PATH_TO_AIIDA/aiida/djsite/awi/static/awi/
Alias /favicon.ico /PATH_TO_AIIDA/aiida/djsite/awi/static/favicon.ico

WSGIScriptAlias / /PATH_TO_AIIDA/aiida/djsite/settings/wsgi.py
WSGIPassAuthorization On

2.1.

Other guide resources 117

AiiDA documentation, Release 0.5.0

WSGIPythonPath /PATH_TO_AIIDA/

<Directory /PATH_TO_AIIDA/aiida/djsite/settings>

<Files wsgi.py>

Order deny,allow

Allow from all

For Apache >= 2.4, replace the two lines above with the one below:
Require all granted

</Files>

</Directory>

Note: Replace everywhere PATH_TO_ATIIDA with the full path to the AiiDA source code. Check that
the user running the Apache daemon can read/access all files in that folder and subfolders.

Note: inthe WSGIPythonPath you can also add other folders that should be in the Python path (e.g.
if you use other libraries that should be accessible). The different paths must be separated with :.

Note: For Apache >= 2.4, replace the two lines:

Order deny,allow
Allow from all

with:

Require all granted

Note: The WSGIScriptAlias exposes AiiDA under main address of your website
(http://SERVER/).

If you want to serve AiiDA under a subfolder, e.g. http://SERVER/aiida, then change the line
containing WSGIScriptAlias with:

WSGIScriptAlias /aiida /PATH_TO_AIIDA/aiida/djsite/settings/wsgi.py

without any trailing slashes after ‘/aiida’.

 Enable the given site:

sudo azensite wsgi-aiida

and reload the Apache configuration to load the new site:

sudo /etc/init.d/apache2 reload

¢ A comment on permissions (to be improved): the default Django Authorization (used e.g. in the API) does not
allow a “standard” user to modify data in the DB, but only to read it, therefore if you are accessing with a user
that is not a superuser, all API calls trying to modify the DB will return an HTTP UNAUTHORIZED message.

Temporarily, you can fix this by going in a verdi shell, loading your user with something like:

u = models.DbUser.objects.get (email="xxx")

and then upgrading the user to a superuser:

u.is_superuser = True
u.save ()

118 Chapter 2. Other guide resources

AiiDA documentation, Release 0.5.0

2.1.5 AiiDA Website

To run the server:

’verdi runserver

For more info:

’verdi runserver —--help

Anyway the options are those of Django at https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-
or-address-port

2.1. Other guide resources 119

https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-or-address-port
https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-or-address-port

AiiDA documentation, Release 0.5.0

120 Chapter 2. Other guide resources

CHAPTER 3

Developer’s guide

3.1 Developer’s guide

3.1.1 Developer’s Guide For AiiDA

Python style

When writing python code, a more than reasonable guideline is given by the Google python styleguide http://google-
styleguide.googlecode.com/svn/trunk/pyguide.html. The documentation should be written consistently in the style of
sphinx.

And more generally, write verbose! Will you remember after a month why you had to write that check on that line?
(Hint: no) Write comments!

Pylint

You can check your code style and other important code errors by using Pylint. Once installed you can run Pylint from
the root source directory on the code using the command:

pylint aiida

The most important part is the summary under the Messages table near the end.

Version number

The AiiDA version number is stored in both aiida/__init__ .py and setup.py. Make sure to update both
when changing version number.

Inline calculations

If an operation is extremely fast to be run, this can be done directly in Python, without being submitted to a cluster.
However, this operation takes one (or more) input data nodes, and creates new data nodes, the operation itself is
not recorded in the database, and provenance is lost. In order to put a Calculation object inbetween, we define the
InlineCalculation class, that is used as the class for these calculations that are run “in-line”.

We also provide a wrapper (that also works as a decorator of a function), make_inline (). This can be used to
wrap suitably defined function, so that after their execution, a node representing their execution is stored in the DB,
and suitable input and output nodes are also stored.

121

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

AiiDA documentation, Release 0.5.0

Note: See the documentation of this function for further documentation of how it should be used, and of the require-
ments for the wrapped function.

Database schema

The Django database schema can be found in aiida.djsite.db.models.

If you need to change the database schema follow these steps:

1.
2.

Make all the necessary changes to aiida.djsite.db.models

Create a new migration file. From aiida/djsite, run:

python manage.py makemigrations

This will create the migration file in aiida/djsite/db/migrations whose name begins with a number
followed by some description. If the description is not appropriate then change to it to something better but
retain the number.

Open the generated file and make the following changes:

from aiida.djsite.db.migrations import update_schema_version

SCHEMA_VERSION = choose an appropriate version number

#
(hint: higher than the last migration!)
class Migration(migrations.Migration) :

operations = [

update_schema_version (SCHEMA_VERSION)
]

Change the LATEST_MIGRATION variable in aiida/djsite/db/migrations/__init__ .py to the
name of your migration file:

LATEST_MIGRATION = '0003_my_db_update'

This let’s AiiDA get the version number from your migration and check sure the database and the code are in
sync.

Migrate your database to the new version, (again from aiida/djsite), run:

python manage.py migrate

Commits and GIT usage

In order to have an efficient management of the project development, we chose to adopt the guidelines for the branching
model described here. In particular:

¢ The main branch in which one should work is called develop

* The master branch is reserved for releases: every commit there implies a new release. Therefore, one should

never commit directly there (except once per every release).

* New releases should also be tagged.

* Any new modification requiring just one commit can be done in develop

122

Chapter 3. Developer’s guide

http://nvie.com/posts/a-successful-git-branching-model/

AiiDA documentation, Release 0.5.0

* mid-to-long development efforts should be done in a branch, branching off from develop (e.g. a long bugfix, or
a new feature)

» while working on the branch, often merge the develop branch back into it (if you also have a remote branch and
there are no conflicts, that can be done with one click from the BitBucket web interface, and then you just do a
local “git pull’)

* remember to fix generic bugs in the develop (or in a branch to be then merged in the develop), not in your
local branch (except if the bug is present only in the branch); only then merge develop back into your branch.
In particular, if it is a complex bugfix, better to have a branch because it allows to backport the fix also in old
releases, if we want to support multiple versions

* only when a feature is ready, merge it back into develop. If it is a big change, better to instead do a pull
request on BitBucket instead of directly merging and wait for another (or a few other) developers to accept it
beforehand, to be sure it does not break anything.

For a cheatsheet of git commands, see here.

Note: Before committing, always run:

’verdi devel tests

to be sure that your modifications did not introduce any new bugs in existing code. Remember to do it even if you
believe your modification to be small - the tests run pretty fast!

Tests

Running the tests

To run the tests, use the:

’verdi devel tests

command. You can add a list of tests after the command to run only a selected portion of tests (e.g. while developing,
if you discover that only a few tests fail). Use TAB completion to get the full list of tests. For instance, to run only the
tests for transport and the generic tests on the database, run:

verdi devel tests aiida.transport db.generic

The test-first approach

Remember in best codes actually the tests are written even before writing the actual code, because this helps in having
a clear APL

For any new feature that you add/modify, write a test for it! This is extremely important to have the project last and be
as bug-proof as possible. Even more importantly, add a test that fails when you find a new bug, and then solve the bug
to make the test work again, so that in the future the bug is not introduced anymore.

Remember to make unit tests as atomic as possible, and to document them so that other developers can understand
why you wrote that test, in case it should fail after some modification.

Creating a new test

There are three types of tests:

3.1. Developer’s guide 123

http://it.wikipedia.org/wiki/Test_Driven_Development

AiiDA documentation, Release 0.5.0

3.

. Tests that do not require the usage of the database (testing the creation of paths in k-space, the functionality of

a transport plugin, ...)

Tests that require the database, but do not require submission (e.g. verifying that node attributes can be correctly
queried, that the transitive closure table is correctly generated, ...)

Tests that require the submission of jobs

For each of the above types of tests, a different testing approach is followed (you can also see existing tests as guidelines
of how tests are written):

1.

Tests are written inside the package that one wants to test, creating a test_MODULENAME.py file. For
each group of tests, create a new subclass of unittest.TestCase, and then create the tests as meth-
ods using the unittests module. Tests inside a selected number of AiiDA packages are automatically dis-
covered when running verdi devel tests. To make sure that your test is discovered, verify that
its parent module is listed in the base_allowed_test_folders property of the Devel class, inside
aiida.cmdline.commands.devel.

For an example of this type of tests, see, e.g., the aiida.common.test_utils module.
In this case, we use the testing functionality of Django, adapted to run smoothly with AiiDA.

To create a new group of tests, create a new python file under aiida.djsite.db.substests,
and instead of inheriting each class directly from unittest, inherit from
aiida.djsite.db.testbase.AiidaTestCase. In this way:

(a) The Django testing functionality is used, and a temporary database is used

(b) every time the class is created to run its tests, default data are added to the database, that would
otherwise be empty (in particular, a computer and a user; for more details, see the code of the
AiidaTestCase.setUpClass () method).

(c) atthe end of all tests of the class, the database is cleaned (nodes, links, ... are deleted) so that the temporary
database is ready to run the tests of the following test classes.

Note: it is extremely important that these tests are run from the verdi devel tests command line in-
terface. Not only this will ensure that a temporary database is used (via Django), but also that a temporary

repository folder is used. Otherwise, you risk to corrupt your database data. (In the codes there are some checks
to avoid that these classes are run without the correct environment being prepared by verdi devel tests.)

Once you create a new file in aiida.djsite.db.substests, you have to add a new entry to the
db_test_list inside aiida.djsite.db.testbase module in order for verdi devel teststo
find it. In particular, the key should be the name that you want to use on the command line of verdi devel
tests to run the test, and the value should be the full module name to load. Note that, in verdi devel
tests, the string db. is prepended to the name of each test involving the database. Therefore, if you add a
line:

db_test_list = {
'newtests': 'aiida.djsite.db.subtests.mynewtestsmodule',

}

you will be able to run all all tests inside aiida.djsite.db.subtests.mynewtestsmodule with the
command:

verdi devel tests db.newtests

Note: If in the list of parameters to verdi devel tests you add also a db parameter, then all database-

124

Chapter 3. Developer’s guide

https://docs.python.org/2/library/unittest.html
https://docs.djangoproject.com/en/dev/topics/testing/

AiiDA documentation, Release 0.5.0

related tests will be run, i.e., all tests that start with db. (or, if you want, all tests in the db_test_list
described above).

Note: By default, the test database is created using an in-memory SQLite database, which is much faster
than creating from scratch a new test database with PostgreSQL or SQLite. However, if you want to test

database-specific settings and you want to use the same type of database you are using with AiiDA, set the
tests.use_sqglite global property to False:

verdi devel setproperty tests.use_sqglite false

3. These tests require an external engine to submit the calculations and then check the results at job completion.
We use for this a continuous integration server, and the best approach is to write suitable workflows to run
simulations and then verify the results at the end.

Special tests Some tests have special routines to ease and simplify the creation of new tests. One case is represented
by the tests for transport. In this case, you can define tests for a specific plugin as described above (e.g., see the
aiida.transport.plugins.test_sshand aiida.transport.plugins.test_local tests). More-
over, there is a test_all_plugins module in the same folder. Inside this module, the discovery code is adapted
so that each test method defined in that file and decorated with @run_for_all_plugins is run for all available
plugins, to avoid to rewrite the same test code more than once and ensure that all plugins behave in the same way (e.g.,
to copy files, remove folders, etc.).

Virtual environment

Sometimes it’s useful to have a virtual environment that separates out the AiiDA dependencies from the rest of the
system. This is especially the case when testing AiiDA against library versions that are different from those installed
on the system.

First, install virtualenv using pip:

pip install virtualenv

Basic usage

1. To create a virtual environment in folder venv, while in the AiiDA directory type:

virtualenv venv

This puts a copy of the Python executables and the pip library within the venv folder hierarchy.

2. Activate the environment with:

source venv/bin/activate

Your shell should now be prompt should now start with (venv).

3. (optional) Install AiiDA:

pip install

4. Deactivate the virtual environment:

deactivate

3.1. Developer’s guide 125

AiiDA documentation, Release 0.5.0

3.1.2 AiiDA internals

Node

The Node class is the basic class that represents all the possible objects at the AiiDA world. More precisely it is
inherited by many classes including (among others) the Calculat ion class, representing computations that convert
data into a different form, the Code class representing executables and file collections that are used by calculations
and the Dat a class which represents data that can be input or output of calculations.

Methods & properties

In the sequel the most important methods and properties of the Node class will be described.

Node subclasses organization The Node class has two important variables:
* _plugin_type_string characterizes the class of the object.

* _query_type_string characterizes the class and all its subclasses (by pointing to the package or Python
file that contain the class).

The convention for all the Node subclasses is that if a class B is inherited by a class A then there should be a
package A under aiida/ormthathasafile __init__ .py and a B.py in that directory (or a B package with the
corresponding ___init__ .py)

An example of this is the ArrayData and the KpointsData. ArrayData is placed in
aiida/orm/data/array/__init__ .py and KpointsData which inherits from ArrayData is placed in
aiida/orm/data/array/kpoints.py

This is an implicit & quick way to check the inheritance of the Node subclasses.

General purpose methods

e init__ (): The initialization of the Node class can be done by not providing any attributes or by providing
a DbNode as initialization. E.g.:

dbn = a_dbnode_object
n = Node (dbnode=dbn.dbnode)

e ctime () and mtime () provide the creation and the modification time of the node.
* _is_stored() informs whether a node is already stored to the database.

e query () queries the database by filtering for the results for similar nodes (if the used object is a subclass of
Node) or with no filtering if it is a Node class. Note that for this check _plugin_type_string should be
properly set.

* computer () returns the computer associated to this node.

e _validate () does a validation check for the node. This is important for Node subclasses where various
attributes should be checked for consistency before storing.

e get_user () returns the user that created the node.

e _increment_version_number_db (): increment the version number of the node on the DB. This hap-
pens when adding an attribute or an extra to the node. This method should not be called by the users.

e copy () returns a not stored copy of the node with new UUID that can be edited directly.

e uuid () returns the universally unique identifier (UUID) of the node.

126 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

* pk () returns the principal key (ID) of the node.
e dbnode () returns the corresponding Django object.

* get_computer () & set_computer () get and set the computer to be used & is associated to the node.

Annotation methods The Node can be annotated with labels, description and comments. The following methods
can be used for the management of these properties.

Label management:
e label () returns the label of the node. The setter method can be used for the update of the label.

e _update_db_label_field () updates the label in the database. This is used by the setter method of the
label.

Description management:
* description (): the description of the node (more detailed than the label). There is also a setter method.
e _update_db_description_field (): update the node description in the database.
Comment management:
e add_comment () adds a comment.
e get_comments () returns a sorted list of the comments.
* _get_dbcomments () is similar to get_comments (), just the sorting changes.
e _update_comment () updates the node comment. It can be done by verdi comment update.

* _remove_comment () removes the node comment. It can be done by verdi comment remove.

Link management methods Node objects and objects of its subclasses can have ancestors and descendants. These
are connected with links. The following methods exist for the processing & management of these links.

e has_cached_1links () shows if there are cached links to other nodes.

* _add_link_from() adds alink to the current node from the ‘src’ node with the given label. Depending on
whether the nodes are stored or node, the linked are written to the database or to the cache.

¢ add_cachelink_from() adds alink to the cache.

e _replace_link_from() replaces or creates an input link.

e _remove_link_from() removes an input link that is stored in the database.

e replace_dblink_from() issimilarto_replace_link_from () but works directly on the database.
e _remove_dblink_from() is similarto_remove_link_from() but works directly on the database.

* _add_dblink_from() adds a link to the current node from the given ‘src’ node. It acts directly on the
database.

Listing links example

Assume that the user wants to see the available links of a node in order to understand the structure of the graph and
maybe traverse it. In the following example, we load a specific node and we list its input and output links. The returned
dictionaries have as keys the link name and as value the linked node. Here is the code:

In [1]: # Let's load a node with a specific pk

In [2]: ¢ = load_node(139168)

3.1. Developer’s guide 127

AiiDA documentation, Release 0.5.0

In [3]: c.get_inputs_dict ()
Oout [3]:

{u'code': <Code: Remote code 'cp-5.1' on daint, pk: 75709, uuid: 3c9cdb7f-0cda-402e-b89¢§
u'parameters': <ParameterData: uuid: 94efe6d4f-7f7e-46ea-922a-febd4a77fbaB8ab (pk: 139166)
u'parent_calc_folder': <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139
u'pseudo_Ba': <UpfData: uuid: 5e53b22d-5757-4d50-bbe0-51£f3b%ac8b7c (pk: 1905)>,
u'pseudo_O': <UpfData: uuid: 5cccd0d9-7944-4c67-b3c7-a39%9alf467906 (pk: 1658)>,
u'pseudo_Ti': <UpfData: uuid: e5744077-8615-4927-9f97-c5f7b36bad42l (pk: 1660)>,
u'settings': <ParameterData: uuid: a5a828b8-fdd8-4d75-b674-2e2d62792del0 (pk: 139167)>,
u'structure': <StructureData: uuid: 3096£83c-6385-48c4-8cb2-24a427cellbl (pk: 139001)>

In [4]: c.get_outputs_dict ()
Oout[4]:
{u'output_parameters': <ParameterData: uuid: £7a3ca96-4594-497f-a128-9843alfl2f7f (pk: 1

u'output_parameters_139257': <ParameterData: uuid: £7a3ca96-4594-497f-al128-9843alfl2f71%

u'output_trajectory': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cf145c3 (pk:
u'output_trajectory_139256"': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cfl145¢
u'remote_folder': <RemoteData: uuid: 17642alc-8cac-4e7f-8bd0-1dcebe974aad4 (pk: 139169)
u'remote_folder_139169': <RemoteData: uuid: 17642alc-8cac-4e7f-8bd0-1dcebe974aad4 (pk: 1
u'retrieved': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 139255)>,
u'retrieved_139255': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 13925

Understanding link names

The nodes may have input and output links. Every input link of a node should have a unique name and this unique
name is mapped to a specific node. On the other hand, given a node c, many output nodes may share the same
output link name. To differentiate between the output nodes of c that have the same link name, the pk of the output
node is added next to the link name (please see the input & output nodes in the above example).

Input/output related methods The input/output links of the node can be accessed by the following methods.
Methods to get the input data

* get_inputs_dict () returns a dictionary where the key is the label of the input link.

* get_inputs () returns the list of input nodes

e inp () returns a Node InputManager () object that can be used to access the node’s parents.

* has_parents () returns true or false whether the node has parents
Methods to get the output data

* get_outputs_dict () returns a dictionary where the key is the label of the output link, and the value is the
input node.

* get_outputs () returns a list of output nodes.
e out () returns a NodeOutputManager () object that can be used to access the node’s children.
* has_children () returns true or false whether the node has children.

Navigating in the “‘node‘‘ graph

The user can easily use the Node InputManager () and the NodeOutputManager () objects of a node (pro-
vided by the inp () and out () respectively) to traverse the node graph and access other connected nodes. inp ()
will give us access to the input nodes and out () to the output nodes. For example:

In [1]: # Let's load a node with a specific pk

In [2]: ¢ = load_node (139168)

128 Chapter 3. Developer’s guide

—4dd0d06aaba

’

118) >,

39257) >,
(pk: 139257

139256) >,

3 (pk: 13925

’

39169) >,

AiiDA documentation, Release 0.5.0

In [3]: ¢
Out [3]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

In [4]: # Let's traverse the inputs of this node.

In [5]: # By typing c.inp. we get all the input links

In [6]: c.inp.

c.inp.code c.inp.parent_calc_folder c.inp.pseudo_O c.inp.setttings
c.inp.parameters c.inp.pseudo_Ba c.inp.pseudo_Ti c.inp.struycture

In [7]: # We may follow any of these links to access other nodes. For example, let's follow the pare:
In [8]: c.inp.parent_calc_folder

Out [8]: <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139118)>
In [9]: # Let's assign to r the node reached by the parent_calc_folder link
In [10]: r = c.inp.parent_calc_folder

In [11]: r.inp.__dir__ ()
Out[1l1]:
['__class__',
' __delattr_ ',
' dict__ "',
' dir_ "',
' _doc__"',
' format__ ',
'__getattr_ ',
'__getattribute__ ',
'__getitem__ ',
'__hash__ "',
' init_ "',
' diter_ ',
'__module__ ',
' _ _new__ ',
' _reduce_ ',
' _reduce_ex__ ',
' __repr__',
'_ _setattr_ ',
' sizeof_ ',
' str_ ',
'__subclasshook__ "',
' weakref_ ',
u'remote_folder']

In [12]: r.out.
r.out.parent_calc_folder r.out.parent_calc_folder_139168

In [13]: # By following the same link from node r, you will get node c

In [14]: r.out.parent_calc_folder
Out[1l4]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

Attributes related methods Each Node () object can have attributes which are properties that characterize the
node. Such properties can be the energy, the atom symbols or the lattice vectors. The following methods can be used
for the management of the attributes.

3.1. Developer’s guide 129

AiiDA documentation, Release 0.5.0

_set_attr () adds a new attribute to the node. The key of the attribute is the property name (e.g. energy,
lattice_vectors etc) and the value of the attribute is the value of that property.

_del_attr() & _del_all_attrs () delete a specific or all attributes.
get_attr () returns a specific attribute.
iterattrs () returns an iterator over the attributes. The iterators returns tuples of key/value pairs.

attrs () returns the keys of the attributes.

Extras related methods Extras are additional information that are added to the calculations. In contrastto files
and attributes, extras are information added by the user (user specific).

set_extra () adds an extra to the database. To add a more extras at once, set_extras () can be
used.

get_extra () and get_extras () return a specific extra or all the available extras respectively.
extras () returns the keys of the extras. iterextras () returns an iterator (returning key/value tuples)
of the extras.

del_extra () deletes an extra.

Folder management Folder objects represent directories on the disk (virtual or not) where extra information for
the node are stored. These folders can be temporary or permanent.

folder () returns the folder associated to the node.

get_folder 1list () returns the list of files that are in the path sub-folder of the repository folder.
_repository_folder () returns the permanent repository folder.
_get_folder_pathsubfolder () returns the path sub-folder in the repository.
_get_temp_folder () returns the node folder in the temporary repository.

remove_path () removes a file/directory from the repository.

add_path () adds a file or directory to the repository folder.

get_abs_path () returns the absolute path of the repository folder.

Store & deletion

store_all () stores all the input nodes, then it stores the current node and in the end, it stores the cached
input links.

_store_input_nodes () stores the input nodes.
_check_are_parents_stored () checks that the parents are stored.
_store_cached_input_links () stores the input links that are in memory.

store () method checks that the node data is valid, then check if node‘s parents are stored, then moves the
contents of the temporary folder to the repository folder and in the end, it stores in the database the information
that are in the cache. The latter happens with a database transaction. In case this transaction fails, then the data
transfered to the repository folder are moved back to the temporary folder.

__del__ () deletes temporary folder and it should be called when an in-memory object is deleted.

130

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

DbNode

The DbNode is the Django class that corresponds to the Node class allowing to store and retrieve the needed infor-
mation from and to the database. Other classes extending the Node class, like Data, Calculation and Code use
the DbNode code too to interact with the database. The main methods are:

* get_aiida_class () which returns the corresponding AiiDA class instance.

* get_simple_name () which returns a string with the type of the class (by stripping the path before the class
name).

e attributes () which returns the all the attributes of the specific node as a dictionary.

e extras () which returns all the extras of the specific node as a dictionary.

Folders

AiiDA uses Folder and its subclasses to add an abstraction layer between the functions and methods working
directly on the file-system and AiiDA. This is particularly useful when we want to easily change between different
folder options (temporary, permanent etc) and storage options (plain local directories, compressed files, remote files
& directories etc).

Folder

This is the main class of the available Folder classes. Apart from the abstraction provided to the OS operations
needed by AiiDA, one of its main features is that it can restrict all the available operations within a given folder limit.
The available methods are:

e mode_dir () and mode_file () return the mode with which folders and files should be writable.

* get_subfolder () returns the subfolder matching the given name

* get_content_1ist () returns the contents matching a pattern.

* insert_path () adds a file/folder to a specific location and remove_path () removes a file/folder

* get_abs_path () returns the absolute path of a file/folder under a given folder and abspath () returns the
absolute path of the folder.

e create_symlink () creates a symlink pointing the given location inside the folder.

* create_file from filelike () creates a file from the given contents.

* open () opens a file in the folder.

e folder 1imit () returns the limit under which the creation of files/folders is restrained.
* exists () returns true or false depending whether a folder exists or not.

e isfile () and py:meth:~aiida.common.folders.Folder.isdir return true or false depending on the existence of
the given file/folder.

e create () creates the folder, erase () deletes the folder and replace with folder ()
copies/moves a given folder.

RepositoryFolder

Objects of this class correspond to the repository folders. The RepositoryFolder specific methods are:

e __init__ () initializes the object with the necessary folder names and limits.

3.1. Developer’s guide 131

AiiDA documentation, Release 0.5.0

e get_topdir () returns the top directory.

* section () returns the section to which the folder belongs. This can be for the moment a workflow or
node.

e subfolder () returns the subfolder within the section/uuid folder.

e uuid () the UUID of the corresponding node or workflow.

SandboxFolder

SandboxFolder objects correspond to temporary (“sandbox”) folders. The main methods are:
e __init__ () creates a new temporary folder

e __exit__ () destroys the folder on exit.

3.1.3 Developer calculation plugin tutorial - Integer summation

In this chapter we will give you some examples and a brief guide on how to write a plugin to support a new code.
We will focus here on a very simple code (that simply adds two numbers), so that we can focus only on how AiiDA
manages the calculation. At the end, you will have an overview of how a plugin is developed. You will be able then to
proceed to more complex plugin guides like the guide for the Quantum Espresso plugin, or you can directly jump in
and develop your own plugin!

Overview
Before analysing the different components of the plugin, it is important to understand which are these and their
interaction.

We should keep in mind that AiiDA is a tool allowing us to perform easily calculations and to maintain data prove-
nance. That said, it should be clear that AiiDA doesn’t perform the calculations but orchestrates the calculation
procedure following the user’s directives. Therefore, AiiDA executes (external) codes and it needs to know:

¢ where the code is;
* how to prepare the input for the code. This is called an input plugin or a Calculation subclass;
* how to parse the output of the code. This is called an output plugin or a Parser subclass.

It is also useful, but not necessary, to have a script that prepares the calculation for AiiDA with the necessary parameters
and submits it. Let’s start to see how to prepare these components.

Code
The code is an external program that does a useful calculation for us. For detailed information on how to setup the
new codes, you can have a look at the respective documentation page.

Imagine that we have the following python code that we want to install. It does the simple task of adding two numbers
that are found in a JSON file, whose name is given as a command-line parameter:

#!/usr/bin/env python
—#— coding: utf-8 —#*-—

import json
import sys

132 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

in_file = sys.argv[l]
out_file = sys.argv[2]

with open(in_file) as f:
in_dict = json.load(f)

out_dict = { "sum':in_dict['x1']+in_dict['x2"'] }

with open(out_file, 'w') as f:
json.dump (out_dict, f)

The result will be stored in JSON format in a file which name is also passed as parameter. The resulting file from the
script will be handled by AiiDA. The code can be downloaded from here. We will now proceed to prepare an AiiDA
input plugin for this code.

Input plugin

In abstract term, this plugin must contain the following two pieces of information:
» what are the input data objects of the calculation;
* how to convert the input data object in the actual input file required by the external code.

Let’s have a look at the input plugin developed for the aforementioned summation code (a detailed description of the
different sections follows):

—#— coding: utf-8 —#-—

from aiida.orm import JobCalculation

from aiida.orm.data.parameter import ParameterData

from aiida.common.utils import classproperty

from aiida.common.exceptions import InputValidationError
from aiida.common.exceptions import ValidationError

from aiida.common.datastructures import CalcInfo, CodelInfo
import json

class SumCalculation (JobCalculation) :
mmwn

A generic plugin for adding two numbers.

mmn

def _init_internal_params (self):

super (SumCalculation, self)._init_internal_params ()
self._INPUT_FILE_NAME = 'in.Jjson'
self._OUTPUT_FILE_NAME = 'out.json'
self._default_parser = 'sum'

@classproperty

def _use_methods (cls):

mon

Additional use_+* methods for the namelists class.
mmn
retdict = JobCalculation._use_methods
retdict.update ({
"parameters": {
'valid_types': ParameterData,
'additional_parameter': None,

3.1. Developer’s guide 133

AiiDA documentation, Release 0.5.0

'linkname': 'parameters',

'docstring': ("Use a node that specifies the input parameters "

"for the namelists"),
br
})

return retdict

def _prepare_for_submission(self,tempfolder, inputdict):
mmn
This is the routine to be called when you want to create
the input files and related stuff with a plugin.

:param tempfolder: a aiida.common.folders.Folder subclass where

the plugin should put all its files.

:param inputdict: a dictionary with the input nodes, as they would

be returned by get_inputs_dict (with the Code!)
try:
parameters = inputdict.pop(self.get_linkname ('parameters'))
except KeyError:

raise InputValidationError ("No parameters specified for this

"calculation")
if not isinstance (parameters, ParameterData):
raise InputValidationError ("parameters is not of type "
"ParameterDatam)
try:
code = inputdict.pop(self.get_linkname ('code'))
except KeyError:
raise InputValidationError ("No code specified for this "
"calculation")
if inputdict:

raise ValidationError ("Cannot add other nodes beside parameters")

tH###HHRAAAAAFFFRAAAAAFFFRRAAA
END OF INITIAL INPUT CHECK
#AFHAFHAAFFHAFFAAFHAAFFAAFFAAS

input_json = parameters.get_dict ()

write all the input to a file
input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
with open (input_filename, 'w') as infile:

json.dump (input_json, infile)

calcinfo = CalcInfo()

calcinfo.uuid = self.uuid
calcinfo.local_copy_list = []
calcinfo.remote_copy_list = []
calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME]

codeinfo = CodeInfo ()

codeinfo.cmdline_params = [self._ INPUT_FILE_NAME,self._ OUTPUT_FILE_NAME]

codeinfo.code_uuid = code.uuid
calcinfo.codes_info = [codeinfo]

return calcinfo

134 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

The above input plugin can be downloaded from (here) and should be placed at
aiida/orm/calculation/job/sum.py.

In order the plugin to be automatically discoverable by AiiDA, it is important to:
* give the right name to the file. This should be the name of your input plugin (all lowercase);
* place the plugin under aiida/orm/calculation/ job;

* name the class inside the plugin as PluginnameCalculation. For example, the class name of the summation input
plugin is, as you see above, SumCalculation. The first letter must be capitalized, the other letters must be
lowercase;

e inherit the class from JobCalculation.

By doing the above, your plugin will be discoverable and loadable using CalculationFactory.

Note: The base Calculation class should only be used as the abstract base class. Any calculation that needs to
run on a remote scheduler must inherit from JobCalculation, that contains all the methods to run on a remote

scheduler, get the calculation state, copy files remotely and retrieve them, ...

Defining the accepted input Data nodes

The input data nodes that the input plugin expects are those returned by the _use_methods class property. It is
important to always extend the dictionary returned by the parent class, starting this method with:

retdict = JobCalculation._use_methods

(or the correct parent class, instead of JobCalculation, if you are inheriting from a subclass).

The specific parameters needed by the plugin are defined by the following code snippet:

retdict.update ({

"parameters": {
'valid_types': ParameterData,
'additional_parameter': None,
'linkname': 'parameters',
'docstring': ("Use a node that specifies the input parameters "

"for the namelists"),

}I

})

This means that this specific summation plugin expects only one input data node, which is of the type
ParameterData and with link name parameters.

The main plugin logic

The main logic of the plugin (called by AiiDA just before submission, in order to read the AiiDA input data nodes and
create the actual input files for the extenal code) must be defined inside a method _prepare_for_submission,
that will receive (beside self) two parameters, a temporary folder tempfolder in which content can be written,
and a dictionary containing all the input nodes that AiiDA will retrieve from the database (in this way, the plugin does
not need to browse the database).

The input data node with the parameter is retrieved using its link name parameters specified above:

parameters = inputdict.pop(self.get_linkname ('parameters'))

3.1. Developer’s guide 135

AiiDA documentation, Release 0.5.0

A few additional checks are performed to retrieve also the input code (the AiiDA node representing the code exe-
cutable, that we are going to setup in the next section) and verify that there are no unexpected additional input nodes.

The following lines do the actual job, and prepare the input file for the external code, creating a suitable JSON file:

input_json = parameters.get_dict ()

write all the input to a file
input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
with open(input_filename, 'w') as infile:

json.dump (input_json, infile)

The last step: the calcinfo

We can now create the calculation info: an object containing some additional information that AiiDA needs (beside
the files you generated in the folder) in order to submit the claculation. In the calcinfo object, you need to store the
calculation UUID:

’calcinfo.uuid = self.uuid ‘

You should also define a list of output files that will be retrieved automatically after the code execution, and that will
be stored permanently into the AiiDA database:

’calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME] ‘

For the time being, just define also the following variables as empty lists (we will describe them in the next sections):

calcinfo.local_copy_list = []
calcinfo.remote_copy_list = []

Finally, you need to specify which code executable(s) need to be called link the code to the codeinfo object. For
each code, you need to create a CodeInfo object, specify the code UUID, and define the command line parameters
that should be passed to the code as a list of strings (only paramters after the executable name must be specified.
Moreover, AiiDA takes care of escaping spaces and other symbols). In our case, our code requires the name of the
input file, followed by the name of the output file, so we write:

codeinfo.cmdline_params = [self._INPUT_FILE_NAME, self._OUTPUT_FILE_NAME]

Finally, we link the just created codeinfo to the calcinfo, and return it:

calcinfo.codes_info = [codeinfo]

return calcinfo

Note: calcinfo.codes_infoisalist of CodeInfo objects. This allows to support the execution of more than
one code, and will be described later.

Note: All content stored in the tempfolder will be then stored into the AiiDA database, potentially forever. Therefore,
before generating huge files, you should carefully think at how to design your plugin interface. In particular, give a

look to the 1local_copy_list and remote_copy_1list attributes of calcinfo, described in more detail in
the Quantum ESPRESSO developer plugin tutorial.

By doing all the above, we have clarified what parameters should be passed to which code, we have prepared the input
file that the code will access and we let also AiiDA know the name of the output file: our first input plugin is ready!

Note: A few class internal parameters can (or should) be defined inside the _init_internal_params method:

136 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

def _init_internal_params (self):
super (SumCalculation, self)._init_internal_params ()

self._INPUT_FILE_NAME = 'in.json'
self._OUTPUT_FILE_NAME = 'out.json'
self._default_parser = 'sum'

In particular, it is good practice to define a _INPUT_FILE_NAME and _OUTPUT_FILE_NAME attributes (pointing
to the default input and output file name — these variables are then used by some verdi commands, such as verdi
calculation outputcat). Also, you need to define the name of the default parser that will be invoked when
the calculation completes in _default_parser. In the example above, we choose the ‘sum’ plugin (that we are
going to define later on). If you don’t want to call any parser, set this variable to None.

As a final step, after copying the file in the location specified above, we can check if AiiDA recognised the plugin, by
running the command verdi calculation plugins and veryfing that our new sum plugin is now listed.

Setup of the code

Now that we know the executable that we want to run, and we have setup the input plugin, we can proceed to configure
AiiDA by setting up a new code to execute:

verdi code setup

During the setup phase, you can either configure a remote code (meaning that you are going to place the python
executable in the right folder of the remote computer, and then just instruct AiiDA on the location), or as a local
folder, meaning that you are going to store (during the setup phase) the python executable into the AiiDA DB, and
AiiDA will copy it to the remote computer when needed. In this second case, put the sum_executable.py in an
empty folder and pass this folder in the setup phase.

Note: In both cases, remember to set the executable flag to the code by running chmod +x
sum_executable.py.

After defining the code, we should be able to see it in the list of our installed codes by typing:

‘verdi code list

A typical output of the above command is:

$ verdi code list

List of configured codes:

(use 'verdi code show CODEID' to see the details)
* Id 73: sum

Where we can see the already installed summation code. We can further see the specific parameters that we gave when
we set-up the code by typing:

verdi code show 73

Which will give us an output similar to the following:

$ verdi code show 73
* PK: 73
«+ UUID: 34b44d33-86cl-478b-88ff-baadfb6f30bf
* Label: sum
* Description: A simple sum executable
* Default plugin: sum
* Used by: 0 calculations

3.1. Developer’s guide 137

AiiDA documentation, Release 0.5.0

* Type: local
*+ Exec name: ./sum_executable.py
* List of files/folders:
* [file] sum_executable.py
* prepend text:
No prepend text.
* append text:
No append text.

What is important to keep from the above is that we have informed AiiDA for the existence of a code that resides at a
specific location and we have also specified the default (input) plugin that will be used.

Output plugin: the parser
In general, it is useful to parse files generated by the code to import relevant data into the database. This has two
advantages:

* we can store information in specific data classes to facilitate their use (e.g. crystal structures, parameters, ...)

» we can then make use of efficient database queries if, e.g., output quantities are stored as integers or floats rather
than as strings in a long text file.

The following is a sample output plugin for the summation code, described in detail later:

—#— coding: utf—-8 —#-—

from aiida.orm.calculation. job.sum import SumCalculation
from aiida.parsers.parser import Parser

from aiida.parsers.exceptions import OutputParsingError
from aiida.orm.data.parameter import ParameterData

import json

class SumParser (Parser) :
mmwn

This class 1is the implementation of the Parser class for Sum.

mmn

def parse_with_retrieved(self, retrieved):
mmn
Parses the datafolder, stores results.
This parser for this simple code does simply store in the DB a node
representing the file of forces in real space

mon

successful = True
select the folder object
Check that the retrieved folder is there
try:
out_folder = retrieved[self._calc._get_linkname_retrieved()]
except KeyError:
self.logger.error ("No retrieved folder found")
return False, ()

check what is inside the folder

list_of_files = out_folder.get_folder_list()

at least the stdout should exist

if self._calc._OUTPUT_FILE_NAME not in list_of_ files:
successful = False

138 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

self.logger.error ("Output json not found")
return successful, ()

try:
with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:
out_dict = Jjson.load(f)
except ValueError:
successful=False
self.logger.error ("Error parsing the output json")
return successful, ()

save the arrays

output_data = ParameterData (dict=out_dict)
link_name = self.get_linkname_outparams ()
new_nodes_list = [(link_name, output_data)]

return successful,new_nodes_list

As mentioned above the output plugin will parse the output of the executed code at the remote computer and it will
store the results to the AiiDA database.

All the parsing code is enclosed in a single method parse_with_retrieved, that will receive as a single param-
eter retrieved, a dictionary of retrieved nodes. The default behavior is to create a single FolderData node, that can
be retrieved using:

out_folder = retrieved[self._calc._get_linkname_retrieved()]

We then read and parse the output file that will contain the result:

with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:
out_dict = Jjson.load(f)

Note: all parsers have a self._calc attribute that points to the calculation being parsed. This is automatically set
in the parent Parser class.

After loading the code result data to the dictionary out_dict, we construct a ParameterData object
(ParameterData (dict=out_dict)) that will be linked to the calculation in the AiiDA graph to be later in
the database:

output_data = ParameterData (dict=out_dict)
link_name = self.get_linkname_outparams ()
new_nodes_list = [(link_name, output_data)]

return successful,new_nodes_1list

Note: Parsers should not store nodes manually. Instead, they should return a list of output unstored nodes (together
with a link name string, as shown above). AiiDA will then take care of storing the node, and creating the appropriate

links in the DB.

Note: the self.get_linkname_outparams () is a string automatically defined in all Parser classes and
subclasses. In general, you can have multiple output nodes with any name, but it is good pratice so have also one

of the output nodes with link name self.get_linkname_outparams () and of type ParameterData. The
reason is that this node is the one exposed with the calc. res interface (for instance, later we will be able to get the
results using print calc.res.sum.

3.1. Developer’s guide 139

AiiDA documentation, Release 0.5.0

The above output plugin can be downloaded from here and should

aiida/parsers/plugins/sum.py.

be

placed

at

Note: Before continuing, it is important to restart the daemon, so that it can recognize the new files added into the

aiida code and use the new plugins. To do so, run now:

’verdi daemon restart

Submission script

It’s time to calculate how much 2+3 is! We need to submit a new calculation. To this aim, we don’t necessarily need a
submission script, but it definitely facilitates the calculation submission. A very minimal sample script follows (other

examples can be found in the aiida/examples/submission folder):

#!/usr/bin/env runaiida
—*— coding: utf-8 —#*-—
import sys
import os

from aiida.common.exceptions import NotExistent
ParameterData = DataFactory ('parameter')

The name of the code setup in AiiDA
codename = 'sum'
computer_name = 'localhost'

FAARFAAHAAHFAAHAAAHF A HAAFFARHF A HHFAHHF A HA A AR A AR H A H A
try:
dontsend = sys.argv[1l]

if dontsend == "--dont-send":
submit_test = True

elif dontsend == "--send":
submit_test = False

else:

raise IndexError
except IndexError:
print >> sys.stderr, ("The first parameter can only be either "
"-—-send or —--dont-send")
sys.exit (1)

code Code.get_from_string(codename)

The following line is only needed for local codes, otherwise the
computer is automatically set from the code

computer = Computer.get (computer_name)

These are the two numbers to sum

parameters = ParameterData(dict={'x1':2, 'x2':3})

calc = code.new_calc()

calc.label = "Test sum"

calc.description = "Test calculation with the sum code"

calc.set_max_wallclock_seconds (30x60) # 30 min
calc.set_computer (computer)

calc.set_withmpi (False)

calc.set_resources ({"num_machines": 1})

calc.use_parameters (parameters)

140 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

if submit_test:
subfolder, script_filename = calc.submit_test ()
print "Test submit file in {}".format (os.path.join(
os.path.relpath (subfolder.abspath),
script_filename
))
else:
calc.store_all()
calc.submit ()
print "submitted calculation; calc=Calculation(uuid='{}"') # ID={}".format (
calc.uuid, calc.dbnode.pk)

What is important to note in the script above is the definition of the code to be used:

codename = 'sum'
code = Code.get_from_string(codename)

and the definition of the parameters:

parameters = ParameterData(dict={'x1':2, 'x2':3})
calc.use_parameters (parameters)

If everything is done correctly, by running the script a new calculation will be generated and submitted to AiiDA
(to run the script, remember to change its permissions with chmod +x filename first, and then run it with
./scriptname.py). When the code finishes its execution, AiiDA will retrieve the results, parse and store them
back to the AiiDA database using the output plugin. You can download the submission script from here.

Conclusion

We have just managed to write our first AiiDA plugin! What is important to remember is that:

* AiiDA doesn’t know how to execute your code. Therefore, you have to setup your code (with verdi code
setup) and let AiiDA know how to prepare the data that will be given to the code (input plugin or calculation)
and how to handle the result of the code (output plugin or parser).

* you need to do pass the actual data for the calculation you want to submit, either in the interactive shell, or via
a submission script.

As usual, we can see the executed calculations by doing a verdi calculation list. To see the calculations of
the last day:

$ verdi calculation list -a -pl

Last daemon state_updater check: 0h:00m:06s ago (at 20:10:31 on 2015-10-20)
Pk|State |Creation|Sched. state|Computer | Type

327 |FINISHED | 4h ago | DONE |localhost | sum

and we can see the result of the sum by running in the verdi shell the following commands (change 327 with the correct
calculation PK):

>>> calc = load_node(327)
>>> print calc.res.sum
<<< 5

So we verified that, indeed, 2+3=5.

3.1. Developer’s guide 141

AiiDA documentation, Release 0.5.0

3.1.4 Developer data plugin tutorial - Float summation

Now that you have writen your first AiiDA plugin, we can try to extend it to see how we can introduce different type
of parameters and how the plugins have to be modified to encompass these changes.

Introducing a new data type

We will start by describing what is a data plugin, and by creating a new one.

A data plugin is a subclass of Data. What you have to do is just to define a subclass with a suitable name inside
the aiida/orm/data folder (with the same name convention of Calculation plugins: the class should be called
NameData (with Name being a name of your choice) and putina aiida/orm/data/name.py file. In the class,
you should provide methods that the end user should use to store high-level objects (for instance, for a crystal structure,
there can be a method for setting the unit cell, one for adding an atom in a given position, ...). Internally, you should
choose where to store the content. There are two options:

* In the AiiDA database. This is useful for small amounts of data, that you plan to query. In this case, use
self._set_attr (attr_name, attr_value) to store the required value.

¢ In the AiiDA file repository (as a file on the disk). This is suitable for big files and quantities that you do not
want to query. In this case, access the folder using self.folder and use the methods of self.folder to
create files, subfolders, ...

Of course, it is also good practice to provide “getter” methods to retrieve the data in the database and return it back
to the user. The idea is that the user can operate directly only with the methods you provide, and should not need to
know how you decided to store the data inside the AiiDA database.

As a simple example that we will use for the exercise below, imagine that we want to introduce a new type of data
node that simply stores a float number. We will call it FloatData, and the class implementation can look like this:

from aiida.orm.data import Data
class FloatData(Data):

@property
def value(self):

mon

The value of the Float

mmn

return self.get_attr ('number')

@value.setter

def value(self,value):
mmn

Set the value of the Float

:raise ValueError:

mmn

self._set_attr ('number', float (value))

This file should be placed under aiida/orm/data/float .py and it should extend the class Data.

Exercise: Modifying the calculation plugin

Your exercise consists in creating a new code plugin (let’s call it for instance f£1oat sum) that will also perform the
sum, but accept as input two FloatData node and return also a FloatData node containing the sum.

142 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Below, you will find some hints on the parts you need to modify with respect to the previous tutorial using instead
ParameterData both as inputs and outputs.

Note: remember to create copies of your files with a new name floatsum.py instead of sum.py, and to change
the class name accordingly.

Changes to the parser

The plugin should now return a FloatData instead of a ParameterDat a, therefore the parser code should contain
something like the following:

output_data = FloatData/()
output_data.value = out_dict["sum"]
linkname = 'output_data’

Changes to the input plugin

To be able to run your new FloatsumParser, you will need the corresponding input plugin
(FloatsumCalculation). The first modification is then to link to the correct parser class:

’self._default_parser = '"floatsum'

For consistency, we also want that the input plugin accepts two FloatData instead of a single ParameterData.
Therefore, you have to update the retdict object accordingly:

retdict.update ({
"float_data_1": {
'valid_types': FloatData,

'additional_parameter': None,
'linkname': 'float_data_1",
'docstring': ("The first addend"),

by
"float_data_2": {
'valid_types': FloatData,

'additional_parameter': None,
'"linkname': 'float_data_2',
'docstring': ("The second addend"),

b
1)

You need then to change the main code to use the values obtained from the two nodes, rather than from a single node
as before. This should be easy, so we leave this task to you. Note that we plan to use the same python code to actually
perform the sum, so the JSON file to be generated should have the same format.

We also suggest that you add utility methods (to the benefit of the end user) to provide the addends to the code,
something like:

def set_addendl (self, wvalue):
fl = FloatData ()
fl.value = value
self.use_float_data_1(fl)

and similarly for the second addend.

The final input plugin should be placed at aiida/orm/calculation/job/floatsum.py.

3.1. Developer’s guide 143

AiiDA documentation, Release 0.5.0

Code

The python code that actually performs the calculation does not need to be modified. We can reuse the same file, but
we suggest to setup a new code in AiiDA, with a different name, using as default plugin the £1oat sum plugin.

Submission script

Finally, adapt your submission script to create the correct input nodes, and try to perform a sum of two numbers to
verify that you did all correctly!

Note: After placing your files, do not forget to restart the daemon so that it will recognize the files! The same should
be done if you do any change to the plugin, otherwise the daemon may have cached the old file and will keep using it.

3.1.5 Developer code plugin tutorial - Quantum Espresso

In this section we will focus on AiiDA’s Quantum Espresso plugin that we are going to analyse and show how a physics
oriented plugin is developed. It will be assumed that you have already tried to run an example of Quantum Espresso,
and you know more or less how the AiiDA interface works. We hope that in the end you will be able to replicate the
task for other codes.

In fact, when writing your own plugin, keep in mind that you need to satisfy multiple users, and the interface needs to
be simple (not the code below). But always try to follow the Zen of Python:

Simple is better than complex.
Complex is better than complicated.
Readability counts.

As demonstrated in previous sections, there will be two kinds of plugins: the input and the output. The former has the
purpose to convert python object in text inputs that can be executed by external software. The latter will convert the
text output of these software back into python dictionaries/objects that can be put back in the database.

InputPlugin

Create a new file, which has the same name as the class you are creating (in this way, it will be possible to load it with
CalculationFactory). Save itin a subfolder at the path aiida/orm/calculation/ job.

Step 1: inheritance

First define the class:

‘ class SubclassCalculation (JobCalculation) :

(Substitute Subclass with the name of your plugin). Take care of inheriting the JobCalculation class, or the
plugin will not work.

Now, you will likely need to define some variables that belong to SubclassCalculation. In order to be sure
that you don’t lose any variables belonging to the inherited class, every subclass of calculation needs to have a method
whichis called _init_internal_params (). An example of it would look like:

144 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

def _init_internal_params (self):
super (SubclassCalculation, self)._init_internal_params ()

self.A_NEW_VARIABLE = 'nabucco'

This function will be called by the __init__ method and will initialize the variable A_NEW_VARIABLE at the
moment of the instancing. The second line will call the _init_internal_params() of the parent class and load other
variables eventually defined there. Now you are able to access the variable A_ NEW_VARIABLE also in the rest of the
class by calling self.A_NEW_VARIABLE.

Note: Even if you don’t need to define new variables, it is safer to define the method with the call to super ().

Note: It is not recommended to rewrite an __init___ by yourself: this method is inherited from the classes Node
and Calculation, and you shouldn’t alter it unless you really know the code down to the lowest-level.

Note: The following is a list of relevant parameters you may want to (re)define in _init_internal_ params:

* self. _default_parser: set to the string of the default parser to be used, in the form accepted by the
plugin loader (e.g., for the Quantum ESPRESSO plugin for phonons, this would be “quantumespresso.ph”,
loaded from the aiida.parsers.plugins module).

e self. DEFAULT_INPUT_FILE: specify here the relative path to the filename of the default file that should
be shownby verdi calculation outputcat —--default. Ifnotspecified, the default value is None
and verdi calculation outputcat will not accept the ——default option, but it will instead always
ask for a specific path name.

e self. DEFAULT_OUTPUT_FILE:same of _DEFAULT_INPUT_FILE, but for the default output file.

Step 2: define input nodes

First, you need to specify what are the objects that are going to be accepted as input to the calculation class. This is
done by the class property _use_methods. An example is as follows:

from aiida.common.utils import classproperty
class SubclassCalculation (JobCalculation):

def _init_internal_params (self):
super (SubclassCalculation, self)._init_internal_params ()

@classproperty
def _use_methods (cls):
retdict = JobCalculation._use_methods
retdict.update ({
"settings": {

'valid_types': ParameterData,
'additional_parameter': None,
'linkname': 'settings',
'docstring': "Use an additional node for special settings",
}I
"pseudo": {
'valid_types': UpfData,
'additional_parameter': 'kind',
"linkname': cls._get_pseudo_linkname,
'docstring': ("Use a remote folder as parent folder (for "

3.1. Developer’s guide 145

AiiDA documentation, Release 0.5.0

"restarts and similar"),
by
1)

return retdict

@classmethod

def _get_pseudo_linkname (cls, kind):
Return the linkname for a pseudopotential associated to a given
structure kind.

mnn

return "pseudo_{}".format (kind)

After this piece of code is written, we now have defined two methods of the calculation that specify what DB object
could be set as input (and draw the graph in the DB). Specifically, here we will find the two methods:

calculation.use_settings (an_object)
calculation.use_pseudo (another_object, 'object_kind")

What did we do?

1.

We added implicitly the two new use_settings and use_pseudo methods (because the dictionary re-
turned by _use_methods now contains a settings and a pseudo key)

We did not lose the use_code call defined in the Calculation base class, because we are extending
Calculation._use_methods. Therefore: don’t specify a code as input in the plugin!

. use_settings will accept only one parameter, the node specifying the settings, since the

additional_parameter value is None.

use_pseudo will require two parameters instead, since additional_parameter value is not
None. If the second parameter is passed via kwargs, its name must be ‘kind’ (the value of
additional_parameters). Thatis, you can call use_pseudo in one of the two following ways:

use_pseudo (pseudo_node, 'He')
use_pseudo (pseudo_node, kind='He')

to associate the pseudopotential node pseudo_node (that you must have loaded before) to helium (He) atoms.

The type of the node that you pass as first parameter will be checked against the type (or the tuple of types)
specified with valid_types (the check is internally done using the i sinstance python call).

The name of the link is taken from the 1 inkname value. Note that if additional_parameter is None,
this is simply a string; otherwise, it must be a callable that accepts one single parameter (the further parameter
passed to the use_ XXX function) and returns a string with the proper name. This functionality is provided to
have a single use_ XXX method to define more than one input node, as it is the case for pseudopotentials, where
one input pseudopotential node must be specified for each atomic species or kind.

Finally, docstring will contain the documentation of the function, that the user can obtain by printing e..g.
use_pseudo.__doc__.

Note:

The actual implementation of the use_pseudo method in the Quantum ESPRESSO tutorial is slightly

different, as it allows the user to specify a list of kinds that are associated with the same pseudopotential file (while in
the example above only one kind string can be passed).

Step 3: prepare a text input

How are the input nodes used internally? Every plugin class is required to have the following method:

146

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

def _prepare_for_submission(self,tempfolder, inputdict) :

This function is called by the daemon when it is trying to create a new calculation.
There are two arguments:

1. tempfolder: is an object of kind SandboxFolder, which behaves exactly as a folder. In this placeholder, you
are going to write the input files. This tempfolder is gonna be copied to the remote cluster.

2. inputdict: contains all the input data nodes as a dictionary, in the same format that is returned by the
get_inputs_dict () method, i.e. a linkname as key, and the object as value.

Changed in version 0.5: inputdict should contain all input Data nodes, and the code. (this is what the
get_inputs_dict () method returns, by the way). In older versions, the code is not present.

In general, you simply want to do:

inputdict = self.get_inputs_dict ()

right before calling _prepare_for_submission. The reason for having this explicitly passed is that the plugin
does not have to perform explicit database queries, and moreover this is useful to test for submission without the need
to store all nodes on the DB.

For the sake of clarity, it’'s probably going to be easier looking at an im-
plemented example. Take a look at the NamelistsCalculation located in
aiida.orm.calculation. job.guantumespresso.namelists.

How does the method _prepare_for_submission work in practice?

1. You should start by checking if the input nodes passed in inputdict are logically sufficient to run an actual
calculation. Remember to raise an exception (for example InputValidationError) if something is miss-
ing or if something unexpected is found. Ideally, it is better to discover now if something is missing, rather than
waiting the queue on the cluster and see that your job has crashed. Also, if there are some nodes left unused, you
are gonna leave a DB more complicated than what has really been, and therefore is better to stop the calculation
now.

2. create an input file (or more if needed). In the Namelist plugin is done like:

input_filename = tempfolder.get_abs_path(self.INPUT_FILE_NAME)

with open (input_filename, 'w') as infile:
Here write the information of a ParameterData inside this
file

Note that here it all depends on how you decided the ParameterData to be written. In the namelists plugin we
decided the convention that a ParameterData of the format:

ParameterData (dict={"INPUT":{'smearing':2,
'cutoff':30}
})

is written in the input file as:

&INPUT
smearing = 2,
cutoff=30,

/

Of course, it’s up to you to decide a convention which defines how to convert the dictionary to the input file.
You can also impose some default values for simplicity. For example, the location of the scratch directory, if
needed, should be imposed by the plugin and not by the user, and similarly you can/should decide the naming
of output files.

3.1. Developer’s guide 147

AiiDA documentation, Release 0.5.0

Note: it is convenient to avoid hard coding of all the variables that your code has. The convention stated above
is sufficient for all inputs structured as fortran cards, without the need of knowing which variables are accepted.

Hard coding variable names implies that every time the external software is updated, you need to modify the
plugin: in practice the plugin will easily become obsolete if poor maintained. Easyness of maintainance here
win over user comfort!

3. copy inside this folder some auxiliary files that resides on your local machine, like for example pseudopotentials.
4. return a CalcInfo object.
This object contains some accessory information. Here’s a template of what it may look like:
calcinfo = CalcInfo()
calcinfo.uuid = self.uuid
calcinfo.local_copy_list = local_copy_list
calcinfo.remote_copy_list = remote_copy_list
calcinfo.retrieve_list = []
Modify here !
calcinfo.retrieve_list.append('Every file/folder you want to store back locally')
Modify here!
calcinfo.retrieve_singlefile_list = []
Modify here and put a name for standard input/output files
codeinfo = CodeInfo()
codeinfo.cmdline_params = settings_dict.pop ('CMDLINE', [])
codeinfo.stdin_name = self.INPUT_FILE_NAME
codeinfo.stdout_name = self.OUTPUT_FILE_NAME
codeinfo.withmpi = self.get_withmpi ()
codeinfo.code_pk = code.pk
calcinfo.codes_info = [codeinfo]
return calcinfo
There are a couple of things to be set on calcinfo.

(a) retrieve_1list: alistof relative file pathnames, that will be copied from the cluster to the aiida server,
after the calculation has run on cluster. Note that all the file names you need to modify are not absolute
path names (you don’t know the name of the folder where it will be created) but rather the path relative to
the scratch folder.

(b) local_copy_list: a list of length-two-tuples: (localabspath, relativedestpath). Files to be copied
from the aiida server to the cluster.

(c) remote_copy_list: a list of tuples: (remotemachinename, remoteabspath, relativedestpath).
Files/folders to be copied from a remote source to a remote destination, sitting both on the same machine.

(d) retrieve_singlefile_list: a list of triplets, in the form ["linkname_from calc to
singlefile", "subclass of singlefile","filename"]. If this is specified, at the end of
the calculation it will be created a SinglefileData-like object in the Database, children of the calculation, if
of course the file is found on the cluster.

(e) codes_info: a list of informations that needs to be passed on the command line to the code, passed in the
form of a list of CalcInfo objects (see later). Every element in this list corresponds to a call to a code
that will be executed in the same scheduling job. This can be useful if a code needs to execute a short
preprocessing. For long preprocessings, consider to develop a separate plugin.

(f) codes_run_mode: a string, only necessary if you want to run more than one code in the same

148 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

scheduling job. Determines the order in which the multiple codes are run (i.e. sequentially or all
at the same time. It assumes one of the values of aiida.common.datastructures.code_run_modes, like
code_run_modes.PARALLEL or code_run_modes.SERIAL

A Codelnfo object, as said before, describes how a code has to be executed. The list of Codelnfo objects passed
to calcinfo will determined the ordered execution of one (or more) calls to executables. The attributes that can
be set to Codelnfo are:

(a) stdin_name: the name of the standard input.

(b) stdin_name: the name of the standard output.

(¢) cmdline_params: like parallelization flags, that will be used when running the code.
(d) stderr_name: the name of the error output.

(e) withmpi: whether the code has to be called with mpi or not.

(f) code_pk: the pk of the code associated to the Codelnfo instance.

If you need to change other settings to make the plugin work, you likely need to add more information to the
calcinfo than what we showed here. For the full definition of CalcInfo () and CodeInfo (), refer to the
source aiida.common.datastructures.

That’s what is needed to write an input plugin. To test that everything is done properly, remember to use the
calculation.submit_test () method, which creates locally the folder to be sent on cluster, without submitting
the calculation on the cluster.

OutputPlugin

Well done! You were able to have a successful input plugin. Now we are going to
see what you need to do for an output plugin. First of all let’s create a new folder:
$path_to_aiida/aiida/parsers/plugins/the_name_of_new_code, and put there an empty
__init__ .py file. Here you will write in a new python file the output parser class. It is actually a rather simple
class, performing only a few (but tedious) tasks.

After the calculation has been computed and retrieved from the cluster, that is, at the moment when the parser is going
to be called, the calculation has two children: a RemoteData and a FolderData. The RemoteData is an object which
represents the scratch folder on the cluster: you don’t need it for the parsing phase. The FolderData is the folder
in the AiiDA server which contains the files that have been retrieved from the cluster. Moreover, if you specified a
retrieve_singlefile_list, at this stage there is also going to be some children of SinglefileData kind.

Let’s say that you copied the standard output in the FolderData. The parser than has just a couple of tasks:
1. open the files in the FolderData
2. read them
3. convert the information into objects that can be saved in the Database
4.

return the objects and the linkname.

Note: The parser should not save any object in the DB, that is a task of the daemon: never use a . store () method!

Basically, you just need to specify an __init__ () method, and a function parse_with_retrieved(calc,
retrieved)__, which does the actual work.

The difficult and long part is the point 3, which is the actual parsing stage, which convert text into python objects.
Here, you should try to parse as much as you can from the output files. The more you will write, the better it will be.

Note: You should not only parse physical values, a very important thing that could be used by workflows are

3.1. Developer’s guide 149

AiiDA documentation, Release 0.5.0

exceptions or others errors occurring in the calculation. You could save them in a dedicated key of the dictionary (say
‘warnings’), later a workflow can easily read the exceptions from the results and perform a dedicated correction!

In principle, you can save the information in an arbitrary number of objects. The most useful classes to store the
information back into the DB are:

1. ParameterData: This is the DB representation of a python dictionary. If you put everything in a single
ParameterData, then this could be easily accessed from the calculation with the . res method. If you have to
store arrays / large lists or matrices, consider using ArrayData instead.

2. ArrayData: If you need to store large arrays of values, for example, a list of points or a molecular dynamic
trajectory, we strongly encourage you to use this class. At variance with ParameterData, the values are not stored
in the DB, but are written to a file (mapped back in the DB). If instead you store large arrays of numbers in the
DB with ParameterData, you might soon realize that: a) the DB grows large really rapidly; b) the time it takes
to save an object in the DB gets very large.

3. StructureData: If your code relaxes an input structure, you can end up with an output structure.
Of course, you can create new classes to be stored in the DB, and use them at your own advantage.

A kind of template for writing such parser for the calculation class NewCalculation is as follows:

class NewParser (Parser) :
mmwn

A doc string

mmn

def _ init_ (self,calc):

mnn

Initialize the instance of NewParser
mmwmn
check for valid input
if not isinstance (calc,NewCalculation) :
raise ParsingError ("Input must calc must be a NewCalculation")

super (NewParser, self).__init__ (calc)

def parse_with_retrieved(self, retrieved):
mmrn
Parses the calculation-output datafolder, and stores
results.

:param retrieved: a dictionary of retrieved nodes, where the keys
are the link names of retrieved nodes, and the values are the
nodes.

won

check the calc status, not to overwrite anything

state = calc.get_state()

if state != calc_states.PARSING:
raise InvalidOperation("Calculation not in {} state"

.format (calc_states.PARSING))

retrieve the whole list of input links
calc_input_parameterdata = self._calc.get_inputs (type=ParameterData,
also_labels=True)

then look for parameterdata only
input_param_name = self._calc.get_linkname ('parameters')
params = [i[1] for i in calc_input_parameterdata if i[0]==input_param_name]

150 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

if len(params) != 1:
Use self.logger to log errors, warnings,
This will also add an entry to the DbLog table associated
to the calculation that we are trying to parse, that can
be then seen using 'verdi calculation logshow'
self.logger.error ("Found {} input_params instead of one"

.format (params))

successful = False
calc_input = params[O0]

Check that the retrieved folder is there
try:

out_folder = retrieved[self._calc._get_linkname_retrieved()]
except KeyError:

self.logger.error ("No retrieved folder found")

return False, ()

check what is inside the folder
list_of_files = out_folder.get_folder_list()
at least the stdout should exist
if not calc.OUTPUT_FILE_NAME in list_of_files:
raise QEOutputParsingError ("Standard output not found")
get the path to the standard output
out_file = os.path.join(out_folder.get_abs_path('."),
calc.OUTPUT_FILE_NAME)

read the file
with open(out_file) as f:
out_file_lines = f.readlines/()

call the raw parsing function. Here it was thought to return a

dictionary with all keys and values parsed from the out_file (i.e. enery, for¢es, etc...
and a boolean indicating whether the calculation is successfull or not
In practice, this is the function deciding the final status of the calculatiof

out_dict, successful = parse_raw_output (out_file_lines)

convert the dictionary into an AiiDA object, here a
ParameterData for instance
output_params = ParameterData (dict=out_dict)

prepare the list of output nodes to be returned

this must be a list of tuples having 2 elements each: the name of the
linkname in the database (the one below, self.get_linkname_ outparams (),
is defined in the Parser class), and the object to be saved
new_nodes_list = [(self.get_linkname_outparams(),output_params)]

The calculation state will be set to failed if successful=False,
to finished otherwise
return successful, new_nodes_list

3.1.6 Parser warnings policy

As a rule of thumb, always include two keys in the output parameters of a calculation, warnings and
parser_warnings. These two keys contain a list of messages (strings) that are useful for debugging prob-
lems in the execution of calculations. Below are the guidelines for the usage of the keys warnings and

3.1. Developer’s guide 151

AiiDA documentation, Release 0.5.0

parser_warnings in the output parameters of a calculation.

Warnings
These should be devoted to warnings or error messages relative to the execution of the code. As a (non-exhaustive)
list of examples, for Quantum-ESPRESSO, run-time messages such as

* Maximum CPU time exceeded.

* c_bands: 2 eigenvalues not converged

* Not enough space allocated for radial FFT

e The scf cycle did not reach convergence.

¢ The FFT is incommensurate: some symmetries may be lost.

e Error in routine [...]

should be put in the warnings. In the above cases the warning messages are directly copied from the output of the code,
but a warning can also be elaborated by the parser when it finds out that something strange went on during the execution
of the code. For QE an example is QE pw run did not reach the end of the execution.

3

Among the code-based warnings, some can be identified as “’critical’‘, meaning that when present the calculation
should be set in FATLED state. There should be an internal list in the parser, e.g. critical_messages, defining
such critical warnings. Other non-critical warnings instead might be used to signal the presence of some possible
source of troubles, but that nevertheless did not prevent the calculation to be considered F INISHED.

Parser_warnings
These should be reserved to warnings occurring during parsing, i.e. when the parser does not find an information it
was looking for in the output files. For Quantum-ESPRESSO (PW), examples are

* Skipping the parsing of the xml file.

* Error while parsing for energy terms.

¢ ctc.

Therefore, these warnings should be placed just to notify that the output was not found in the way the developer had
expected, and they signal the necessity of improving the parser code.

3.1.7 Automated parser tests

AiiDA testing facility can check for the proper functionality of parsers automatically. To facilitate the creation of
new tests, we provide a simple tool to create a new parser test from a calculation that you already run in your AiiDA
database, described below.

Test folders
Each folder inside the path aiida/djsite/db/subtests/parser_tests constitutes a single test. The nam-
ing convention for folders is the following:

* it should contain only digits, letters and underscores, otherwise the folder will be ignored when running verdi
devel tests db.parsers;

¢ the folder name should start with test_;

152 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

* the name should be followed by the parser plugin name, as returned by calculation.get_parser_name(), and with
dots replaced with underscores;

* it should be followed by an underscore;
* finally it should be followed by a string that explains what is tested.

For instance, a valid name is test_quantumespresso_pw_vanderwaals. Note that the naming scheme is
only a convention, and that the parser to use for the test is selected automatically.

Creation of a test from an existing calculation

In order to create the folder, you can open verdi shell while being in the folder
aiida/djsite/db/subtests/parser_tests, import the following function:

from aiida.djsite.db.subtests.parsers import output_test

and then run it with the correct parameters. The documentation of the function can be found here.

An example call could be:

output_test (
pk=21,
testname='vanderwaals',
skip_uuids_from_inputs=]|
'£579974c-6a%9e—-4eb4d-9b41-e72486f86ach"',
'ee0df234-955e-4£f99-9808-17e168e6a769"]
)

where:
e 21 is the PK of the calculation that you want to export

* vanderwaals is the name of the test: if for instance the node with pk=21 is a Quantum ESPRESSO pw.x
calculation, the script will create a folder named test_quantumespresso_pw_vanderwaals

e the (optional) skip_uuids_from_inputs is a list of UUIDs of input nodes that will not be exported.

The script will create a new folder, containing the exported content of the calculation, its direct inputs (except those
listed in the skip_uuids_from_inputs list), and the output ret rieved node. The format of the exported data
is the same of the export files of AiiDA, but the folder is not zipped.

Note: The skip_uuids_from_inputs parameter is typically useful for input nodes containing large files that
are not needed for parsing and would just create a large test; a typical example is given by pseudopotential input nodes

for Quantum ESPRESSO.

After having run the command, the existence of the folder will only test that the parser is able to parse the calculation
without errors. Typically, however, you will also want to check some parsed values.

In this case, you need to modify the _aiida_checks. json JSON file inside the folder. The syntax is the following:
* each key represents an output node that should be generated by the parser;

* each value is a dictionary with multiple keys (an empty dictionary will just check for the existence of the output
node);

* each key of the subdictionary is an attribute to check for. The value is a list of dictionaries, one for each test
to perform on the given value; multiple tests are therefore possible. The dictionary should have at least have
one key: “comparison”, a string to specifies the type of comparison. The other keys depend on the type of
comparison, and typically there is at least a “value” key, the value to compare with. An example:

3.1. Developer’s guide 153

AiiDA documentation, Release 0.5.0

"output_parameters": {
"energy": [
{
"comparison": "AlmostEqual",
"value": -3699.26590536037
}
}!
"energy_units": [
{
"comparison": "Equal",
"value": "eV"
}
1
}I
"output_array": {

}
}

The list of valid comparisons is hardcoded inside the aiida.djsite.db.subtests.parsers module; if you
need new comparison types, add them directly to the module.

Running tests

Finally, in order to run all tests contained in the folder aiida/djsite/db/subtests/parser_tests onecan
use the following verdi command:

verdi devel tests db.parsers

If no fail message appears it means that the test was successful.

3.1.8 Workflow’s Guide For AiiDA

Creating new workflows

New user specific workflows should be put in aiida/workflows/user. If the workflow is general enough to be
of interest for the community, the best is to create a git repository (e.g. on Bitbucket) and clone the content of the
repository in a subfolder of aiida/workflows/user, e.g. in aiida/workflows/user/epfl_theos for
workflows from the group THEOS at EPFL.

Put _ init__ .py files in all subdirectories of aiida/workflows/user to be able to import any work-
flows. Also, it may be a good idea to create a specific workflow factory to load easily workflows of
the subdirectory. To do so place in your __init__ .py file in the main workflow directory (e.g. in
aiida/workflows/user/epfl_theos/__init__ .py in the example above):

from aiida.orm.workflow import Workflow

def TheosWorkflowFactory (module) :

mmon

Return a suitable Workflow subclass for the workflows defined here.
mmn

from aiida.common.pluginloader import BaseFactory

return BaseFactory (module, Workflow, "aiida.workflows.user.epfl theos")

154 Chapter 3. Developer’s guide

http://bitbucket.org

AiiDA documentation, Release 0.5.0

In this example, a workflow located ine.g. aiida/workflows/user/epfl_theos/quantumespresso/pw.py
can be loaded simply by typing:

TheosWorkflowFactory ('quantumespresso.pw')

Note: The class name of the workflow should be compliant with the BaseFactory syntax. In the above example,
it should be called PwWork £ 1 ow otherwise the workflow factory won’t work.

You can also customize your verdi shell by adding this function to the modules to be loaded automatically — see here
for more information.

3.1.9 Developer Workflow tutorial

Creating new workflows

In this section we are going to write a very simple AiiDA workflow. Before starting this tutorial, we assume that you
have successfully completed the Developer calculation plugin tutorial and have your input and output plugins ready to
use with this tutorial.

This tutorial creates a workflow for the addition of three numbers. Number could be an integer or a float value. All
three numbers will be passed as parameters to the workflow in dictionary format (e.g. {"a": 1, "b": 2.2,
"eti3)).

To demonstrate how a workflow works, we will perform the sum of three numbers in two steps:
1. Step 1: temp_value=a+b
2. Step 2: sum = temp_value + ¢

A workflow in AiiDA is a python script with several user defined functions called steps. All AiiDA functions are
available inside “steps” and calculations or sub-workflows can be launched and retrieved. The AiiDA daemon executes
a workflow and handles all the operations starting from script loading, error handling and reporting, state monitoring
and user interaction with the execution queue. The daemon works essentially as an infinite loop, iterating several
simple operations:

1. It checks the running step in all the active workflows, if there are new calculations attached to a step it submits
them.

2. Itretrieves all the finished calculations. If one step of one workflow exists where all the calculations are correctly
finished it reloads the workflow and executes the next step as indicated in the script.

3. If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

Note: Since the daemon is aware only of the classes present at the time of its launch, make sure you restart the
daemon every time you add a new workflow, or modify an existing one. To restart a daemon, use following command:

‘verdi daemon restart ‘

Let’s start to write a workflow step by step. First we have to import some packages:

from aiida.common import aiidalogger

from aiida.orm.workflow import Workflow

from aiida.orm import Code, Computer

from aiida.orm.data.parameter import ParameterData

from aiida.common.exceptions import InputValidationError

In order to write a workflow, we must create a class by extending the Workflow class from
aiida.orm.workflow. This is a fundamental requirement, since the subclassing is the way AiiDA understand if

3.1. Developer’s guide 155

AiiDA documentation, Release 0.5.0

a class inside the file is an AiiDA workflow or a simple utility class. In the class, you need to re-define an __init__
method as shown below (in the current code version, this is a requirement). Create a new file, which has the same
name as the class you are creating (in this way, it will be possible to load it with WorkflowFactory), in this case
addnumbers . py, with the following content:

class AddnumbersWorkflow (Workflow) :

mmn

This workflow takes 3 numbers as an input and gives
its addition as an output.

Workflow steps:

passed parameters: a,b,c

lst step: a + b = stepl_result

2nd step: stepl_result + ¢ = final_ result

mmn

def _ _init__ (self, xxkwargs):
super (AddnumbersWorkflow, self).__init__ (xxkwargs)

Once the class is defined a user can add methods to generate calculations, download structures or compute new
structures starting form a query in previous AiiDA calculations present in the DB. Here we will add simple helper
function to validate the input parameters which will be the dictionary with keys a, b and c. All dictionary values
should be of type integer or float.

def

validate_input (self):

mrmmn

Check if the passed parameters are of type int or float
else raise exception

mmmn

get parameters passed to workflow when it was

initialised. These parameters can not be modified

during an execution

params = self.get_parameters ()

for k in ['a','b','c']:
try:
check if value 1is int or float
if not (isinstance(params[k], int) or isinstance (params[k], float)):
raise InputValidationError ("Value of {} is not of type int or float".foq
except KeyError:
raise InputValidationError ("Missing input key {}".format (k))

add in report

rmat (k))

self.append_to_report ("Starting workflow with params: {0}".format (params))

In the above method we have used append_to_report workflow method. Once the workflow is launched, the user
interactions are limited to some events (stop, relaunch, list of the calculations). So most of the times it is very
useful to have custom messages during the execution. Hence, workflow is equipped with a reporting facility
self.append_to_report (string), where the user can fill with any text and can retrieve both live and at
the end of the execution.

Now we will add the method to launch the actual calculations. We have already done this as part of plugin exercise
and hence we do not discuss it in detail here.

def get_calculation_sum(self, a, b):
launch new calculation
:param a: number
:param b: number
:return: calculation object, already stored
156 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

mmon

get code/executable file

codename = 'sum'
code = Code.get_from_string(codename)
computer_name = 'localhost'

computer = Computer.get (computer_name)

create new calculation

calc = code.new_calc()

calc.set_computer (computer)

calc.label = "Add two numbers"

calc.description = "Calculation step in a workflow to add more than two numbers'
calc.set_max_wallclock_seconds (30+x60) # 30 min

calc.set_withmpi (False)

calc.set_resources ({"num _machines": 1})

pass input to the calculation
parameters = ParameterData (dict={'x1"': a, 'x2':b, })
calc.use_parameters (parameters)

store calculation in database
calc.store_all()
return calc

Now we will write the first step which is one of the main components in the workflow. In the example below, the
start method is decorated with Workf1low. step making it a very unique kind of method, automatically stored in the
database as a container of calculations and sub-workflows.

@Workflow.step
def start (self):

mon

Addition for first two parameters passed to workflow
when it was initialised

mon

try:
self.validate_input ()
except InputValidationError:
self.next (self.exit)
return

get first parameter passed to workflow when it was initialised.
a = self.get_parameter("a")

get second parameter passed to workflow when it was initialised.
b = self.get_parameter ("b")

start first calculation
calc = self.get_calculation_sum(a, b)

add in report
self.append_to_report ("First step calculation is running...")

attach calculation in workflow to access in next steps
self.attach_calculation(calc)

go to next step
self.next (self.stage?2)

3.1. Developer’s guide 157

AiiDA documentation, Release 0.5.0

Several functions are available to the user when coding a workflow step, and in the above method we have used basic
ones discussed below:

* self.get_parameters (): with this method we can retrieve the parameters passed to the workflow when it

was initialized. Parameters cannot be modified during an execution, while attributes can be added and removed.

self.attach_calculation (calc): this is a key point in the workflow, and something possible only
inside a step method. Every JobCalculation, generated in the method itself or retrieved from other utility
methods, is attached to the workflow’s step. They are then launched and executed completely by the daemon,
without the need of user interaction. Any number of calculations can be attached. The daemon will poll the
servers until all the step calculations will be finished, and only after that it will call the next step.

self.next (Workflow.step): this is the final part of a step, where the user points the engine about what
to do after all the calculations in the steps (on possible sub-workflows, as we will see later) are terminated. The
argument of this function has to be a Workflow.step decorated method of the same workflow class, or in case this
is the last step to be executed, you can use the common method self.exit which is always present in each
Workflow subclass. Note that while this call typically occurs at the end of the function, this is not required
and you can call the next () method as soon as you can decide which method should follow the current one.
As it can be seen above, we can use some python logic (1 f, ...) to decide what the next method is going to be
(above, we directly point to self.exit if the input is invalid).

Note: remember to call self.next (self.stage2) and NOT
self.next (self.stage2 ())!! In the first case, we are correctly passing the method stage? to

next. In the second case we are instead immediately running the st age2 method, something we do not
want to do (we need to wait for the current step to finish), and passing its return value to self .next
(which is wrong).

The above start step calls method validate_input () to validate the input parameters. When the workflow will
be launched through the start method, the AiiDA daemon will load the workflow, execute the step, launch all the
calculations and monitor their state.

Now we will create a second step to retrieve the addition of first two numbers from the first step and then we will add
the third input number. Once all the calculations in the start step will be finished, the daemon will load and execute
the next step i.e. stage2, shown below:

@Workflow.step

def stage2 (self):
Get result from first calculation and add third value passed
to workflow when it was initialised
get third parameter passed to workflow when it was initialised.
c = self.get_parameter("c")
get result from first calculation
start_calc = self.get_step_calculations(self.start) [0]

add in report
self.append_to_report ("Result of first step calculation is {}".format (
start_calc.res.sum))

start second calculation
result_calc = self.get_calculation_sum(start_calc.res.sum, cC)

add in report
self.append_to_report ("Second step calculation is done..")

attach calculation in workflow to access in next steps
self.attach_calculation(result_calc)

158

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

go to next step
self.next (self.stage3)

The new feature used in the above step is:

e self.get_step_calculations (Workflow.step): anywhere after the first step we may need to re-
trieve and analyze calculations executed in a previous steps. With this method we can have access to the list of
calculations of a specific workflows step, passed as an argument.

Now in the last step of the workflow we will retrieve the results from stage2 and exit the workflow by calling
self.next (self.exit) method:

Q@Workflow.step
def stage3(self):

mon

Get the result from second calculation and add it as final

result of this workflow
mmrn

get result from second calculation
second_calc = self.get_step_calculations(self.stage2) [0]

add in report
self.append_to_report ("Result of second step calculation is {}".format (
second_calc.res.sum))

add workflow result
self.add_result ('value', second_calc.res.sum)

add in report
self.append_to_report ("Added value to workflow results")

Exit workflow
self.next (self.exit)

The new features used in the above step are:

e self.add_result (): When all calculations are done it is useful to tag some of them as results, using
custom string to be later searched and retrieved. Similarly to the get_step_calculations, this method
works on the entire workflow and not on a single step.

e self.next (self.exit): Thisis the final part of each workflow. Every workflow inheritate a fictitious step
called exit that can be set as a next to any step. As the names suggest, this implies the workflow execution
finished correctly.

Running a workflow

After saving the workflow inside a python file (i.e. addnumbers.py') located in the
‘‘aiida/workflows directory, we can launch the workflow simply invoking the specific workflow class
and executing the start () method inside the verdi shell or in a python script (with the AiiDA framework
loaded).

Note: Don’t forget to (re)start your daemon at this point!

In this case, let’s use the verdi shell. In the shell we execute:

AddnumbersWorkflow = WorkflowFactory ("addnumbers")
params = {"a":2, "b": 1.4, "c": 1}

3.1. Developer’s guide 159

AiiDA documentation, Release 0.5.0

wobject = AddnumbersWorkflow (params=params)
wobject.store ()
wobject.start ()

In the above example we initialized the workflow with input parameters as a dictionary. The WorkflowFactory
will work only if you gave the correct name both the python file and to the class. Otherwise, you can just substitute
that line with a suitable import like:

from aiida.orm.workflows.addnumbers import AddnumbersWorkflow

We launched the workflow using start () method after storing it. Since start is a decorated workflow step, the
workflow is added to the workflow to the execution queue monitored by the AiiDA daemon.

We now need to know what is going on. There are basically two main ways to see the workflows that are
running: by printing the workflow 1ist or a single workflow report.

Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step and each calculation (and, when present,
each sub-workflow). It is the fastest way to have a snapshot of what your AiiDA workflow daemon is working
on. An example output right after the AddnumbersWorkflow submission should be:

+ Workflow AddnumbersWorkflow (pk: 76) is RUNNING [0Oh:00m:14s ago]
|-+ Step: start [->stage2] is RUNNING

| | Calculation ('Number sum', pk: 739) is TOSUBMIT

|

The pk number of each workflow is reported, a unique ID identifying that specific execution of the workflow,
something necessary to retrieve it at any other time in the future (as explained in the next point).

Workflow report

As explained, each workflow is equipped with a reporting facility the user can use to log any intermediate
information, useful to debug the state or show some details. Moreover the report is also used by AiiDA as an
error reporting tool: in case of errors encountered during the execution, the AiiDA daemon will copy the entire
stack trace in the workflow report before halting its execution. To access the report we need the specific pk of
the workflow. From the command line you would run:

verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the get_report () method:

>> load_workflow (PK_NUMBER) .get_report ()

In both variants, PK_NUMBER is the pk number of the workflow we want the report of. The
load_workflow function loads a Workflow instance from its pk number, or from its uuid (given as a
string).

Once launched, the workflows will be handled by the daemon until the final step or until some error occurs. In
the last case, the workflow gets halted and the report can be checked to understand what happened.

Workflow result

As explained, when all the calculations are done it is useful to tag some nodes or quantities as results, using a
custom string to be later searched and retrieved. This method works on the entire workflow and not on a single
step.

160

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

To access the results we need the specific pk of the workflow. From the verdi shell, you can use the
get_report () method:

>> load_workflow (PK_NUMBER) .get_results()

In both variants, PK_NUMBER is the pk number of the workflow we want the report of.
* Killing a workflow

A user can also kill a workflow while it is running. This can be done with the following verdi command:

>> verdi workflow kill PK_NUMBER_1 PK_NUMBER 2 PK_NUMBER N

where several pk numbers can be given. A prompt will ask for a confirmation; this can be avoided by using the
—f option.

An alternative way to kill an individual workflow is to use the ki 11 method. In the verdi shell type:

>> load_workflow (PK_NUMBER) .ki11 ()

Exercise
In the exercise you have to write a workflow for the addition of six numbers, using the workflow we just wrote as
subworkflows.
For this workflow use:
e Input parameters: params = {“wl”: {“a”: 2, “b”: 2.1, “c”: 1}, “w2”: {“a”: 2, “b”: 2.1, “c”: 4}}
* start step: Use two sub workflows (the ones developed above) for the addition of three numbers:
— Sub workflow with input w1 and calculate its sum (temp_resultl)
— Sub workflow with input w2 and calculate its sum (temp_result2)

» stage2 step: final_result = temp_resultl + temp_result2 Add final_result to the
workflow results and exit the workflow.

Some notes and tips:

* You can attach a subworkflow similarly to how you attach a calculation: in the step, create the new sub-
workflow, set its parameters using set_parameters, store it, call the start() method, and then call
self.attach_workflow (wobject) to attach it to the current step.

« If you want to pass intermediate data from one step to another, you can set the data as a workflow attibute: in
a step, call self.set_attribute (attr_name, attr_value), and retrieve it in another step using
attr_value = self.get_attribute (attr_name). Values can be any JSON-serializable value, or
an AiiDA node.

3.1.10 Verdi command line plugins

AiiDA can be extended by adding custom means of use to interact with it via the command line, by extending the
‘verdi’ commands.

We will describe in particular how to extend verdi data by adding a new subcommand.

3.1. Developer’s guide 161

AiiDA documentation, Release 0.5.0

Framework for verdi data
The code for each of the verdi data <datatype> <action> [-—format <plugin>] commands is
placed in _<Datatype> class inside aiida.cmdline.commands.data.py. Standard actions, such as
e list
* show
* import
* export
are implemented in corresponding classes:
e Listable
* Visualizable
e Importable
s Exportable,

which are inherited by _<Datatype> classes (multiple inheritance is possible). Actions show, import and
export can be extended with new format plugins simply by adding additional methods in _<Datatype> (these are
automatically detected). Action 1ist can be extended by overriding default methods of the Listable.

Adding plugins for show, import, export and like

A plugin to show, import or export the data node can be added by inserting a method to _<Datatype> class.
Each new method is automatically detected, provided it starts with _<action>_ (that means _show_ for show,
import for import and _export_ for export). Node for each of such method is passed using a parameter.

Note: plugins for show are passed a list of nodes, while plugins for import and export are passed a single node.

As the —-format option is optional, the default plugin can be specified by setting the value for
default<action>_plugin in the inheriting class, for example:

class _Parameter (VerdiCommandWithSubcommands, Visualizable) :

mmon

View and manipulate Parameter data classes.
mrmamn

def _ init_ (self):

mnn

A dictionary with valid commands and functions to be called.
from aiida.orm.data.parameter import ParameterData
self.dataclass = ParameterData
self._default_show_format = 'Json_date’
self.valid_subcommands = {

'show': (self.show, self.complete_visualizers),

}

def _show_json_date(self, exec_name, node_list):

mmn

Show contents of ParameterData nodes.

mmwn

162 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

If the default plugin is not defined and there are more than one plugin, an exception will be raised upon issuing verdi
data <datatype> <action> to be caught and explained for the user.

Plugin-specific command line options Plugin-specific command line options can be appended in plugin-specific
methods _<action>_<plugin>_parameters (self, parser). All these methods are called before parsing
command line arguments, and are passed an argparse.ArgumentParser instance, to which command line
argument descriptions can be appended using parser.add_argument (). For example:

def _show_jmol_parameters(self, parser):

mmn

Describe command line parameters.
won
parser.add_argument ('-—-step',
help="ID of the trajectory step. If none is
"supplied, all steps are exported.",
type=int, action='store')

Note: as all _<action>_<plugin>_parameters (self,parser) methods are called, it requires some at-
tention in order not to make conflicting command line argument names!

Note: it’s a good practice to set default=None for all command line arguments, since None-valued arguments
are excluded before passing the parsed argument dictionary to a desired plugin.

Implementing 1ist

As listing of data nodes can be extended with filters, controllable using command line parameters, the code of
Listableis split into a few separate methods, that can be individually overridden:

e list: the main method, parsing the command line arguments and printing the data node information to the
standard output;

* gquery: takes the parsed command line arguments and performs a query on the database, returns table of
unformatted strings, representing the hits;

* append list cmdline arguments: informs the command line argument parser about additional, user-
defined parameters, used to control the query function;

e get_column_names: returns the names of columns to be printed by 11 st method.

Adding a verdi command

Here we will add a new verdi command for the FloatData datatype we created and used in Developer code plugin
tutorial exercise.

The new command will be:

>> verdi data float show <pk>

To create the above verdi command, we will write a _Float class inheriting from both
VerdiCommandWithSubcommands and Visualizable classes; this class will be added inside
aiida.cmdline.commands.data.py file. By inheriting from Visualizable, our class will have
a‘‘show()‘‘ method, that we can use as the default action for verdi data float show:

3.1. Developer’s guide 163

AiiDA documentation, Release 0.5.0

class _Float (VerdiCommandWithSubcommands, Visualizable) :

mmn

View and manipulate Float data classes.

mmn

def _ init_ (self):

mon

A dictionary with valid commands and functions to be called.

mon

from aiida.orm.data.float import FloatData

self.dataclass = FloatData

self.valid_subcommands = {

'show': (self.show, self.complete_none),
}
self._default_show_format = 'simple'

The features used in init method are:

e self.dataclass: Itis the data type for which the command is written. In this example itis FloatData.

e self.valid_subcommands: It is the dictionary of valid subcommands and the two functions to be called
when the given command is called, or when bash completion is needed. Each key will be the command for the
defined data type. For F1loatData we are therefore adding a show command, that will call self.show () as
method from base cass to be called on. We pass self.complete_none as completion function to disable fur-
ther bash completion after the command (this method is defined in the VerdiCommandWithSubcommands
base class). The self.show () method creates a list of all methods of the current class with prefix _show_
in their name, and provides them as possible formats.

e self._default_show_format: It is the default format to be displayed for the show’ command when
no specific format is passed as an argument. For FloatData, we will show data in a simple format by default.

To display node in simple format, we will simply add a method called _show_simple () inthe _Float
class. Please note that the method name should follow the convention _show_ + format_name.

The _show_simple () method will be:

def _show_simple(self, exec_name, node_list):

mmn

Show contents of FloatData nodes.

mon

from aiida.cmdline import print_dictionary

for node in node_list:
print node.value

In this method we have passed the executable name and the list of nodes. To print FloatData in simple format we are
just printing the corresponding value on screen.

Once the _Float class is added, make sure to add entry in self.routed_subcommands dictionary in the
__init__ method of the Data classin aiida.cmdline.commands.data.py file as shown below.

class Data (VerdiCommandRouter) :

mon

Setup and manage data specific types

There is a list of subcommands for managing specific types of data.
For instance, 'data upf' manages pseudopotentials in the UPF format.

mmn

def _ init_ (self):

164 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

mwn

A dictionary with valid commands and functions to be called.

mmn

Add here the classes to be supported.

self.routed_subcommands = {

other entries
'float': _Float,
}

The new verdi command float, is now ready!

Try experimenting by adding other formats for show command or by adding other commands like 1ist, import
and export for FloatData data type.

3.1.11 Exporting structures to TCOD

Export of St ructureData and CifData (or any other data type, which can be converted to them) to the Theoret-
ical Crystallography Open Database (TCOD) can be divided into following workflow steps:

No. | Description Input Output Type| Imple-
mented?
0 Conversion of the StructureData to CifData | StructureData CifData In- +
line
1 Detection of the symmetry and reductionto | CifData CifData In- | +
the unit cell line
2 Niggli reduction of the unit cell CifData CifData In- | —
line
3 Addition of structure properties (total CifData, CifData In- PW and
energy, residual forces) ParameterData line | CP
4 Addition of the metadata for reproduction CifData CifData In- ~
of the results line
5 Depostition to the TCOD CifData ParameterDgafleb | +

Type of each step’s calculation (InlineCalculationor JobCalculation)definedin column Type. Each step
is described in more detail below:

¢ Conversion of the StructureData to CifData Conversion between the St ructureData and CifData is

done via ASE atoms object.

Detection of the symmetry and reduction to the unit cell Detection of the symmetry and reduction to the
unit cell is performed using pyspglib.spglib.refine_cell() function.

Niggli reduction of the unit cell Reduction of the unit cell to Niggli cell is a nice to have feature, as it would
allow to represent structure as an unambiguously selected unit cell.

Addition of structure properties (energy, remaining forces) The structure properties from the calculations,
such as total energy and residual forces can be extracted from ParameterData nodes and put
into related TCOD CIF dictionaries tags using calculation-specific parameter translator, derived from

BaseTcodtranslator.

Addition of the metadata for reproduction of the results Current metadata, added for reproducibility, in-
cludes scripts for re-running of calculations, outputs from the calculations and exported subset of
AiiDA database. It’s not quite clear what/how to record the metadata for calculations of type

InlineCalculation.

3.1. Developer’s guide

165

http://www.crystallography.net/tcod/
http://www.crystallography.net/tcod/
http://spglib.sourceforge.net/api.html#spg-refine-cell
http://www.crystallography.net/tcod/cif/dictionaries/

AiiDA documentation, Release 0.5.0

* Depostition to the TCOD Deposition of the final Ci fData to the TCOD is performed using cif_cod_deposit
script from cod-tools package.

3.1.12 GIT cheatsheet

Excellent and thorough documentation on how to use GIT can be found online on the official GIT documentation or
by searching on Google. We summarize here only a set of commands that may be useful.

Interesting online resources
* Atlassian forking-workflow guide
* Gitflow model
Set the push default behavior to push only the current branch

The default push behavior may not be what you expect: if a branch you are not working on changes, you may not be
able to push your own branch, because git tries to check them all. To avoid this, use:

‘qit config push.default upstream

to set the default push.default behaviour to push the current branch to its upstream branch. Note the actual string to set
depends on the version of git; newer versions allow to use:

’git config push.default simple

which is better; see also discussion on this stackoverflow page.

View commits that would be pushed

If you want to see which commits would be sent to the remote repository upon a git push command, you can use
(e.g. if you want to compare with the origin/develop remote branch):

’git log origin/develop..HEAD

to see the logs of the commiits, or:

’git diff origin/develop..HEAD

to see also the differences among the current HEAD and the version on origin/develop.

Switch to another branch

You can switch to another branch with:

‘qit checkout newbranchname

and you can see the list of checked-out branches, and the one you are in, with:

‘qit branch

(orgit branch -a to see also the list of remote branches).

166 Chapter 3. Developer’s guide

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
http://nvie.com/posts/a-successful-git-branching-model/
http://stackoverflow.com/questions/948354/default-behavior-of-git-push-without-a-branch-specified

AiiDA documentation, Release 0.5.0

Associate a local and remote branch

To tell GIT to always push a local branch (checked-out) to a remote branch called remotebranchname, check out
the correct local branch and then do:

git push --set-upstream origin remotebranchname

From now on, you will just need to run git push. This will create a new entry in . git/config similar to:

[branch "localbranchname"]
remote = origin
merge = refs/heads/remotebranchname

Branch renaming

To rename a branch locally, from o1 dname to newname:

git checkout oldname
git branch -m oldname newname

If you want also to rename it remotely, you have to create a new branch and then delete the old one. One way to do it, is
first editing ~/ . git /config so that the branch points to the new remote name, changing refs/heads/oldname
to refs/heads/newname in the correct section:

[branch "newname"]

remote = origin
merge = refs/heads/newname
Then, do a:

‘git push origin newname

to create the new branch, and finally delete the old one with:

’git push origin :oldname

(notice the : symbol). Note that if you are working e.g. on BitBucket, there may be a filter to disallow the deletion of
branches (check in the repository settings, and then under “Branch management”). Moreover, the “Main branch” (set
in the repository settings, under “Repository details”) cannot be deleted.

Create a new (lightweight) tag

If you want to create a new tag, e.g. for a new version, and you have checked out the commit that you want to tag,
simply run:

|git tag TAGNAME

(e.g.,git tag v0.2.0). Afterwards, remember to push the tag to the remote repository (otherwise it will remain
only local):

’git push —--tags

Create a new branch from a given tag

This will create a new newbranchname branch starting from tag v0.2.0:

3.1. Developer’s guide 167

AiiDA documentation, Release 0.5.0

‘git checkout -b newbranchname v0.2.0 ‘

Then, if you want to push the branch remotely and have git remember the association:

‘git push —--set-upstream origin remotebranchname ‘

(for the meaning of —set-upsteam see the section Associate a local and remote branch above).

Disallow a branch deletion, or committing to a branch, on BitBucket

You can find these settings in the repository settings of the web interface, and then under “Branch management”.

Note: if you commit to a branch (locally) and then discover that you cannot push (e.g. you mistakenly committed to
the master branch), you can remove your last commit using:

‘git reset ——-hard HEAD~1

(this removes one commit only, and you should have no local modifications; if you do it, be sure to avoid losing your
modifications!)

Merge from a different repository

It is possible to do a pull request of a forked repository from the BitBucket web interface. However, if one just wants
to keep in sync, e.g., the main AiiDA repository with a fork you are working into without creating a pull request (e.g.,
for daily merge of your fork’s develop into the main repo’s develop), you can:

* commit and pull all your changes in your fork
* from the BitBucket web interface, sync your fork with the main repository, if needed
* go in a local cloned version of the main repository

* [only the first time] add a remote pointing to the new repository, with the name you prefer (here: my fork):

’ git remote add myfork git@bitbucket.org:BUTBUCKETUSER/FORKEDREPO.git

* checkout to the correct branch you want to merge into (git checkout develop)
e doagit pull (justin case)

* Fetch the correct branch of the other repository (e.g., the develop branch):

’ git fetch myfork develop

(this will fetch that branch into a temporary location called FETCH_HEAD).

* Merge the modifications:

’ git merge FETCH_HEAD

* Fix any merge conflicts (if any) and commit.

* Finally, push the merged result into the main repository:

‘ git push

(or, if you did not use the default remote with ——set-upstream, specify the correct remote branch, e.g. git
push origin develop).

168 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Note: If you want to fetch and transfer also tags, use instead:

git fetch -t myfork develop
git merge FETCH_HEAD
git push --tags

to get the tags from myfork and then push them in the current repository.

3.1.13 Sphinx cheatsheet

A brief overview of some of the main functions of Sphinx as used in the aiida documentation. View This Page to see
how this page was formatted. This is only a brief outline for more please see the Sphinx documentation

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this
This is an example of a subtitle.
Formatting

Basic Paragraph Formatting

Words can be written in italics or in bold. Text describing a specific computer_thing can be formatted as well.

Paragraph and Indentation

Much like in regular python, the indentation plays a strong role in the formatting.
For example all of this sentence will appear on the same line.

While this sentence will appear differently because there is an indent.

Terminal and Code Formatting

Something to be run in command line can be formatted like this:

’>> Some command

As can be seen above, while snippets of python on code can be done like this:

import module
print ('hello world')

3.1. Developer’s guide 169

http://sphinx-doc.org/contents.html

AiiDA documentation, Release 0.5.0

Notes

Note: Notes can be added like this.

Bullet Points and Lists

* Bullet points can be added

* Just like this * With sub-bullets like this
1. While numerical bullets
2. Can be added
3. Like this

Links, Code Display, Cross References
External Links

Can be done like here for AiiDA

Code Download

Code can be downloaded like this.

Download: this example script

Code Display

Can be done like this. This entire document can be seen unformated below using this method.

#!/usr/bin/env python

—%— coding: utf-8 —#*-
import json

import sys

in_file = sys.argv[l]
out_file = sys.argv([2]

print "Some output from the code"

with open(in_file) as f:
in_dict = json.load(f)

out_dict = { '"sum':in_dict['x1']+in_dict['x2'] }

with open(out_file, 'w') as f:
json.dump (out_dict, f)

170 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Cross Reference Docs

Here is an example of a reference to the StructureData tutorial which is on another page

Here is an example of a reference to something on the same page, Cross Reference Docs

Note: References within the same document need a reference label, see .. _self-reference: used in this section for an
example. Hidden in formatted page, can only be seen in the input text.

Cross Reference Classes and Methods

Any class can be referenced for example St ructureDat a references the StructureData data class.

Similarily any method can be referenced for example append_atom () shows the StructureData class’ append atom
method.

Table of Contents Docs and Code

Table of Contents for Docs

An example of the table of contents syntax for the GIT cheatsheet can be seen here note that these are especially
important in the global structure of the document, as found in index.rst files.

GIT cheatsheet Excellent and thorough documentation on how to use GIT can be found online on the official GIT
documentation or by searching on Google. We summarize here only a set of commands that may be useful.

Interesting online resources
* Atlassian forking-workflow guide

¢ Gitflow model

Set the push default behavior to push only the current branch The default push behavior may not be what you
expect: if a branch you are not working on changes, you may not be able to push your own branch, because git tries to
check them all. To avoid this, use:

‘git config push.default upstream

to set the default push.default behaviour to push the current branch to its upstream branch. Note the actual string to set
depends on the version of git; newer versions allow to use:

’git config push.default simple

which is better; see also discussion on this stackoverflow page.

View commits that would be pushed If you want to see which commits would be sent to the remote repository upon
agit push command, you can use (e.g. if you want to compare with the origin/develop remote branch):

git log origin/develop..HEAD

to see the logs of the commiits, or:

3.1. Developer’s guide 171

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
http://nvie.com/posts/a-successful-git-branching-model/
http://stackoverflow.com/questions/948354/default-behavior-of-git-push-without-a-branch-specified

AiiDA documentation, Release 0.5.0

git diff origin/develop..HEAD

to see also the differences among the current HEAD and the version on origin/develop.

Switch to another branch You can switch to another branch with:

’qit checkout newbranchname

and you can see the list of checked-out branches, and the one you are in, with:

’qit branch

(orgit branch -a to see also the list of remote branches).

Associate a local and remote branch To tell GIT to always push a local branch (checked-out) to a remote branch
called remotebranchname, check out the correct local branch and then do:

git push —--set-upstream origin remotebranchname

From now on, you will just need to run git push. This will create a new entry in . git/config similar to:

[branch "localbranchname"]
remote = origin
merge = refs/heads/remotebranchname

Branch renaming To rename a branch locally, from oldname to newname:

git checkout oldname
git branch -m oldname newname

If you want also to rename it remotely, you have to create a new branch and then delete the old one. One way to do it, is
first editing ~/ . git /config so that the branch points to the new remote name, changing refs/heads/oldname
to refs/heads/newname in the correct section:

[branch "newname"]

remote = origin
merge = refs/heads/newname
Then, do a:

‘git push origin newname

to create the new branch, and finally delete the old one with:

‘git push origin :oldname

(notice the : symbol). Note that if you are working e.g. on BitBucket, there may be a filter to disallow the deletion of
branches (check in the repository settings, and then under “Branch management”). Moreover, the “Main branch” (set
in the repository settings, under “Repository details”) cannot be deleted.

Create a new (lightweight) tag If you want to create a new tag, e.g. for a new version, and you have checked out
the commit that you want to tag, simply run:

git tag TAGNAME

172 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

(e.g., git tag v0.2.0). Afterwards, remember to push the tag to the remote repository (otherwise it will remain
only local):

‘git push —--tags

Create a new branch from a given tag This will create a new newbranchname branch starting from tag v0.2.0:

‘git checkout -b newbranchname v0.2.0 ‘

Then, if you want to push the branch remotely and have git remember the association:

‘git push —--set-upstream origin remotebranchname ‘

(for the meaning of —set-upsteam see the section Associate a local and remote branch above).

Disallow a branch deletion, or committing to a branch, on BitBucket You can find these settings in the repository
settings of the web interface, and then under “Branch management”.

Note: if you commit to a branch (locally) and then discover that you cannot push (e.g. you mistakenly committed to
the master branch), you can remove your last commit using:

‘qit reset —--hard HEAD~1

(this removes one commit only, and you should have no local modifications; if you do it, be sure to avoid losing your
modifications!)

Merge from a different repository It is possible to do a pull request of a forked repository from the BitBucket web
interface. However, if one just wants to keep in sync, e.g., the main AiiDA repository with a fork you are working into
without creating a pull request (e.g., for daily merge of your fork’s develop into the main repo’s develop), you can:

* commit and pull all your changes in your fork

from the BitBucket web interface, sync your fork with the main repository, if needed

go in a local cloned version of the main repository

[only the first time] add a remote pointing to the new repository, with the name you prefer (here: myfork):

‘ git remote add myfork git@bitbucket.org:BUTBUCKETUSER/FORKEDREPO.git |

checkout to the correct branch you want to merge into (git checkout develop)

doagit pull (justin case)

Fetch the correct branch of the other repository (e.g., the develop branch):

‘ git fetch myfork develop

(this will fetch that branch into a temporary location called FETCH_HEAD).

Merge the modifications:

‘ git merge FETCH_HEAD

Fix any merge conflicts (if any) and commit.

Finally, push the merged result into the main repository:

3.1. Developer’s guide 173

AiiDA documentation, Release 0.5.0

git push

(or, if you did not use the default remote with ——set-upstream, specify the correct remote branch, e.g. git
push origin develop).

Note: If you want to fetch and transfer also tags, use instead:

git fetch -t myfork develop
git merge FETCH_HEAD
git push --tags

to get the tags from myfork and then push them in the current repository.

Note: The maxdepth parameter can be used to change how deep the title indexing goes. See This Page.

Table of Contents for Code

Table of contents, that cross reference code, can be done very similarly to how it is done for documents. For example
the parser docs can be indexed like this

ORM documentation: generic aiida.orm This section describes the aiida/django object-relational mapping.
Some generic methods of the module aiida.orm

aiida.orm.CalculationFactory (module, from_abstract=False)
Return a suitable JobCalculation subclass.

Parameters
* module — a valid string recognized as a Calculation plugin

* from_abstract — A boolean. If False (default), actually look only to subclasses to
JobCalculation, not to the base Calculation class. If True, check for valid strings for plugins
of the Calculation base class.

aiida.orm.DataFactory (module)
Return a suitable Data subclass.

aiida.orm.WorkflowFactory (module)
Return a suitable Workflow subclass.

aiida.orm.load_node (node_id=None, pk=None, uuid=None, parent_class=None)
Return an AiiDA node given PK or UUID.

Parameters
* node_id - PK (integer) or UUID (string) or a node
* pk — PK of a node
* uuid - UUID of a node

* parent_class — if specified, checks whether the node loaded is a subclass of par-
ent_class

Returns an AiiDA node

Raises

174 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

* ValueError — if none or more than one of parameters is supplied or type of node_id is
neither string nor integer.

* NotExistent —if the parent_class is specified and no matching Node is found.

aiida.orm.load_workflow (wf_id=None, pk=None, uuid=None)
Return an AiiDA workflow given PK or UUID.

Parameters
* wf_id - PK (integer) or UUID (string) or a workflow
* pk — PK of a workflow
* uuid - UUID of a workflow

Returns an AiiDA workflow

Raises ValueError if none or more than one of parameters is supplied or type of wf_id is neither
string nor integer

Computer
class aiida.orm.computer.Computer (**kwargs)
Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). After the call to store(),
in general attributes cannot be changed, except for those listed in the self._updatable_attributes tuple (empty for
this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) metadata can be modified and in this case they are directly set on
the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

copy ()
Return a copy of the current object to work with, not stored yet.

full text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get (computer)
Return a computer from its name (or from another Computer or DbComputer instance)

get_dbauthinfo (user)
Return the aiida.djsite.db.models.DbAuthInfo instance for the given user on this computer, if the computer
is not configured for the given user.

Parameters user — a DbUser instance.
Returns a aiida.djsite.db.models.DbAuthInfo instance
Raises NotExistent if the computer is not configured for the given user.

get_default_mpiprocs_per_machine ()
Return the default number of CPUs per machine (node) for this computer, or None if it was not set.

get_mpirun_command ()
Return the mpirun command. Must be a list of strings, that will be then joined with spaces when submit-
ting.

I also provide a sensible default that may be ok in many cases.

3.1. Developer’s guide 175

AiiDA documentation, Release 0.5.0

is_user_configured (user)
Return True if the computer is configured for the given user, False otherwise.

Parameters user — a DbUser instance.
Returns a boolean.

is_user_enabled (user)
Return True if the computer is enabled for the given user (looking only at the per-user setting: the computer
could still be globally disabled).

Note Return False also if the user is not configured for the computer.
Parameters user —a DbUser instance.
Returns a boolean.

classmethod 1ist_names ()
Return a list with all the names of the computers in the DB.

logging = <module ‘logging’ from ‘/usr/lib/python2.7/logging/__init__.pyc’>

pk
Return the principal key in the DB.

set_default_mpiprocs_per machine (def cpus_per_machine)
Set the default number of CPUs per machine (node) for this computer. Accepts None if you do not want
to set this value.

set_mpirun_command (val)
Set the mpirun command. It must be a list of strings (you can use string.split() if you have a single,
space-separated string).

store ()
Store the computer in the DB.

Differently from Nodes, a computer can be re-stored if its properties are to be changed (e.g. a new mpirun
command, etc.)

uuid
Return the UUID in the DB.

validate ()
Check if the attributes and files retrieved from the DB are valid. Raise a ValidationError if something is
wrong.

Must be able to work even before storing: therefore, use the get_attr and similar methods that automatically
read either from the DB or from the internal attribute cache.

For the base class, this is always valid. Subclasses will reimplement this. In the subclass, always call the
super().validate() method first!
aiida.orm.computer.delete_computer (computer)
Delete a computer from the DB. It assumes that the DB backend does the proper checks and avoids to delete
computers that have nodes attached to them.

Implemented as a function on purpose, otherwise complicated logic would be needed to set the internal state of
the object after calling computer.delete().

Node
class aiida.orm.node.AttributeManager (node)
An object used internally to return the attributes as a dictionary.

176 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Note Important! It cannot be used to change variables, just to read them. To change values (of
unstored nodes), use the proper Node methods.

__init_ (node)

Parameters node — the node object.

class aiida.orm.node.Node (**kwargs)

Base class to map a node in the DB + its permanent repository counterpart.
Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). After the call to store(),
in general attributes cannot be changed, except for those listed in the self._updatable_attributes tuple (empty for
this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) extras can be modified and in this case they are directly set on
the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

__init___ (**kwargs)
Initialize the object Node.

Parameters uuid (optional) — if present, the Node with given uuid is loaded from the database.
(It is not possible to assign a uuid to a new Node.)

add comment (content, user=None)
Add a new comment.

Parameters content - string with comment

add_path (src_abs, dst_path)
Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders will be
created.

Copy to a cache directory if the entry has not been saved yet.
Parameters
* src_abs (str) — the absolute path of the file to copy.
* dst_filename (str) — the (relative) path on which to copy.

Todo in the future, add an add_attachment() that has the same meaning of a extras file. Decide
also how to store. If in two separate subfolders, remember to reset the limit.

attrs()
Returns the keys of the attributes.

Returns a list of strings

copy ()
Return a copy of the current object to work with, not stored yet.

This is a completely new entry in the DB, with its own UUID. Works both on stored instances and with
not-stored ones.

Copies files and attributes, but not the extras. Does not store the Node to allow modification of attributes.
Returns an object copy

ctime
Return the creation time of the node.

dbnode

3.1.

Developer’s guide 177

AiiDA documentation, Release 0.5.0

Returns the corresponding Django DbNode object.

del_extra (key)
Delete a extra, acting directly on the DB! The action is immediately performed on the DB. Since extras
can be added only after storing the node, this function is meaningful to be called only after the .store()

method.
Parameters key (str) — key name

Raise AttributeError: if key starts with underscore

Raise ModificationNotAllowed: if the node is not stored yet

description
Get the description of the node.

Returns a string

extras ()
Get the keys of the extras.

Returns a list of strings

folder
Get the folder associated with the node, whether it is in the temporary or the permanent repository.

Returns the RepositoryFolder object.

get_abs_path (path=None, section=None)
Get the absolute path to the folder associated with the Node in the AiiDA repository.

Parameters
* path (str) — the name of the subfolder inside the section. If None returns the abspath of

the folder. Default = None.
* section - the name of the subfolder (‘path’ by default).

Returns a string with the absolute path
For the moment works only for one kind of files, ‘path’ (internal files)
get_attr (key, *args)
Get the attribute.

Parameters
* key — name of the attribute
* value (optional) — if no attribute key is found, returns value

Returns attribute value

Raises
¢ IndexError — If no attribute is found and there is no default

* ValueError — If more than two arguments are passed to get_attr

get_attrs ()
Return a dictionary with all attributes of this node.

get_comments (pk=None)
Return a sorted list of comment values, one for each comment associated to the node.

Parameters pk — integer or list of integers. If it is specified, returns the comment values with

desired pks. (pk refers to DbComment.pk)

178 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Returns the list of comments, sorted by pk; each element of the list is a dictionary, containing
(pk, email, ctime, mtime, content)

get_computer ()
Get the computer associated to the node.

Returns the Computer object or None.

get_extra (key, *args)
Get the value of a extras, reading directly from the DB! Since extras can be added only after storing the
node, this function is meaningful to be called only after the .store() method.

Parameters

* key (str) — key name

* value (optional) — if no attribute key is found, returns value
Returns the key value
Raises ValueError If more than two arguments are passed to get_extra

get_extras ()
Get the value of extras.

Returns the dictionary of extras ({} if no extras)

get_folder_1list (subfolder="")
Get the the list of files/directory in the repository of the object.

Parameters subfolder (stroptional) — get the list of a subfolder
Returns a list of strings.

get_inputs (type=None, also_labels=False, only_in_db=False)
Return a list of nodes that enter (directly) in this node

Parameters

* type — If specified, should be a class, and it filters only elements of that specific type (or
a subclass of ‘type’)

* also_labels - If False (default) only return a list of input nodes. If True, return a list
of tuples, where each tuple has the following format: (‘label’, Node), with ‘label’ the link
label, and Node a Node instance or subclass

* only_in_db — Return only the inputs that are in the database, ignoring those that are in
the local cache. Otherwise, return all links.

get_inputs_dict (only_in_db=False)
Return a dictionary where the key is the label of the input link, and the value is the input node.

Returns a dictionary {label:object}

get_outputs (type=None, also_labels=False)
Return a list of nodes that exit (directly) from this node

Parameters

* type — if specified, should be a class, and it filters only elements of that specific type (or
a subclass of ‘type’)

* also_labels - if False (default) only return a list of input nodes. If True, return a list
of tuples, where each tuple has the following format: (‘label’, Node), with ‘label’ the link
label, and Node a Node instance or subclass

3.1.

Developer’s guide 179

AiiDA documentation, Release 0.5.0

get_outputs_dict ()
Return a dictionary where the key is the label of the output link, and the value is the input node. As some
Nodes (Datas in particular) can have more than one output with the same label, all keys have the name
of the link with appended the pk of the node in output. The key without pk appended corresponds to the
oldest node.

Returns a dictionary {linkname:object}

classmethod get_subclass_from_pk (pk)
Get a node object from the pk, with the proper subclass of Node. (integer primary key used in this
database), but loading the proper subclass where appropriate.

Parameters pk — a string with the pk of the object to be loaded.
Returns the object of the proper subclass.
Raise NotExistent: if there is no entry of the desired object kind with the given pk.

classmethod get_subclass_from_ uuid (uuid)
Get a node object from the uuid, with the proper subclass of Node. (if Node(uuid=...) is called, only the
Node class is loaded).

Parameters uuid - a string with the uuid of the object to be loaded.
Returns the object of the proper subclass.
Raise NotExistent: if there is no entry of the desired object kind with the given uuid.

get_user ()
Get the user.

Returns a Django DbUser model object

has_children
Property to understand if children are attached to the node :return: a boolean

has_parents
Property to understand if parents are attached to the node :return: a boolean

inp
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by means of the
linkname. Example: B = A.inp.parameters: returns the object (B), with link from B to A, with linkname
parameters C= A.inp: returns an InputManager, an object that is meant to be accessed as the previous
example

iterattrs (also_updatable=True)
Iterator over the attributes, returning tuples (key, value)

Todo optimize! At the moment, the call is very slow because it is also calling attr.getvalue() for
each attribute, that has to perform complicated queries to rebuild the object.

Parameters also_updatable (bool) — if False, does not iterate over attributes that are up-
datable

iterextras ()
Iterator over the extras, returning tuples (key, value)

Todo verify that I am not creating a list internally

label
Get the label of the node.

Returns a string.

180

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

logger
Get the logger of the Node object.

Returns Logger object

mtime
Return the modification time of the node.

out
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by means of
the linkname. Example: B = A.out.results: Returns the object B, with link from A to B, with linkname
parameters

Pk
Returns the principal key (the ID) as an integer, or None if the node was not stored yet

classmethod query (*args, **kwargs)
Map to the aiidaobjects manager of the DbNode, that returns Node objects (or their subclasses) instead of
DbNode entities.

TODO: VERY IMPORTANT: the recognition of a subclass from the type # does not work if the modules
defining the subclasses are not # put in subfolders. # In the future, fix it either to make a cache and to store
the # full dependency tree, or save also the path.

remove_path (path)
Remove a file or directory from the repository directory. Can be called only before storing.

Parameters path (str) — relative path to file/directory.

set (**kwargs)
For each k=v pair passed as kwargs, call the corresponding set_k(v) method (e.g., calling
self.set(property=5, mass=2) will call self.set_property(5) and self.set_mass(2). Useful especially in the
__init__.

Note it uses the _set_incompatibilities list of the class to check that we are not setting meth-
ods that cannot be set at the same time. _set_incompatibilities must be a list of tuples,
and each tuple specifies the elements that cannot be set at the same time. For instance,
if _set_incompatibilities = [(‘property’, ‘mass’)], then the call self.set(property=5, mass=2)
will raise a ValueError. If a tuple has more than two values, it raises ValueError if all keys
are provided at the same time, but it does not give any error if at least one of the keys is not
present.

Note If one element of _set_incompatibilities is a tuple with only one element, this element will
not be settable using this function (and in particular,

Raises ValueError if the corresponding set_k method does not exist in self, or if the methods
cannot be set at the same time.

set_computer (computer)
Set the computer to be used by the node.

Note that the computer makes sense only for some nodes: Calculation, RemoteData, ...
Parameters computer — the computer object

set_extra (key, value, exclusive=False)
Immediately sets an extra of a calculation, in the DB! No .store() to be called. Can be used only after
saving.

Parameters

* key (string) — key name

3.1.

Developer’s guide 181

AiiDA documentation, Release 0.5.0

* value - key value

* exclusive - (default=False). If exclusive is True, it raises a UniquenessError if an
Extra with the same name already exists in the DB (useful e.g. to “lock” a node and avoid
to run multiple times the same computation on it).

Raises UniquenessError if extra already exists and exclusive is True.

set_extras (the_dict)
Immediately sets several extras of a calculation, in the DB! No .store() to be called. Can be used only after
saving.

Parameters the_dict — a dictionary of key:value to be set as extras

store (with_transaction=True)
Store a new node in the DB, also saving its repository directory and attributes.

Can be called only once. Afterwards, attributes cannot be changed anymore! Instead, extras can be
changed only AFTER calling this store() function.

Note After successful storage, those links that are in the cache, and for which also the parent
node is already stored, will be automatically stored. The others will remain unstored.

Parameters with_transaction - if False, no transaction is used. This is meant to be used
ONLY if the outer calling function has already a transaction open!

store_ all (with_transaction=True)
Store the node, together with all input links, if cached, and also the linked nodes, if they were not stored
yet.

Parameters with_ transaction - if False, no transaction is used. This is meant to be used
ONLY if the outer calling function has already a transaction open!

uuid
Returns a string with the uuid

class aiida.orm.node.NodeInputManager (node)
To document

__init__ (node)
Parameters node — the node object.

class aiida.orm.node.NodeOutputManager (node)
To document

__init__ (node)
Parameters node — the node object.

aiida.orm.node.from_type_to_pluginclassname (fypestr)
Return the string to pass to the load_plugin function, starting from the ‘type’ field of a Node.

Workflow

class aiida.orm.workflow.Workflow (**kwargs)
Base class to represent a workflow. This is the superclass of any workflow implementations, and provides all
the methods necessary to interact with the database.

The typical use case are workflow stored in the aiida.workflow packages, that are initiated either by the user in
the shell or by some scripts, and that are monitored by the aiida daemon.

Workflow can have steps, and each step must contain some calculations to be executed. At the end of the step’s
calculations the workflow is reloaded in memory and the next methods is called.

182 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

add_attribute (_name, value)
Add one attributes to the Workflow. If another attribute is present with the same name it will be overwritten.
:param name: a string with the attribute name to store :param value: a storable object to store

add_attributes (_params)
Add a set of attributes to the Workflow. If another attribute is present with the same name it will be
overwritten. :param name: a string with the attribute name to store :param value: a storable object to store

add_path (src_abs, dst_path)
Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders will be
created.

Copy to a cache directory if the entry has not been saved yet. src_abs: the absolute path of the file to copy.
dst_filename: the (relative) path on which to copy.

add_result (_name, _value)
Add one result to the Workflow. If another result is present with the same name it will be overwritten.
:param name: a string with the result name to store :param value: a storable object to store

add_results (_params)
Add a set of results to the Workflow. If another result is present with the same name it will be overwritten.
‘param name: a string with the result name to store :param value: a storable object to store

append_to_report (fext)
Adds text to the Workflow report.

Note Once, in case the workflow is a subworkflow of any other Workflow this method calls the
parent append_to_report method; now instead this is not the case anymore

attach_calculation (calc)
Adds a calculation to the caller step in the database. This is a lazy call, no calculations will be launched
until the next method gets called. For a step to be completed all the calculations linked have to be in
RETRIEVED state, after which the next method gets called from the workflow manager. :param calc: a
JobCalculation object :raise: AiidaException: in case the input is not of JobCalculation type

attach_workflow (sub_wf)
Adds a workflow to the caller step in the database. This is a lazy call, no workflow will be started until
the next method gets called. For a step to be completed all the workflows linked have to be in FIN-
ISHED state, after which the next method gets called from the workflow manager. :param next_method: a
Workflow object

clear_report ()
Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this method calls
the parent clear_report method.

current_folder
Get the current repository folder, whether the temporary or the permanent.

Returns the RepositoryFolder object.

dbworkflowinstance
Get the DbWorkflow object stored in the super class.

Returns DbWorkflow object from the database

description
Get the description of the workflow.

Returns a string

3.1.

Developer’s guide 183

AiiDA documentation, Release 0.5.0

exit ()
This is the method to call in next to finish the Workflow. When exit is the next method, and no errors are
found, the Workflow is set to FINISHED and removed from the execution manager duties.

get_abs_path (path, section=None)
TODO: For the moment works only for one kind of files, ‘path’ (internal files)

get_all_calcs (calc_class=<class ‘aiida.orm.calculation.job.JobCalculation’>, calc_state=None,

depth=16)
Get all calculations connected with this workflow and all its subworflows up to a given depth. The list of

calculations can be restricted to a given calculation type and state :param calc_class: the calculation class
to which the calculations should belong (default: JobCalculation)

Parameters
* calc_state - a specific state to filter the calculations to retrieve

* depth - the maximum depth level the recursion on sub-workflows will try to reach (0
means we stay at the step level and don’t go into sub-workflows, 1 means we go down to
one step level of the sub-workflows, etc.)

Returns a list of JobCalculation objects

get_attribute (_name)
Get one Workflow attribute :param name: a string with the attribute name to retrieve :return: a dictionary

of storable objects

get_attributes ()
Get the Workflow attributes :return: a dictionary of storable objects

get_folder_list (subfolder="")
Get the the list of files/directory in the repository of the object.

Parameters subfolder (stroptional) — get the list of a subfolder
Returns a list of strings.

get_parameter (_name)
Get one Workflow paramenter :param name: a string with the parameters name to retrieve :return: a

dictionary of storable objects

get_parameters ()
Get the Workflow paramenters :return: a dictionary of storable objects

get_report ()
Return the Workflow report.

Note once, in case the workflow is a subworkflow of any other Workflow this method calls the
parent get_report method. This is not the case anymore.

Returns a list of strings

get_result (_name)
Get one Workflow result :param name: a string with the result name to retrieve :return: a dictionary of

storable objects

get_results ()
Get the Workflow results :return: a dictionary of storable objects

get_state()
Get the Workflow’s state :return: a state from wf_states in aiida.common.datastructures

get_step (step_method)
Retrieves by name a step from the Workflow. :param step_method: a string with the name of the step to

184 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

retrieve or a method :raise: ObjectDoesNotExist: if there is no step with the specific name. :return: a
DbWorkflowStep object.

get_step_calculations (step_method, calc_state=None)
Retrieves all the calculations connected to a specific step in the database. If the step is not existent it
returns None, useful for simpler grammatic in the workflow definition. :param next_method: a Workflow
step (decorated) method :param calc_state: a specific state to filter the calculations to retrieve :return: a
list of JobCalculations objects

get_step_workflows (step_method)
Retrieves all the workflows connected to a specific step in the database. If the step is not existent it returns
None, useful for simpler grammatic in the workflow definition. :param next_method: a Workflow step
(decorated) method

get_steps (state=None)
Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list to a spe-
cific step’s state. :param state: a state from wf_states in aiida.common.datastructures :return: a list of
DbWorkflowStep objects.

classmethod get_subclass_from_dbnode (wf_db)
Loads the workflow object and reaoads the python script in memory with the importlib library, the main
class is searched and then loaded. :param wf_db: a specific DbWorkflowNode object representing the
Workflow :return: a Workflow subclass from the specific source code

classmethod get_subclass_from_pk (pk)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input pk. :param
pk: a primary key index for the DbWorkflowNode :return: a Workflow subclass from the specific source
code

classmethod get_subclass_from_uuid (uuid)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input uuid. :param
uuid: a uuid for the DbWorkflowNode :return: a Workflow subclass from the specific source code

get_temp_folder ()
Get the folder of the Node in the temporary repository.

Returns a SandboxFolder object mapping the node in the repository.

has_failed()
Returns True is the Workflow’s state is ERROR

has finished ok ()
Returns True is the Workflow’s state is FINISHED

has_step (step_method)
Return if the Workflow has a step with a specific name. :param step_method: a string with the name of the
step to retrieve or a method

info ()
Returns an array with all the informations about the modules, file, class to locate the workflow source code

is _new ()
Returns True is the Workflow’s state is CREATED

is_running ()
Returns True is the Workflow’s state is RUNNING

is_subworkflow ()
Return True is this is a subworkflow (i.e., if it has a parent), False otherwise.

kill (verbose=Fualse)
Stop the Workflow execution and change its state to FINISHED.

3.1.

Developer’s guide 185

AiiDA documentation, Release 0.5.0

This method calls the k111 method for each Calculation and each subworkflow linked to each RUNNING
step.

Parameters verbose — True to print the pk of each subworkflow killed

Raises InvalidOperation if some calculations cannot be killed (the workflow will be also put to
SLEERP so that it can be killed later on)

kill_step_calculations (step)
Calls the k111 method for each Calculation linked to the step method passed as argument. :param step: a
Workflow step (decorated) method

label
Get the label of the workflow.

Returns a string

logger
Get the logger of the Workflow object, so that it also logs to the DB.

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ embedded

next (next_method)
Adds the a new step to be called after the completion of the caller method’s calculations and subworkflows.

This method must be called inside a Workflow step, otherwise an error is thrown. The code finds the caller
method and stores in the database the input next_method as the next method to be called. At this point no
execution in made, only configuration updates in the database.

If during the execution of the caller method the user launched calculations or subworkflows, this method
will add them to the database, making them available to the workflow manager to be launched. In fact all
the calculation and subworkflow submissions are lazy method, really executed by this call.

Parameters next_method — a Workflow step method to execute after the caller method
Raise AiidaException: in case the caller method cannot be found or validated
Returns the wrapped methods, decorated with the correct step name

Pk
Returns the DbWorkflow pk

classmethod query (*args, **kwargs)
Map to the aiidaobjects manager of the DbWorkflow, that returns Workflow objects instead of DbWorkflow
entities.

remove_path (path)
Remove a file or directory from the repository directory.

Can be called only before storing.

repo_folder
Get the permanent repository folder. Use preferentially the current_folder method.

Returns the permanent RepositoryFolder object

set_params (params, force=False)
Adds parameters to the Workflow that are both stored and used every time the workflow engine re-initialize
the specific workflow to launch the new methods.

set_state (state)
Set the Workflow’s state :param name: a state from wf_states in aiida.common.datastructures

sleep ()
Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated method.

186

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

classmethod step (fun)
This method is used as a decorator for workflow steps, and handles the method’s execution, the state
updates and the eventual errors.

The decorator generates a wrapper around the input function to execute, adding with the correct step name
and a utility variable to make it distinguishable from non-step methods.

When a step is launched, the wrapper tries to run the function in case of error the state of the workflow is
moved to ERROR and the traceback is stored in the report. In general the input method is a step obtained
from the Workflow object, and the decorator simply handles a controlled execution of the step allowing
the code not to break in case of error in the step’s source code.

The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state, in this
case all the calculations and subworkflows of the step are killed and a new execution is allowed.

Parameters fun — a methods to wrap, making it a Workflow step
Raise AiidaException: in case the workflow state doesn’t allow the execution
Returns the wrapped methods,

store ()
Stores the DbWorkflow object data in the database

uuid
Returns the DbWorkflow uuid
exception aiida.orm.workflow.WorkflowKillError (*args, **kwargs)
An exception raised when a workflow failed to be killed. The error_message_list attribute contains the error
messages from all the subworkflows.

exception aiida.orm.workflow.WorkflowUnkillable
Raised when a workflow cannot be killed because it is in the FINISHED or ERROR state.

aiida.orm.workflow.get_workflow_info (w, tab_size=2, short=False, pre_string="", depth=16)
Return a string with all the information regarding the given workflow and all its calculations and subworkflows.
This is a recursive function (to print all subworkflows info as well).

Parameters
* w—a DbWorkflow instance
* tab_size — number of spaces to use for the indentation

* short —if True, provide a shorter output (only total number of calculations, rather than the
state of each calculation)

* pre_string - string appended at the beginning of each line

* depth - the maximum depth level the recursion on sub-workflows will try to reach (0
means we stay at the step level and don’t go into sub-workflows, 1 means we go down to
one step level of the sub-workflows, etc.)

Return lines list of lines to be outputed

aiida.orm.workflow.kill all()
Kills all the workflows not in FINISHED state running the kill_from_uuid method in a loop.

Parameters uuid — the UUID of the workflow to kill

aiida.orm.workflow.kill_from_pk (pk, verbose=False)
Kills a workflow without loading the class, useful when there was a problem and the workflow definition module
was changed/deleted (and the workflow cannot be reloaded).

Parameters

3.1. Developer’s guide 187

AiiDA documentation, Release 0.5.0

* pk — the principal key (id) of the workflow to kill

* verbose — True to print the pk of each subworkflow killed

aiida.orm.workflow.kill_ from uuid (uuid)

Code

Kills a workflow without loading the class, useful when there was a problem and the workflow definition module
was changed/deleted (and the workflow cannot be reloaded).

Parameters uuid — the UUID of the workflow to kill

class aiida.orm.code.Code (**kwargs)

A code entity. It can either be ‘local’, or ‘remote’.

*Local code: it is a collection of files/dirs (added using the add_path() method), where one file is flagged as
executable (using the set_local_executable() method).

*Remote code: it is a pair (remotecomputer, remotepath_of executable) set using the
set_remote_computer_exec() method.

For both codes, one can set some code to be executed right before or right after the execution of the code,
using the set_preexec_code() and set_postexec_code() methods (e.g., the set_preexec_code() can be used to
load specific modules required for the code to be run).

can_run_on (computer)
Return True if this code can run on the given computer, False otherwise.

Local codes can run on any machine; remote codes can run only on the machine on which they reside.
TODO: add filters to mask the remote machines on which a local code can run.

full text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get (label, computername=None, useremail=None)
Get a code from its label.

Parameters
* label - the code label
* computername — filter only codes on computers with this name
* useremail - filter only codes belonging to a user with this email
Raises
* NotExistent —if no matches are found

* MultipleObjectsError —if multiple matches are found. In this case you may want
to pass the additional parameters to filter the codes, or relabel the codes.

get_append_text ()
Return the postexec_code, or an empty string if no post-exec code was defined.

get_execname ()
Return the executable string to be put in the script. For local codes, itis /LOCAL_EXECUTABLE_NAME
For remote codes, it is the absolute path to the executable.

classmethod get_from_string (code_string)
Get a Computer object with given identifier string, that can either be the numeric ID (pk), or the label (if
unique); the label can either be simply the label, or in the format label @machinename. See the note below
for details on the string detection algorithm.

188

Chapter 3. Developer’s guide

mailto:label@machinename

AiiDA documentation, Release 0.5.0

Note: If a string that can be converted to an integer is given, the numeric ID is verified first (therefore, is
a code A with a label equal to the ID of another code B is present, code A cannot be referenced by label).

Similarly, the (leftmost) ‘@’ symbol is always used to split code and computername. Therefore do not use
‘@’ in the code name if you want to use this function (‘@ in the computer name are instead valid).

Parameters code_string — the code string identifying the code to load
Raises
* NotExistent —if no code identified by the given string is found
* MultipleObjectsError — if the string cannot identify uniquely a code
get_input_plugin_name ()
Return the name of the default input plugin (or None if no input plugin was set.

get_prepend_text ()
Return the code that will be put in the scheduler script before the execution, or an empty string if no
pre-exec code was defined.

is_local ()
Return True if the code is ‘local’, False if it is ‘remote’ (see also documentation of the set_local and
set_remote functions).

classmethod 1ist_for plugin (plugin, labels=True)
Return a list of valid code strings for a given plugin.

Parameters
* plugin — The string of the plugin.
* labels - if True, return a list of code names, otherwise return the code PKs (integers).

Returns a list of string, with the code names if labels is True, otherwise a list of integers with
the code PKs.

new_calc (*args, **kwargs)
Create and return a new Calculation object (unstored) with the correct plugin subclass, as otained by the
self.get_input_plugin_name() method.

Parameters are passed to the calculation __init__ method.

Note it also directly creates the link to this code (that will of course be cached, since the new
node is not stored yet).

Raises
* MissingPluginError — if the specified plugin does not exist.
* ValueError - if no plugin was specified.

set_append_text (code)
Pass a string of code that will be put in the scheduler script after the execution of the code.

set_files (files)
Given a list of filenames (or a single filename string), add it to the path (all at level zero, i.e. without
folders). Therefore, be careful for files with the same name!

Todo decide whether to check if the Code must be a local executable to be able to call this
function.

set_input_plugin_name (input_plugin)
Set the name of the default input plugin, to be used for the automatic generation of a new calculation.

3.1.

Developer’s guide 189

AiiDA documentation, Release 0.5.0

set_local_executable (exec_name)
Set the filename of the local executable. Implicitly set the code as local.

set_prepend_text (code)
Pass a string of code that will be put in the scheduler script before the execution of the code.

set_remote_computer_exec (remote_computer_exec)
Set the code as remote, and pass the computer on which it resides and the absolute path on that computer.

Args:

remote_computer_exec: a tuple (computer, remote_exec_path), where computer is a ai-
ida.orm.Computer or an aiida.djsite.db.models.DbComputer object, and remote_exec_path is the
absolute path of the main executable on remote computer.
aiida.orm.code.delete_code (code)
Delete a code from the DB. Check before that there are no output nodes.

NOTE! Not thread safe... Do not use with many users accessing the DB at the same time.

Implemented as a function on purpose, otherwise complicated logic would be needed to set the internal state of
the object after calling computer.delete().

ORM documentation: Data
class aiida.orm.data.Data (**kwargs)
This class is base class for all data objects.

convert (object_format=None, *args)
Convert the AiiDA StructureData into another python object

Parameters object_format — Specify the output format

export (fname, fileformat=None)
Save a Data object to a file.

Parameters
* fname - string with file name. Can be an absolute or relative path.

* fileformat — kind of format to use for the export. If not present, it will try to use the
extension of the file name.

import£ile (fname, fileformat=None)
Populate a Data object from a file.

Parameters
* fname - string with file name. Can be an absolute or relative path.

» fileformat — kind of format to use for the export. If not present, it will try to use the
extension of the file name.

importstring (inputstring, fileformat, **kwargs)
Converts a Data object to other text format.

Parameters fileformat — a string (the extension) to describe the file format.
Returns a string with the structure description.

set__source (source)
Sets the dictionary describing the source of Data object.

source
Gets the dictionary describing the source of Data object. Possible fields:

190 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

db_name: name of the source database.

edb_uri: URI of the source database.

euri: URI of the object’s source. Should be a permanent link.

*id: object’s source identifier in the source database.

eversion: version of the object’s source.

eextras: a dictionary with other fields for source description.

esource_md5: MD5 checksum of object’s source.

edescription: human-readable free form description of the object’s source.

elicense: a string with a type of license.

Note: some limitations for setting the data source exist, see _validate ().

Returns dictionary describing the source of Data object.

Structure This module defines the classes for structures and all related functions to operate on them.

class aiida.orm.data.structure.Kind (**kwargs)
This class contains the information about the species (kinds) of the system.

It can be a single atom, or an alloy, or even contain vacancies.

__init__ (**kwargs)
Create a site. One can either pass:

Parameters
* raw — the raw python dictionary that will be converted to a Kind object.
* ase —an ase Atom object
* kind - a Kind object (to get a copy)
Or alternatively the following parameters:
Parameters
* symbols — a single string for the symbol of this site, or a list of symbol strings

* (optional) (mass) — the weights for each atomic species of this site. If only a single
symbol is provided, then this value is optional and the weight is set to 1.

* (optional) - the mass for this site in atomic mass units. If not provided, the mass is
set by the self.reset_mass() function.

* name - a string that uniquely identifies the kind, and that is used to identify the sites.

compare_with (other_kind)
Compare with another Kind object to check if they are different.

Note: This does NOT check the ‘type’ attribute. Instead, it compares (with reasonable thresholds,
where applicable): the mass, and the list of symbols and of weights. Moreover, it compares the

_internal_tag, if defined (at the moment, defined automatically only when importing the Kind from
ASE, if the atom has a non-zero tag). Note that the _internal_tag is only used while the class is loaded, but
is not persisted on the database.

3.1. Developer’s guide 191

AiiDA documentation, Release 0.5.0

Returns A tuple with two elements. The first one is True if the two sites are ‘equivalent’ (same
mass, symbols and weights), False otherwise. The second element of the tuple is a string,
which is either None (if the first element was True), or contains a ‘human-readable’ descrip-
tion of the first difference encountered between the two sites.

get_raw ()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is actually used
to store each kind of the structure in the DB.

Returns a python dictionary with the kind.

get_symbols_string()
Return a string that tries to match as good as possible the symbols of this kind. If there is only one symbol
(no alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups the full string in curly
brackets, and try to write also the composition (with 2 precision only).

Note: If there is a vacancy (sum of weights<l), we indicate it with the X symbol followed by 1-
sum(weights) (still with 2 digits precision, so it can be 0.00)

Note: Note the difference with respect to the symbols and the symbol properties!

has_vacancies ()
Returns True if the sum of the weights is less than one. It uses the internal variable _sum_threshold as a
threshold.

Returns a boolean

is_alloy ()
To understand if kind is an alloy.

Returns True if the kind has more than one element (i.e., len(self.symbols) != 1), False other-
wise.

mass
The mass of this species kind.

Returns a float

name
Return the name of this kind. The name of a kind is used to identify the species of a site.

Returns a string

reset_mass ()
Reset the mass to the automatic calculated value.

The mass can be set manually; by default, if not provided, it is the mass of the constituent atoms, weighted
with their weight (after the weight has been normalized to one to take correctly into account vacancies).

This function uses the internal _symbols and _weights values and thus assumes that the values are vali-
dated.

It sets the mass to None if the sum of weights is zero.

set_automatic_kind_name (tag=None)
Set the type to a string obtained with the symbols appended one after the other, without spaces, in alpha-
betical order; if the site has a vacancy, a X is appended at the end too.

set_symbols_and_weights (symbols, weights)
Set the chemical symbols and the weights for the site.

192 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Note: Note that the kind name remains unchanged.

symbol

If the kind has only one symbol, return it; otherwise, raise a ValueError.

symbols
List of symbols for this site. If the site is a single atom, pass a list of one element only, or simply the string
for that atom. For alloys, a list of elements.

Note: Note that if you change the list of symbols, the kind name remains unchanged.

weights
Weights for this species kind. Refer also to :func:validate_symbols_tuple for the validation rules on the
weights.

class aiida.orm.data.structure.Site (**kwargs)
This class contains the information about a given site of the system.

It can be a single atom, or an alloy, or even contain vacancies.

__init__ (**kwargs)
Create a site.

Parameters

* kind_name - a string that identifies the kind (species) of this site. This has to be found
in the list of kinds of the StructureData object. Validation will be done at the StructureData
level.

* position - the absolute position (three floats) in angstrom

get_ase (kinds)
Return a ase.Atom object for this site.

Parameters kinds — the list of kinds from the StructureData object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase() routine).

get_raw ()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is actually used
to store each site of the structure in the DB.

Returns a python dictionary with the site.

kind name
Return the kind name of this site (a string).

The type of a site is used to decide whether two sites are identical (same mass, symbols, weights, ...) or
not.

position
Return the position of this site in absolute coordinates, in angstrom.

class aiida.orm.data.structure.StructureData (**kwargs)
This class contains the information about a given structure, i.e. a collection of sites together with a cell, the
boundary conditions (whether they are periodic or not) and other related useful information.

append_atom (**kwargs)
Append an atom to the Structure, taking care of creating the corresponding kind.

Parameters

3.1. Developer’s guide 193

AiiDA documentation, Release 0.5.0

* ase —the ase Atom object from which we want to create a new atom (if present, this must
be the only parameter)

* position - the position of the atom (three numbers in angstrom)

e symbols, weights, name (..) — any further parameter is passed to the constructor
of the Kind object. For the ‘name’ parameter, see the note below.

Note: Note on the ‘name’ parameter (that is, the name of the kind):

«if specified, no checks are done on existing species. Simply, a new kind with that name is created. If
there is a name clash, a check is done: if the kinds are identical, no error is issued; otherwise, an error
is issued because you are trying to store two different kinds with the same name.

*if not specified, the name is automatically generated. Before adding the kind, a check is done. If other
species with the same properties already exist, no new kinds are created, but the site is added to the
existing (identical) kind. (Actually, the first kind that is encountered). Otherwise, the name is made
unique first, by adding to the string containing the list of chemical symbols a number starting from 1,
until an unique name is found

Note: checks of equality of species are done using the compare_with () method.

append_kind (kind)
Append a kind to the St ructureData. It makes a copy of the kind.

Parameters kind - the site to append, must be a Kind object.

append_site (site)
Append a site to the St ructureData. It makes a copy of the site.

Parameters site — the site to append. It must be a Site object.

cell
Returns the cell shape.

Returns a 3x3 list of lists.

cell_angles
Get the angles between the cell lattice vectors in degrees.

cell_lengths
Get the lengths of cell lattice vectors in angstroms.

clear kinds ()
Removes all kinds for the StructureData object.

Note: Also clear all sites!

clear_sites|()
Removes all sites for the StructureData object.

get_ase()
Get the ASE object. Requires to be able to import ase.

Returns an ASE object corresponding to this St ructureDat a object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase() routine).

get_cell_volume ()
Returns the cell volume in Angstrom”3.

194 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Returns a float.

get_formula (mode="hill’, separator="")
Return a string with the chemical formula.

Parameters

* mode — a string to specify how to generate the formula, can assume one of the following
values:

— ‘hill’ (default): count the number of atoms of each species, then use Hill nota-
tion, i.e. alphabetical order with C and H first if one or several C atom(s) is
(are) present, e.g. [’C’,’H’,’H’,’H’,’0",’C’,"H’,"H’,"H"] will return
"C2H60O’" [’S’,’0O’,’0","H","0","H’,"0’] will return " H204S’ From E.
A. Hill, J. Am. Chem. Soc., 22 (8), pp 478-494 (1900)

— ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
[’c/’IH/,IHI’/H(,/OI,ICI’/H/,/HI,IH/’IO/,IO”/O/] Will re-
turn ’ CH302’

— ‘reduce’: group repeated symbols e.g. ["Ba’, ’'Ti’, '0’, 'O', '0O’,
IBa’, ”I‘il, IO’, ’OI, IO’, ’BaI, I'I‘i’, ”I‘il, ’O’, IOI,

70’] will return ' BaTi03BaTi03BaTi203’

— ‘group’: will try to group as much as possible parts of the formula
e.g. [IBaI, ITiI, IOI, IOI, IOI, IBaI, ITiI, IOI, IOI, IOI,
"Ba’, 'Ti’, 'Ti’, 'O’, 'O', '0O’] willreturn ’ (BaTi03) 2BaTi203’

— ‘count’: same as hill (i.e. one just counts the number of atoms of each species) without

the re-ordering (take the order of the atomic sites),e.g. ['Ba’, 'Ti’, '0’, '0’,
ro’,"Ba’, 'Ti’, '0’, 'O', '0O’] willreturn ' Ba2Ti206’

— ‘count_compact’: same as count but the number of atoms for each species is divided
by the greatest common divisor of all of them, e.g. ['Ba’, ’Ti’, ’'0’, '0O',
ro’,"Ba’, 'Ti’, '0O’, 'O’, ’'0O’] willreturn ' BaTi03’

* separator — a string used to concatenate symbols. Default empty.

Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms were
appended by the user is used to group and/or order the symbols in the formula

get_kind (kind_name)
Return the kind object associated with the given kind name.

Parameters kind_name — String, the name of the kind you want to get

Returns The Kind object associated with the given kind_name, if a Kind with the given name is
present in the structure.

Raise ValueError if the kind_name is not present.

get_kind names ()
Return a list of kind names (in the same order of the self.kinds property, but return the names rather
than Kind objects)

Note: This is NOT necessarily a list of chemical symbols! Use get_symbols_set for chemical symbols

Returns a list of strings.

. Developer’s guide 195

AiiDA documentation, Release 0.5.0

get_pymatgen ()
Get pymatgen object. Returns Structure for structures with periodic boundary conditions (in three dimen-
sions) and Molecule otherwise.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

get_pymatgen_molecule ()
Get the pymatgen Molecule object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

Returns a pymatgen Molecule object corresponding to this St ructureData object.

get_pymatgen_structure ()
Get the pymatgen Structure object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

Returns a pymatgen Structure object corresponding to this St ructureData object.

Raises ValueError if periodic boundary conditions do not hold in at least one dimension of real
space.

get_site_kindnames ()

Return a list with length equal to the number of sites of this structure, where each element of the list is the
kind name of the corresponding site.

Note: This is NOT necessarily a list of chemical symbols! Use [
self.get_kind(s.kind_name) .get_symbols_string() for s in self.sites] for
chemical symbols

Returns a list of strings

get_symbols_set ()
Return a set containing the names of all elements involved in this structure (i.e., for it joins the list of
symbols for each kind k in the structure).

Returns a set of strings of element names.

has_vacancies ()
To understand if there are vacancies in the structure.

Returns a boolean, True if at least one kind has a vacancy

is_alloy ()
To understand if there are alloys in the structure.

Returns a boolean, True if at least one kind is an alloy

kinds
Returns a list of kinds.

pbc
Get the periodic boundary conditions.

196 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Returns a tuple of three booleans, each one tells if there are periodic boundary conditions for
the i-th real-space direction (i=1,2,3)

reset_cell (new_cell)
Reset the cell of a structure not yet stored to a new value.

Parameters new_cell - list specifying the cell vectors
Raises ModificationNotAllowed: if object is already stored

reset_sites_positions (new_positions, conserve_particle=True)
Replace all the Site positions attached to the Structure

Parameters
* new_positions - list of (3D) positions for every sites.

* conserve_particle -if True, allows the possibility of removing a site. currently not
implemented.

Raises
* ModificationNotAllowed - if object is stored already

* ValueError - if positions are invalid

Note: it is assumed that the order of the new_positions is given in the same order of the one it’s substitut-
ing, i.e. the kind of the site will not be checked.

set_ase (aseatoms)
Load the structure from a ASE object

set_pymatgen (obj, **kwargs)
Load the structure from a pymatgen object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

set_pymatgen_molecule (mol, margin=>5)
Load the structure from a pymatgen Molecule object.

Parameters margin — the margin to be added in all directions of the bounding box of the
molecule.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

set_pymatgen_structure (struct)
Load the structure from a pymatgen Structure object.

Note: periodic boundary conditions are set to True in all three directions.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

sites
Returns a list of sites.

aiida.orm.data.structure.ase_refine_cell (aseatoms, **kwargs)
Detect the symmetry of the structure, remove symmetric atoms and refine unit cell.

Parameters

3.1. Developer’s guide 197

AiiDA documentation, Release 0.5.0

* aseatoms — an ase.atoms.Atoms instance
* symprec — symmetry precision, used by pyspglib
Return newase refined cell with reduced set of atoms

Return symmetry a dictionary describing the symmetry space group

aiida.orm.data.structure.calc_cell_volume (cell)

Calculates the volume of a cell given the three lattice vectors.
It is calculated as cell[0] . (cell[1] x cell[2]), where . represents a dot product and X a cross product.

Parameters cell — the cell vectors; the must be a 3x3 list of lists of floats, no other checks are
done.

Returns the cell volume.

aiida.orm.data.structure.get_£formula (symbol_list, mode="hill’, separator="")

Return a string with the chemical formula.
Parameters
* symbol_1list —alist of symbols,e.g. ["H’ ,’H’, "0’]

* mode - a string to specify how to generate the formula, can assume one of the following
values:

‘hill’ (default): count the number of atoms of each species, then use Hill nota-
tion, i.e. alphabetical order with C and H first if one or several C atom(s) is
(are) present, e.g. ['C’,’H’,'H’,'H’,’0O’,’C’,"H',"H","H’] will return
"C2H60O'" [’S',’0Q","0Q","H’,"0’,"H',"0"] willreturn ' H204S’ From E. A.
Hill, J. Am. Chem. Soc., 22 (8), pp 478494 (1900)

— ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
(rc’,’w’,’d’,"u’,’o0’,’c’, 4’ , "4’ ,'H’,’0’,’0’,"0’] will return
"CH302'

— ‘reduce’: group repeated symbolse.g. ['Ba’, 'Ti’, 'O’, '0O’, 'O', 'Ba’,
ITiI, IOI, IOI’ IOI, ’Ba’, ITiI, ITiI, IOI, IOI, IOI] Wl]l re-
turn ' BaTi03BaTi03BaTi203’

— ‘group’: will try to group as much as possible parts of the formulae.g. [Ba’, ’'Ti’,
IOI, IOV’ IOI, IBaV’ ITiI, IOV’ IOI, IOV’ IBaI, ITiV’ ITiI,
ro’, '0’, '0O'] willreturn ’ (BaTi03)2BaTi203"

— ‘count’: same as hill (i.e. one just counts the number of atoms of each species) without

the re-ordering (take the order of the atomic sites), e.g. [’ Ba’, ’'Ti’, ’'0’, ’'0O',
ro’,’'Ba’, 'Ti’, '0O’, '0O’, '0O’] willreturn ' Ba2Ti206’

— ‘count_compact’: same as count but the number of atoms for each species is divided
by the greatest common divisor of all of them, e.g. [’Ba’, ’'Ti’, ’'0’, '0O',
ro’,’'Ba’, ’'Ti’, 'O’, '0O’, '0O’] willreturn ' BaTi03"

* separator - a string used to concatenate symbols. Default empty.

Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms were appended
by the user is used to group and/or order the symbols in the formula

198

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

aiida.orm.data.structure.get_formula_from symbol_list (_list, separator="")
Return a string with the formula obtained from the list of symbols. Examples: *
[[1,’Ba’1,[1,’Ti’]1, [3,70"]] will return *BaTiO3’" * [[2, [[1, ’Ba’], [1, 'Ti’]]
11 will return * (BaTi) 2’

Parameters
e _list —alist of symbols and multiplicities as obtained from the function group_symbols
* separator — a string used to concatenate symbols. Default empty.

Returns a string

aiida.orm.data.structure.get_formula_group (symbol_list, separator="")
Return a string with the chemical formula from a list of chemical symbols. The formula is written in a compact”
way, i.e. trying to group as much as possible parts of the formula.

Note: it works for instance very well if structure was obtained from an ASE supercell.

Example of result: [’Ba’, ’'Ti’, ’'O’, 'O', 'O’', 'Ba’, ’'Ti’, 'O', 'O’', 'O', 'Ba’,
rtir, 'Ti’, '0O’, '0O’, 'O’ willreturn ' (BaTi03)2BaTi203"’.

Parameters
e symbol_1list - list of symbols (e.g. ['Ba’,;)Ti’,’O’,;/0’,O’])
* separator — a string used to concatenate symbols. Default empty.
Returns a string with the chemical formula for the given structure.
aiida.orm.data.structure.get_pymatgen_ version ()
Returns string with pymatgen version, None if can not import.

aiida.orm.data.structure.get_symbols_string (symbols, weights)
Return a string that tries to match as good as possible the symbols and weights. If there is only one symbol (no
alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups the full string in curly brackets,
and try to write also the composition (with 2 precision only). If (sum of weights<1), we indicate it with the X
symbol followed by 1-sum(weights) (still with 2 digits precision, so it can be 0.00)

Parameters
* symbols — the symbols as obtained from <kind>._symbols

* weights — the weights as obtained from <kind>._weights

Note: Note the difference with respect to the symbols and the symbol properties!

aiida.orm.data.structure.get_valid_pbc (inputpbc)
Return a list of three booleans for the periodic boundary conditions, in a valid format from a generic input.

Raises ValueError if the format is not valid.

aiida.orm.data.structure.group_symbols (_list)
Group a list of symbols to a list containing the number of consecutive identical symbols, and the symbol itself.

Examples:
e['Ba’,’Ti’,’0O’,"0’,"0’,"Ba’] willreturn [[1,'Ba’], [1,'Ti"], [3,’0"1,[1,"Ba’]ll
[[[1,’Ba"], [1,'Ti"]) 1,[[1,’Ba’],[1,'Ti’] 1 1 will return [[2, [[1,
"Ba’"l, [1, 'Ti"]1 1 11

Parameters _1ist — alist of elements representing a chemical formula

3.1. Developer’s guide 199

AiiDA documentation, Release 0.5.0

Returns a list of length-2 lists of the form [multiplicity , element]

aiida.orm.data.structure.has_ase()

Returns True if the ase module can be imported, False otherwise.
aiida.orm.data.structure.has_pymatgen ()

Returns True if the pymatgen module can be imported, False otherwise.
aiida.orm.data.structure.has_pyspglib ()

Returns True if the pyspglib module can be imported, False otherwise.

aiida.orm.data.structure.has_vacancies (weights)
Returns True if the sum of the weights is less than one. It uses the internal variable _sum_threshold as a
threshold. :param weights: the weights :return: a boolean

aiida.orm.data.structure.is_ase_atoms (ase_atoms)
Check if the ase_atoms parameter is actually a ase.Atoms object.

Parameters ase_atoms — an object, expected to be an ase.Atoms.
Returns a boolean.
Requires the ability to import ase, by doing ‘import ase’.

aiida.orm.data.structure.is_valid_symbol (symbol)
Validates the chemical symbol name.

Returns True if the symbol is a valid chemical symbol (with correct capitalization), False otherwise.
Recognized symbols are for elements from hydrogen (Z=1) to lawrencium (Z=103).

aiida.orm.data.structure.symop_fract_from_ortho (cell)
Creates a matrix for conversion from fractional to orthogonal coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell - array of cell parameters (three lengths and three angles)

aiida.orm.data.structure.symop_ortho_from_fract (cell)
Creates a matrix for conversion from orthogonal to fractional coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell - array of cell parameters (three lengths and three angles)

aiida.orm.data.structure.validate_symbols_tuple (symbols_tuple)
Used to validate whether the chemical species are valid.

Parameters symbols_tuple — a tuple (or list) with the chemical symbols name.

Raises ValueError if any symbol in the tuple is not a valid chemical symbols (with correct capital-
ization).

Refer also to the documentation of :func:is_valid_symbol

aiida.orm.data.structure.validate_weights_tuple (weights_tuple, threshold)
Validates the weight of the atomic kinds.

Raise ValueError if the weights_tuple is not valid.
Parameters

* weights_tuple - the tuple to validate. It must be a a tuple of floats (as created by
:func:_create_weights_tuple).

200 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

* threshold - a float number used as a threshold to check that the sum of the weights is
<=1.

If the sum is less than one, it means that there are vacancies. Each element of the list must be >= 0, and the sum
must be <= 1.

Folder
class aiida.orm.data.folder.FolderData (**kwargs)
Stores a folder with subfolders and files.

No special attributes are set.

get_file_content (path)
Return the content of a path stored inside the folder as a string.

Raises NotExistent if the path does not exist.

replace_with_folder (folder, overwrite=True)
Replace the data with another folder, always copying and not moving the original files.

Args: folder: the folder to copy from overwrite: if to overwrite the current content or not

Singlefile Implement subclass for a single file in the permanent repository files = [one_single_file] jsons = { }
methods: * get_content * get_path * get_aiidaurl (?) * get_mdS5 * ...
To discuss: do we also need a simple directory class for full directories in the perm repo?

class aiida.orm.data.singlefile.SinglefileData (**kwargs)
Pass as input a file parameter with the (absolute) path of a file on the hard drive. It will get copied inside the
node.

Internally must have a single file, and stores as internal attribute the filename in the ‘filename’ attribute.

add_path (src_abs, dst_filename=None)
Add a single file

del_file (filename)
Remove a file from SingleFileData :param filename: name of the file stored in the DB

filename
Returns the name of the file stored

get_file abs_path()
Return the absolute path to the file in the repository

set_file (filename)
Add a file to the singlefiledata :param filename: absolute path to the file

Upf This module manages the UPF pseudopotentials in the local repository.

classaiida.orm.data.upf.UpfData (**kwargs)
Function not yet documented.

classmethod £rom_md5 (md5)
Return a list of all UPF pseudopotentials that match a given MDS5 hash.

Note that the hash has to be stored in a _md5 attribute, otherwise the pseudo will not be found.

classmethod get_or_create (filename, use_first=False, store_upf=True)
Pass the same parameter of the init; if a file with the same md5 is found, that UpfData is returned.

3.1. Developer’s guide 201

AiiDA documentation, Release 0.5.0

Parameters
¢ filename — an absolute filename on disk

* use_first —if False (default), raise an exception if more than one potential is found. If
it is True, instead, use the first available pseudopotential.

* store_upf (bool) — If false, the UpfData objects are not stored in the database. de-
fault=True.
Return (upf, created) where upf is the UpfData object, and create is either True if the object

was created, or False if the object was retrieved from the DB.

get_upf family names ()
Get the list of all upf family names to which the pseudo belongs

classmethod get_upf_ group (group_name)
Return the UpfFamily group with the given name.

classmethod get_upf_ groups (filter_elements=None, user=None)
Return all names of groups of type UpfFamily, possibly with some filters.
Parameters

e filter elements — A string or a list of strings. If present, returns only the groups
that contains one Upf for every element present in the list. Default=None, meaning that

all families are returned.
* user — if None (default), return the groups for all users. If defined, it should be either a

DbUser instance, or a string for the username (that is, the user email).

set_file (filename)
I pre-parse the file to store the attributes.

store (*args, **kwargs)
Store the node, reparsing the file so that the md5 and the element are correctly reset.

aiida.orm.data.upf.get_pseudos_from_structure (structure, family_name)
Given a family name (a UpfFamily group in the DB) and a AiiDA structure, return a dictionary associating each

kind name with its UpfData object.
Raises
* MultipleObjectsError — if more than one UPF for the same element is found in the
group.

* NotExistent —if no UPF for an element in the group is found in the group.

aiida.orm.data.upf.parse_upf (fname, check_filename=True)
Try to get relevant information from the UPF. For the moment, only the element name. Note that even UPF v.2

cannot be parsed with the XML minidom! (e.g. due to the & characters in the human-readable section).
If check_filename is True, raise a ParsingError exception if the filename does not start with the element name.

aiida.orm.data.upf.upload_upf_ family (folder, group_name, group_description,
stop_if_existing=True)
Upload a set of UPF files in a given group.
Parameters
* folder - a path containing all UPF files to be added. Only files ending in .UPF (case-
insensitive) are considered.

* group_name — the name of the group to create. If it exists and is non-empty, a Unique-
nessError is raised.

202 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

* group_description — a string to be set as the group description. Overwrites previous
descriptions, if the group was existing.

* stop_if_ existing-if True, check for the mdS5 of the files and, if the file already exists
in the DB, raises a MultipleObjectsError. If False, simply adds the existing UPFData node
to the group.

Cif
class aiida.orm.data.cif.CifData (**kwargs)
Wrapper for Crystallographic Interchange File (CIF)

Note: the file (physical) is held as the authoritative source of information, so all conversions are done through
the physical file: when setting ase or values, a physical CIF file is generated first, the values are updated

from the physical CIF file.

ase
ASE object, representing the CIF.

Note: requires ASE module.

classmethod £rom_md5 (md5)
Return a list of all CIF files that match a given MDS5 hash.

Note: the hash has to be stored in a _md5 attribute, otherwise the CIF file will not be found.

generate_md5 ()
Generate MD5 hash of the file’s contents on-the-fly.

get_ase (**kwargs)
Returns ASE object, representing the CIF. This function differs from the property ase by the possibility
to pass the keyworded arguments (kwargs) to ase.io.cif.read_cif().

Note: requires ASE module.

get_formulae (mode="sum’)
Get the formula.

classmethod get_or_create (filename, use_first=False, store_cif=True)
Pass the same parameter of the init; if a file with the same md5 is found, that CifData is returned.

Parameters
e filename — an absolute filename on disk

* use_first —if False (default), raise an exception if more than one CIF file is found. If
it is True, instead, use the first available CIF file.

* store_cif (bool) — If false, the CifData objects are not stored in the database. de-
fault=True.

Return (cif, created) where cif is the CifData object, and create is either True if the object was
created, or False if the object was retrieved from the DB.

get_spacegroup_numbers ()
Get the spacegroup international number.

3.1. Developer’s guide 203

AiiDA documentation, Release 0.5.0

has_attached_hydrogens ()
Check if there are hydrogens without coordinates, specified as attached to the atoms of the structure.
:return: True if there are attached hydrogens, False otherwise.

has_partial_occupancies ()
Check if there are float values in the atom occupancies. :return: True if there are partial occupancies, False
otherwise.

set_file (filename)
Set the file. If the source is set and the MDS5 checksum of new file is different from the source, the source
has to be deleted.

store (*args, **kwargs)
Store the node.

values
PyCifRW structure, representing the CIF datablocks.

Note: requires PyCifRW module.

aiida.orm.data.cif.cif_from_ase (ase, full_occupancies=False, add_fake_biso=False)
Construct a CIF datablock from the ASE structure. The code is taken from
https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif, as the original ASE code contains a
bug in printing the Hermann-Mauguin symmetry space group symbol.

Parameters ase — ASE “images”

Returns array of CIF datablocks
aiida.orm.data.cif.has_pycifrw ()

Returns True if the PyCifRW module can be imported, False otherwise.

aiida.orm.data.cif.parse_formula (formula)
Parses the Hill formulae, written with spaces for separators.

aiida.orm.data.cif.pycifrw_from cif (datablocks, loops={}, names=None)
Constructs PyCifRW’s CifFile from an array of CIF datablocks.

Parameters
* datablocks — an array of CIF datablocks
* loops — optional list of lists of CIF tag loops.
* names — optional list of datablock names
Returns CifFile

aiida.orm.data.cif.symop_string from_symop_matrix_tr (matrix, tr=[0, 0, 0], eps=0)
Construct a CIF representation of symmetry operator plus translation. See International Tables for Crystallog-
raphy Vol. A. (2002) for definition.

Parameters
* matrix — 3x3 matrix, representing the symmetry operator
* tr —translation vector of length 3 (default [0, 0, 0])
* eps — epsilon parameter for fuzzy comparison x ==

Returns CIF representation of symmetry operator

204 Chapter 3. Developer’s guide

https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif

AiiDA documentation, Release 0.5.0

Parameter
class aiida.orm.data.parameter.ParameterData (**kwargs)
Pass as input in the init a dictionary, and it will get stored as internal attributes.

Usual rules for attribute names apply (in particular, keys cannot start with an underscore). If this is the case, a
ValueError will be raised.

You can then change/delete/add more attributes before storing with the usual methods of aiida.orm.Node

dict
To be used to get direct access to the underlying dictionary with the syntax node.dict.key or
node.dict[’key’].

Returns an instance of the AttributeResultManager.

get_dict ()
Return a dict with the parameters

keys ()
Iterator of valid keys stored in the ParameterData object

set_dict (dict)
Replace the current dictionary with another one.

Parameters dict — The dictionary to set.

update_dict (dict)
Update the current dictionary with the keys provided in the dictionary.

Parameters dict — a dictionary with the keys to substitute. It works like dict.update(), adding
new keys and overwriting existing keys.

Remote
class aiida.orm.data.remote.RemoteData (**kwargs)
Store a link to a file or folder on a remote machine.

Remember to pass a computer!

add_path (src_abs, dst_filename=None)
Disable adding files or directories to a RemoteData

is_empty ()
Check if remote folder is empty

ArrayData

class aiida.orm.data.array.ArrayData (*args, **kwargs)
Store a set of arrays on disk (rather than on the database) in an efficient way using numpy.save() (therefore, this
class requires numpy to be installed).

Each array is stored within the Node folder as a different .npy file.

Note Before storing, no caching is done: if you perform a get_array () call, the array will be
re-read from disk. If instead the ArrayData node has already been stored, the array is cached in
memory after the first read, and the cached array is used thereafter. If too much RAM memory
is used, you can clear the cache with the clear internal_ cache () method.

arraynames ()
Return a list of all arrays stored in the node, listing the files (and not relying on the properties).

3.1. Developer’s guide 205

AiiDA documentation, Release 0.5.0

clear_internal_ cache()
Clear the internal memory cache where the arrays are stored after being read from disk (used in order
to reduce at minimum the readings from disk). This function is useful if you want to keep the node in
memory, but you do not want to waste memory to cache the arrays in RAM.

delete_array (name)
Delete an array from the node. Can only be called before storing.

Parameters name — The name of the array to delete from the node.

get_array (name)
Return an array stored in the node

Parameters name — The name of the array to return.

get_shape (name)
Return the shape of an array (read from the value cached in the properties for efficiency reasons).

Parameters name — The name of the array.

iterarrays ()
Iterator that returns tuples (name, array) for each array stored in the node.

set_array (name, array)
Store a new numpy array inside the node. Possibly overwrite the array if it already existed.

Internally, it stores a name.npy file in numpy format.
Parameters
* name — The name of the array.

* array — The numpy array to store.

ArrayData subclasses The following are Data classes inheriting from ArrayData.

KpointsData This module defines the classes related to band structures or dispersions in a Brillouin zone, and how
to operate on them.

class aiida.orm.data.array.kpoints.KpointsData (*args, **kwargs)
Class to handle array of kpoints in the Brillouin zone. Provide methods to generate either user-defined k-points
or path of k-points along symmetry lines. Internally, all k-points are defined in terms of crystal (fractional)
coordinates. Cell and lattice vector coordinates are in Angstroms, reciprocal lattice vectors in Angstrom”-1 .
:note: The methods setting and using the Bravais lattice info assume the PRIMITIVE unit cell is provided in
input to the set_cell or set_cell_from_structure methods.

cell
The crystal unit cell. Rows are the crystal vectors in Angstroms. :return: a 3x3 numpy.array

get_kpoints (also_weights=False, cartesian="False)
Return the list of kpoints

Parameters
* also_weights —if True, returns also the list of weights. Default = False

* cartesian—if True, returns points in cartesian coordinates, otherwise, returns in crystal
coordinates. Default = False.

get_kpoints_mesh (print_list=False)
Get the mesh of kpoints.

Parameters print_1list — default=False. If True, prints the mesh of kpoints as a list

206 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Raises AttributeError if no mesh has been set

Return mesh,offset (if print_list=False) a list of 3 integers and a list of three floats O<x<l1, rep-
resenting the mesh and the offset of kpoints

Return kpoints (if print_list = True) an explicit list of kpoints coordinates, similar to what re-
turned by get_kpoints()

labels
Labels associated with the list of kpoints. List of tuples with kpoint index and kpoint name:
[(0,G*),(13,M’),...]

pbc
The periodic boundary conditions along the vectors al,a2,a3.

Returns a tuple of three booleans, each one tells if there are periodic boundary conditions for
the i-th real-space direction (i=1,2,3)

set_cell (cell, ppc=None)
Set a cell to be used for symmetry analysis. To set a cell from an AiiDA structure, use
“set_cell_from_structure”.

Parameters

¢ cell - 3x3 matrix of cell vectors. Orientation: each row represent a lattice vector. Units
are Angstroms.

e pbc — list of 3 booleans, True if in the nth crystal direction the structure is periodic.
Default = [True,True, True]

set_cell_ from structure (structuredata)
Set a cell to be used for symmetry analysis from an AiiDA structure. Inherits both the cell and the pbc’s.
To set manually a cell, use “set_cell”

Parameters structuredata — an instance of StructureData

set_kpoints (kpoints, cartesian=False, labels=None, weights=None, fill_values=0)
Set the list of kpoints. If a mesh has already been stored, raise a ModificationNotAllowed

Parameters

* kpoints — a list of kpoints, each kpoint being a list of one, two or three coordinates,
depending on self.pbc: if structure is 1D (only one True in self.pbc) one allows singletons
or scalars for each k-point, if it’s 2D it can be a length-2 list, and in all cases it can be a
length-3 list. Examples:

- [[0.,0.,0.]1,[0.1,0.1,0.1]....] for 1D, 2D or 3D
- [[0.,0.1,[0.1,0.1,],...] for 1D or 2D

- [[0.],[0.1]....] for 1D

- [0., 0.1, ...] for 1D (list of scalars)

For OD (all pbc are False), the list can be any of the above or empty - then only Gamma
point is set. The value of k for the non-periodic dimension(s) is set by fill_values

* cartesian - if True, the coordinates given in input are treated as in cartesian units. If
False, the coordinates are crystal, i.e. in units of bl,b2,b3. Default = False

* labels - optional, the list of labels to be set for some of the kpoints. See labels for more
info

* weights — optional, a list of floats with the weight associated to the kpoint list

3.1.

Developer’s guide 207

AiiDA documentation, Release 0.5.0

e £ill values — scalar to be set to all non-periodic dimensions (indicated by False in
self.pbc), or list of values for each of the non-periodic dimensions.

set_kpoints_mesh (mesh, offset=[0.0, 0.0, 0.0])
Set KpointsData to represent a uniformily spaced mesh of kpoints in the Brillouin zone. This excludes the
possibility of set/get kpoints

Parameters
* mesh — a list of three integers, representing the size of the kpoint mesh along b1,b2,b3.

e offset ((optional)) — a list of three floats between 0 and 1. [0.,0.,0.] is Gamma centered
mesh [0.5,0.5,0.5] is half shifted [1.,1.,1.] by periodicity should be equivalent to [0.,0.,0.]
Default = [0.,0.,0.].

TrajectoryData
class aiida.orm.data.array.trajectory.TrajectoryData (*args, **kwargs)
Stores a trajectory (a sequence of crystal structures with timestamps, and possibly with velocities).

get_cells ()
Return the array of cells, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_positions ()
Return the array of positions, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_step_data (index)
Return a tuple with all information concerning the step with given index (0 is the first step, 1 the second
step and so on). If you know only the step value, use the get_step_index () method to get the
corresponding index.

If no velocities were specified, None is returned as the last element.

Returns A tuple in the format (step, time, cell, symbols, positions,
velocities), where step is an integer, time is a float, cell is a 3 X 3 matrix,
symbols is an array of length n, positions is a n x 3 array, and velocities is either None or
an x 3 array

Parameters index — The index of the step that you want to retrieve, from 0 to
self.numsteps - 1.

Raises
* IndexError — if you require an index beyond the limits.
* KeyError — if you did not store the trajectory yet.

get_step_index (step)
Given a value for the step (i.e., a value among those of the steps array), return the array index of that
step, that can be used in other methods such as get_step data () or step_to_structure ().

Note: Note that this function returns the first index found (i.e. if multiple steps are present with the same
value, only the index of the first one is returned).

Raises ValueError if no step with the given value is found.

get_steps ()
Return the array of steps, if it has already been set.

208 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Raises KeyError if the trajectory has not been set yet.

get_symbols ()
Return the array of symbols, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_times ()
Return the array of times (in ps), if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_velocities ()
Return the array of velocities, if it has already been set.

Note: This function (differently from all other get_ x functions, will not raise an exception if the veloci-
ties are not set, but rather return None (both if no trajectory was not set yet, and if it the trajectory was set

but no velocities were specified).

numsites
Return the number of stored sites, or zero if nothing has been stored yet.

numsteps
Return the number of stored steps, or zero if nothing has been stored yet.

set_ structurelist (structurelist)
Create trajectory from the listof aiida.orm.data.structure.StructureData instances.

Parameters structurelist —alistofaiida.orm.data.structure.StructureData

instances.
Raises ValueError if symbol lists of supplied structures are different

set_trajectory (steps, cells, symbols, positions, times=None, velocities=None)

Store the whole trajectory, after checking that types and dimensions are correct. Velocities are optional, if

they are not passed, nothing is stored.
Parameters

* steps - integer array with dimension s, where s is the number of steps. Typically rep-
resents an internal counter within the code. For instance, if you want to store a trajectory
with one step every 10, starting from step 65, the array will be [65, 75,85, ...]. No
checks are done on duplicate elements or on the ordering, but anyway this array should be
sorted in ascending order, without duplicate elements. If your code does not provide an
internal counter, just provide for instance arange (s).

* cells —float array with dimension s x 3 x 3, where s is the length of the steps array.
Units are angstrom. In particular, cells[1i, j, k] is the k-th component of the j-th
cell vector at the time step with index i (identified by step number step[i] and with
timestamp times [1]).

* symbols — string array with dimension n, where n is the number of atoms (i.e., sites) in
the structure. The same array is used for each step. Normally, the string should be a valid
chemical symbol, but actually any unique string works and can be used as the name of the
atomic kind (see also the step_to_structure () method).

* positions - float array with dimension s X n x 3, where s is the length of the steps
array and n is the length of the symbols array. Units are angstrom. In particular,
positions[i, j, k] is the k-th component of the j-th atom (or site) in the structure
at the time step with index i (identified by step number step [1] and with timestamp
times[1]).

3.1. Developer’s guide

209

AiiDA documentation, Release 0.5.0

* times — if specified, float array with dimension s, where s is the length of the steps
array. Contains the timestamp of each step in picoseconds (ps).

* velocities - if specified, must be a float array with the same dimensions of the
positions array. The array contains the velocities in the atoms.

Todo

Choose suitable units for velocities

step_to_structure (index, custom_kinds=None)
Return an AiiDA aiida.orm.data.structure.StructureData node (not stored yet!) with
the coordinates of the given step, identified by its index. If you know only the step value, use the
get_step_index () method to get the corresponding index.

Note: The periodic boundary conditions are always set to True.

Parameters

* index — The index of the step that you want to retrieve, from 0 to self.numsteps—
1.

* custom_kinds - (Optional) If passed must be a list of
aiida.orm.data.structure.Kind objects. There must be one kind ob-
ject for each different string in the symbols array, with kind.name set to
this string. If this parameter is omitted, the automatic kind generation of AiiDA
aiida.orm.data.structure.StructureData nodes is used, meaning that the
strings in the symbols array must be valid chemical symbols.

ORM documentation: Calculations

class aiida.orm.calculation.Calculation (**kwargs)
This class provides the definition of an “abstract” AiiDA calculation. A calculation in this sense is any compu-
tation that converts data into data.

You will typically use one of its subclasses, often a JobCalculation for calculations run via a scheduler.

get_code ()
Return the code for this calculation, or None if the code was not set.

get_linkname (link, *args, **kwargs)
Return the linkname used for a given input link

Pass as parameter “NAME” if you would call the use_ NAME method. If the use_ NAME method requires
a further parameter, pass that parameter as the second parameter.

logger
Get the logger of the Calculation object, so that it also logs to the DB.

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ embedded
class aiida.orm.calculation.inline.InlineCalculation (**kwargs)
Subclass used for calculations that are automatically generated using the make_inline wrapper/decorator.

This is used to automatically create a calculation node for a simple calculation

get_function_name ()
Get the function name.

Returns a string

210 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

aiida.orm.calculation.inline.make_inline (func)

This make_inline wrapper/decorator takes a function with specific requirements, runs it and stores the result as
an InlineCalculation node. It will also store all other nodes, including any possibly unstored input node! The
return value of the wrapped calculation will also be slightly changed, see below.

The wrapper:
echecks that the function name ends with the string / _inline’
echecks that each input parameter is a valid Data node (can be stored or unstored)
eruns the actual function
egets the result values

echecks that the result value is a dictionary, where the key are all strings and the values are all unstored
data nodes

ecreates an InlineCalculation node, links all the kwargs as inputs and the returned nodes as outputs, using
the keys as link labels

estores all the nodes (including, possibly, unstored input nodes given as kwargs)

ereturns a length-two tuple, where the first element is the InlineCalculation node, and the second is the
dictionary returned by the wrapped function

To use this function, you can use it as a decorator of a wrapped function:

@make_inline
def copy_inline (source):
return {copy: source.copy ()}

In this way, every time you call copy_inline, the wrapped version is actually called, and the return value will be
a tuple with the InlineCalculation instance, and the returned dictionary. For instance, if s is a valid Data node,
with the following lines:

c, s_copy_dict = copy_inline (source=s)
s_copy = s_copy_dict['copy']

c will contain the new InlineCalculation instance, s_copy the (stored) copy of s (with the side effect
that, if s was not stored, after the function call it will be automatically stored).

Note If you use a wrapper, make sure to write explicitly in the docstrings that the function is going
to store the nodes.

The second possibility, if you want that by default the function does not store anything, but can be wrapped
when it is necessary, is the following. You simply define the function you want to wrap (copy_inline in the
example above) without decorator:

def copy_inline (source) :
return {copy: source.copy ()}

This is a normal function, so to call it you will normally do:

s_copy_dict = copy_inline(s)

while if you want to wrap it, so that an InlineCalculation is created, and everything is stored, you will
run:

c, s_copy_dict = make_inline (f) (s=s)

Note that, with the wrapper, all the parameters to £ () have to be passed as keyworded arguments. Moreover,
the return value is different, i.e. (c, s_copy_dict) instead of simply s_copy_dict.

3.1.

Developer’s guide 211

AiiDA documentation, Release 0.5.0

Note: EXTREMELY IMPORTANT! The wrapped function MUST have the following requirements in order
to be reproducible. These requirements cannot be enforced, but must be followed when writing the wrapped

function.

*The function MUST NOT USE information that is not passed in the kwargs. In particular, it cannot read
files from the hard-drive (that will not be present in another user’s computer), it cannot connect to external
databases and retrieve the current entries in that database (that could change over time), etc.

*The only exception to the above rule is the access to the AiiDA database for the parents of the input nodes.
That is, you can take the input nodes passed as kwargs, and use also the data given in their inputs, the
inputs of their inputs, ... but you CANNOT use any output of any of the above-mentioned nodes (that
could change over time).

*The function MUST NOT have side effects (creating files on the disk, adding entries to an external
database, ...).

Note: The function will also store:

ethe source of the function in an attribute “source_code”, and the first line at which the function appears
(attribute “first_line_source_code”), as returned by inspect.getsourcelines;

othe full source file in “source_file”, if it is possible to retrieve it (this will be set to None otherwise, e.g. if
the function was defined in the interactive shell).

For this reason, try to keep, if possible, all the code to be run within the same file, so that it is possible to keep the
provenance of the functions that were run (if you instead call a function in a different file, you will never know
in the future what that function did). If you call external modules and you matter about provenance, if would be
good to also return in a suitable dictionary the version of these modules (e.g., after importing a module XXX,
you can check if the module defines a variable XXX.__version__ or XXX.VERSION or something similar, and
store it in an output node).

Todo For the time being, I am storing the function source code and the full source code file in the
attributes of the calculation. To be moved to an input Code node!

Note All nodes will be stored, including unstored input nodes!!
Parameters kwargs — all kwargs are passed to the wrapped function

Returns a length-two tuple, where the first element is the InlineCalculation node, and the second is
the dictionary returned by the wrapped function. All nodes are stored.

Raises

* TypeError — if the return value is not a dictionary, the keys are not strings, or the values
are not data nodes. Raise also if the input values are not data nodes.

* ModificationNotAllowed - if the returned Data nodes are already stored.
* Exception — All other exceptions from the wrapped function are not catched.
aiida.orm.calculation.inline.optional_inline (func)
optional_inline wrapper/decorator takes a function, which can be called either as wrapped in InlineCalculation

or a simple function, depending on ‘store’ keyworded argument (True stands for InlineCalculation, False for
simple function). The wrapped function has to adhere to the requirements by make_inline wrapper/decorator.

Usage example:

212 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

@Qoptional_inline
def copy_inline (source=None) :
return {'copy': source.copy ()}

Function copy_inline will be wrapped in InlineCalculation when invoked in following way:

copy_inline (source=node, store=True)

while it will be called as a simple function when invoked:

copy_inline (source=node)

In any way the copy_inline will return the same results.

class aiida.orm.calculation. job.CalculationResultManager (calc)
An object used internally to interface the calculation object with the Parser and consequentially with the Param-
eterData object result. It shouldn’t be used explicitely by a user.

__init_ (calc)
Parameters calc — the calculation object.

classaiida.orm.calculation. job.JobCalculation (**kwargs)
This class provides the definition of an AiiDA calculation that is run remotely on a job scheduler.

get_append_text ()
Get the calculation-specific append text, which is going to be appended in the scheduler-job script, just
after the code execution.

get_custom_scheduler_commands ()
Return a (possibly multiline) string with the commands that the user wants to manually set for the sched-
uler. See also the documentation of the corresponding set_ method.

Returns the custom scheduler command, or an empty string if no custom command was defined.

get_environment_variables ()
Return a dictionary of the environment variables that are set for this calculation.

Return an empty dictionary if no special environment variables have to be set for this calculation.

get_import_sys_environment ()
To check if it’s loading the system environment on the submission script.

Returns a boolean. If True the system environment will be load.

get_job_id()
Get the scheduler job id of the calculation.

Returns a string

get_max memory_ kb ()
Get the memory (in KiloBytes) requested to the scheduler.

Returns an integer

get_max wallclock_ seconds ()
Get the max wallclock time in seconds requested to the scheduler.

Returns an integer

get_mpirun_extra_params ()
Return a list of strings, that are the extra params to pass to the mpirun (or equivalent) command after the
one provided in computer.mpirun_command. Example: mpirun -np 8 extra_params[0] extra_params[1] ...
exec.x

3.1. Developer’s guide 213

AiiDA documentation, Release 0.5.0

Return an empty list if no parameters have been defined.

get_parser_ name ()
Return a string locating the module that contains the output parser of this calculation, that will be searched
in the ‘aiida/parsers/plugins’ directory. None if no parser is needed/set.

Returns a string.

get_parserclass ()
Return the output parser object for this calculation, or None if no parser is set.

Returns a Parser class.
Raise MissingPluginError from ParserFactory no plugin is found.

get_prepend_text ()
Get the calculation-specific prepend text, which is going to be prepended in the scheduler-job script, just
before the code execution.

get_priority ()
Get the priority, if set, of the job on the cluster.

Returns a string or None

get_queue_name ()
Get the name of the queue on cluster.

Returns a string or None.

get_resources (full=False)
Returns the dictionary of the job resources set.

Parameters full — if True, also add the default values, e.g.
default_mpiprocs_per_machine

Returns a dictionary

get_retrieved_node ()
Return the retrieved data folder, if present.

Returns the retrieved data folder object, or None if no such output node is found.
Raises MultipleObjectsError if more than one output node is found.

get_scheduler_error ()
Return the output of the scheduler error (a string) if the calculation has finished, and output node is present,
and the output of the scheduler was retrieved.

Return None otherwise.

get_scheduler_output ()
Return the output of the scheduler output (a string) if the calculation has finished, and output node is
present, and the output of the scheduler was retrieved.

Return None otherwise.

get_scheduler_state()
Return the status of the calculation according to the cluster scheduler.

Returns a string.

get_state (from_attribute=False)
Get the state of the calculation.

Note: the ‘most recent” state is obtained wusing the logic in the
aiida.common.datastructures.sort_states function.

214

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Todo

Understand if the state returned when no state entry is found in the DB is the best choice.

Parameters from_attribute - if set to True, read it from the attributes (the attribute is also
set with set_state, unless the state is set to IMPORTED:; in this way we can also see the state
before storing).

Returns a string. If from_attribute is True and no attribute is found, return None. If
from_attribute is False and no entry is found in the DB, also return None.

get_withmpi ()
Get whether the job is set with mpi execution.

Returns a boolean. Default=True.

has_failed()
Get whether the calculation is in a failed status, i.e. SUBMISSIONFAILED, RETRIEVALFAILED, PARS-
INGFAILED or FAILED.

Returns a boolean

has_finished ok /()
Get whether the calculation is in the FINISHED status.

Returns a boolean

kill ()
Kill a calculation on the cluster.

Can only be called if the calculation is in status WITHSCHEDULER.

The command tries to run the kill command as provided by the scheduler, and raises an exception is
something goes wrong. No changes of calculation status are done (they will be done later by the calculation
manager).

res
To be used to get direct access to the parsed parameters.

Returns an instance of the CalculationResultManager.

Note a practical example on how it is meant to be used: let’s say that there is a key ‘energy’ in the
dictionary of the parsed results which contains a list of floats. The command calc.res.energy
will return such a list.

set_append_text (val)
Set the calculation-specific append text, which is going to be appended in the scheduler-job script, just
after the code execution.

Parameters val — a (possibly multiline) string

set_custom_scheduler_commands (val)
Set a (possibly multiline) string with the commands that the user wants to manually set for the scheduler.

The difference of this method with respect to the set_prepend_text is the position in the scheduler sub-
mission file where such text is inserted: with this method, the string is inserted before any non-scheduler
command.

set_environment variables (env_vars_dict)
Set a dictionary of custom environment variables for this calculation.

3.1.

Developer’s guide 215

AiiDA documentation, Release 0.5.0

Both keys and values must be strings.

In the remote-computer submission script, it’s going to export variables as export
"keys’="values’

set_import_sys_environment (val)
If set to true, the submission script will load the system environment variables.

Parameters val (bool) —load the environment if True

set_max_memory_kb (val)
Set the maximum memory (in KiloBytes) to be asked to the scheduler.

Parameters val — an integer. Default=None

set_max_wallclock_seconds (val)
Set the wallclock in seconds asked to the scheduler.

Parameters val — An integer. Default=None

set_mpirun_extra_params (extra_params)
Set the extra params to pass to the mpirun (or equivalent) command after the one provided in com-
puter.mpirun_command. Example: mpirun -np 8 extra_params[(0] extra_params[1] ... exec.x

Parameters extra_params — must be a list of strings, one for each extra parameter

set_parser_name (parser)
Set a string for the output parser Can be None if no output plugin is available or needed.

Parameters parser — a string identifying the module of the parser. Such module must be
located within the folder ‘aiida/parsers/plugins’

set_prepend_text (val)
Set the calculation-specific prepend text, which is going to be prepended in the scheduler-job script, just
before the code execution.

See also set_custom_scheduler_commands
Parameters val — a (possibly multiline) string

set_priority (val)
Set the priority of the job to be queued.

Parameters val — the values of priority as accepted by the cluster scheduler.

set_queue_name (val)
Set the name of the queue on the remote computer.

Parameters val (str) — the queue name

set_resources (resources_dict)
Set the dictionary of resources to be used by the scheduler plugin, like the number of nodes, cpus, ... This
dictionary is scheduler-plugin dependent. Look at the documentation of the scheduler. (scheduler type can
be found with calc.get_computer().get_scheduler_type())

set_withmpi (val)
Set the calculation to use mpi.

Parameters val — A boolean. Default=True

store (*args, **kwargs)
Override the store() method to store also the calculation in the NEW state as soon as this is stored for the
first time.

216 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

submit ()
Puts the calculation in the TOSUBMIT status.

Actual submission is performed by the daemon.

submit_test (folder=None, subfolder_name=None)
Test submission, creating the files in a local folder.

Note this submit_test function does not require any node (neither the calculation nor the input
links) to be stored yet.

Parameters

* folder — A Folder object, within which each calculation files are created; if not passed,
a subfolder ‘submit_test’ of the current folder is used.

* subfolder name — the name of the subfolder to use for this calculation (within
Folder). If not passed, a unique string starting with the date and time in the format
yymmdd—-HHMMS S— is used.

Quantum Espresso - PW Plugin to create a Quantum Espresso pw.x file.

class aiida.orm.calculation. job.quantumespresso.pw.PwCalculation (**kwargs)

Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution. For more information, refer to
http://www.quantum-espresso.org/

Quantum Espresso - PW immigrant Plugin to immigrate a Quantum Espresso pw.x job that was not run using
AiiDa.

class aiida.orm.calculation. job.quantumespresso.pwimmigrant .PwimmigrantCalculation (**kwargs)

Create a PwCalculation object that can be used to import old jobs.

This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation with slight modifications to some of
the class variables and additional methods that

1.parse the job’s input file to create the calculation’s input nodes that would exist if the calculation were
submitted using AiiDa,

2.bypass the functions of the daemon, and prepare the node’s attributes such that all the processes (copying
of the files to the repository, results parsing, ect.) can be performed

Note: The keyword arguments of PwCalculation are also available.

Parameters

* remote_workdir (str) — Absolute path to the directory where the job was run. The
transport of the computer you link ask input to the calculation is the transport that will
be used to retrieve the calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

* input_file_ name (str) — The file name of the job’s input file.
* output_file_name (str) — The file name of the job’s output file (i.e. the file containing

the stdout of QE).

create_input_nodes (open_transport, input_file_name=None, output_file_name=None, re-

mote_workdir=None)
Create calculation input nodes based on the job’s files.

3.1.

Developer’s guide 217

http://www.quantum-espresso.org/

AiiDA documentation, Release 0.5.0

Parameters open_transport (aiida.transport.plugins.local. LocalTransport | ai-
ida.transport.plugins.ssh.SshTransport) — An open instance of the transport class of
the calculation’s computer. See the tutorial for more information.

This method parses the files in the job’s remote working directory to create the input nodes that would
exist if the calculation were submitted using AiiDa. These nodes are

*a 'parameters’ ParameterData node, based on the namelists and their variable-value pairs;
*a ' kpoints’ KpointsData node, based on the K_POINTS card;

°a ’structure’ StructureData node, based on the ATOMIC_POSITIONS and
CELL_PARAMETERS cards;

eone ' pseudo_X’ UpfData node for the pseudopotential used for the atomic species with name X,
as specified in the ATOMIC_SPECIES card,

*a ' settings’ ParameterData node, if there are any fixed coordinates, or if the gamma kpoint is
used;

and can be retrieved as a dictionary using the get_inputs_dict () method. These input links are
cached-links; nothing is stored by this method (including the calculation node itself).

Note: QE stores the calculation’s pseudopotential files in the <outdir>/<prefix>.save/ subfolder
of the job’s working directory, where outdir and prefix are QE CONTROL variables (see pw input

file description). This method uses these files to either get—if the a node already exists for the pseudo—or
create a UpfData node for each pseudopotential.

Keyword arguments

Note: These keyword arguments can also be set when instantiating the class or using the set__ methods
(e.g. set_remote_workdir). Offering to set them here simply offers the user an additional place to

set their values. Only the values that have not yet been set need to be specified.

Parameters
e input_file_ name (str) — The file name of the job’s input file.

* output_file_name (str) — The file name of the job’s output file (i.e. the file containing
the stdout of QE).

* remote_workdir (str) — Absolute path to the directory where the job was run. The
transport of the computer you link ask input to the calculation is the transport that will
be used to retrieve the calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

Raises

* aiida.common.exceptions. InputValidationError - if
open_transport is a different type of transport than the computer’s.

* aiida.common.exceptions.InvalidOperation — if open_transport is
not open.

* aiida.common.exceptions.InputValidationError - if
remote_workdir, input_file_name, and/or output_file_name are not
set prior to or during the call of this method.

* aiida.common.exceptions.FeatureNotAvailable — if the input file uses
anything other than ibrav = 0, which is not currently implimented in aiida.

218

Chapter 3. Developer’s guide

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.5.0

* aiida.common.exceptions.ParsingError — if there are issues parsing the in-
put file.

* IOError —if there are issues reading the input file.
prepare_for retrieval_and_parsing (open_transport)
Tell the daemon that the calculation is computed and ready to be parsed.

Parameters open_transport (aiida.transport.plugins.local.LocalTransport | ai-
ida.transport.plugins.ssh.SshTransport) — An open instance of the transport class of
the calculation’s computer. See the tutorial for more information.

The next time the daemon updates the status of calculations, it will see this job is in the ‘COMPUTED’
state and will retrieve its output files and parse the results.

If the daemon is not currently running, nothing will happen until it is started again.

This method also stores the calculation and all input nodes. It also copies the original input file to the
calculation’s repository folder.

Raises

* aiida.common.exceptions.InputValidationError - if
open_transport is a different type of transport than the computer’s.

* aiida.common.exceptions.InvalidOperation — if open_transport is
not open.

set_input_file_name (input_file_name)
Set the file name of the job’s input file (e.g. ' pw.in”’).

Parameters input_file_name (str) — The file name of the job’s input file.

set_output_file_ name (output_file_name)
Set the file name of the job’s output file (e.g. ' pw.out’).

Parameters output_file_name (str) — The file name of file containing the job’s stdout.

set_output_subfolder (output_subfolder)
Manually set the job’s outdir variable (e.g. * . /out/").

Note: The outdir variable is normally set automatically by

1.looking for the outdir CONTROL namelist variable

2.looking for the SESPRESSO_TMPDIR environment variable on the calculation’s computer (using the
transport)

3.using the QE default, the calculation’s remote_workdir

but this method is made available to the user, in the event that they wish to set it manually.

Parameters output_subfolder (str) — The job’s outdir variable.

set_prefix (prefix)
Manually set the job’s pre fix variable (e.g. ' pwscf’).

Note: The prefix variable is normally set automatically by

1.looking for the prefix CONTROL namelist variable

2.using the QE default, ' pwscf’

3.1.

Developer’s guide 219

AiiDA documentation, Release 0.5.0

but this method is made available to the user, in the event that they wish to set it manually.

Parameters prefix (str) — The job’s prefix variable.

set_remote_workdir (remote_workdir)
Set the job’s remote working directory.

Parameters remote_workdir (str) — Absolute path of the job’s remote working directory.

TemplateReplacer This is a simple plugin that takes two node inputs, both of type ParameterData, with the fol-
lowing labels: template and parameters. You can also add other SinglefileData nodes as input, that will be copied
according to what is written in ‘template’ (see below).

» parameters: a set of parameters that will be used for substitution.
* template: can contain the following parameters:

— input_file_template: a string with substitutions to be managed with the format() function of python,
ie. if you want to substitute a variable called ‘varname’, you write {varname} in the text. See
http://www.python.org/dev/peps/pep-3101/ for more details. The replaced file will be the input file.

— input_file_name: a string with the file name for the input. If it is not provided, no file will be created.

— output_file_name: a string with the file name for the output. If it is not provided, no redirection will be
done and the output will go in the scheduler output file.

— cmdline_params: a list of strings, to be passed as command line parameters. Each one is substituted with
the same rule of input_file_template. Optional

— input_through_stdin: if True, the input file name is passed via stdin. Default is False if missing.

— files_to_copy: if defined, a list of tuple pairs, with format (‘link_name’, ‘dest_rel_path’); for each tuple, an input link
and with file type ‘Singlefile’, and the content is copied to a remote file named ‘dest_rel_path’ Errors
are raised in the input links are non-existent, or of the wrong type, or if there are unused input files.

TODO: probably use Python’s Template strings instead?? TODO: catch exceptions

class aiida.orm.calculation. job.simpleplugins.templatereplacer.TemplatereplacerCalculation (**
Simple stub of a plugin that can be used to replace some text in a given template. Can be used for many different
codes, or as a starting point to develop a new plugin.

Calculation parsers This section describes the different parsers classes for calculations.

Quantum ESPRESSO parsers
aiida.parsers.plugins.quantumespresso.convert_ge2aiida_structure (output_dict,
in-

put_structure=None)
Receives the dictionary cell parsed from quantum espresso Convert it into an AiiDA structure object

Basic Raw Cp Parser
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_text_output (data,

xml_data)
data must be a list of strings, one for each lines, as returned by readlines(). On output, a dictionary with parsed

values

220 Chapter 3. Developer’s guide

http://www.python.org/dev/peps/pep-3101/

AiiDA documentation, Release 0.5.0

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_traj_stanzas (num_elements,
split-
lines,
prepend_name,

rescale=1.0)
num_elements: Number of lines (with three elements) between lines with two only elements (containing step

number and time in ps). num_elements is 3 for cell, and the number of atoms for coordinates and positions.
splitlines: a list of lines of the file, already split in pieces using string.split

prepend_name: a string to be prepended to the name of keys returned in the return dictionary.

rescale: the values in each stanza are multiplied by this factor, for units conversion

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_counter_output (data)
Parse xml file print_counter.xml data must be a single string, as returned by file.read() (notice the difference
with parse_text_output!) On output, a dictionary with parsed values.

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_output (data)
Parse xml data data must be a single string, as returned by file.read() (notice the difference with
parse_text_output!) On output, a dictionary with parsed values. Democratically, we have decided to use pi-
coseconds as units of time, eV for energies, Angstrom for lengths.

Basic Raw Pw Parser A collection of function that are used to parse the output of Quantum Espresso PW. The
function that needs to be called from outside is parse_raw_output(). The functions mostly work without aiida specific
functionalities. The parsing will try to convert whatever it can in some dictionary, which by operative decision doesn’t
have much structure encoded, [the values are simple]

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.cell_volume (al,
a2,

a3)
returns the volume of the primitive cell: lal.(a2xa3)l

alida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_list_to_matrix (in_matrix,
n_rows,

.) . . . n_columns)
converts a list into a list of lists (a matrix like) with n_rows and n_columns

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_ge_time_to_sec (timestr)
Given the walltime string of Quantum Espresso, converts it in a number of seconds (float).

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_QE_errors (lines,

count,
warn-
ings)
Parse QE errors messages (those appearing between some lines with $$%$%%$%%%")
Parameters

* lines — list of strings, the output text file as read by readlines() or as obtained by
data.split(‘n’) when data is the text file read by read()

* count - the line at which we identified some ' $%$$%%%%%’
* warnings — the warnings already parsed in the file

Return messages a list of QE error messages

3.1. Developer’s guide 221

AiiDA documentation, Release 0.5.0

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_text_output (datq,
xml_data=None,
struc-
ture_data=None,
in-

put_dict=None)
Parses the text output of QE-PWscf.

Parameters

* data - a string, the file as read by read()

* xml_data - the dictionary with the keys read from xml.

* structure_data — dictionary, coming from the xml, with info on the structure
Return parsed_data dictionary with key values, referring to quantities at the last scf step.

Return trajectory_data key,values referring to intermediate scf steps, as in the case of vc-relax.
Empty dictionary if no value is present.

Return critical_messages a list with critical messages. If any is found in parsed_data[’warnings’],
the calculation is FAILED!

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_xml_output (data,

dir_with_bands=N
Parse the xml data of QE v5.0.x Input data must be a single string, as returned by file.read() Returns a dictionary

with parsed values

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_raw_output (out file,
in-
put_dict,
parser_opts=None,
xml_file=None,

dir_with_bands=None
Parses the output of a calculation Receives in input the paths to the output file and the xml file.

Parameters
* out_file - path to pw std output
e input_dict —not used
* parser_opts —not used
* dir_with_bands — path to directory with all k-points (Kxxxxx) folders
* xml_file — path to QE data-file.xml
Returns out_dict a dictionary with parsed data
Return successful a boolean that is False in case of failed calculations
Raises
* QEOutputParsingError — for errors in the parsing,
* AssertionError — if two keys in the parsed dicts are found to be qual

3 different keys to check in output: parser_warnings, xml_warnings and warnings. On an upper level, these
flags MUST be checked. The first two are expected to be empty unless QE failures or unfinished jobs.

222 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Basic Pw Parser
class aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser (calc)
This class is the implementation of the Parser class for PWscf.

get_linkname_out_kpoints ()
Returns the name of the link to the output_kpoints Node exists if cell has changed and no bands are stored.

get_linkname_outarray ()
Returns the name of the link to the output_array Node may exist in case of calculation="scf’

get_1linkname_outstructure ()
Returns the name of the link to the output_structure Node exists if positions or cell changed.

get_linkname_outtrajectory ()
Returns the name of the link to the output_trajectory. Node exists in case of calculation="md’, ‘vc-md’,
‘relax’, ‘vc-relax’

get_parser_settings_key ()
Return the name of the key to be used in the calculation settings, that contains the dictionary with the
parser_options

parse_with_retrieved (retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

Constants Physical or mathematical constants. Since every code has its own conversion units, this module defines
what QE understands as for an eV or other quantities. Whenever possible, we try to use the constants defined in
:py:mod:aiida.common.constants:, but if some constants are slightly different among different codes (e.g., different
standard definition), we define the constants in this file.

Cp Parser
class aiida.parsers.plugins.quantumespresso.cp.CpParser (calc)
This class is the implementation of the Parser class for Cp.

get_linkname_trajectory ()
Returns the name of the link to the output_structure (None if not present)

parse_with_retrieved (retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

Automodules Example

This module defines the main data structures used by the Calculation.

class aiida.common.datastructures.CaleInfo (init={})
This object will store the data returned by the calculation plugin and to be passed to the ExecManager

class aiida.common.datastructures.CodeInfo (init={})
This attribute-dictionary contains the information needed to execute a code. Possible attributes are:

ecmdline_params: alist of strings, containing parameters to be written on the command line right after
the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[l] ... < stdin > stdout

estdin_name: (optional) the name of the standard input file. Note, it is only possible to use the stdin
with the syntax:

3.1. Developer’s guide 223

AiiDA documentation, Release 0.5.0

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be passed to the code. Note: it is not
possible to substitute/remove the ‘<’ if stdin_name is specified; if that is needed, avoid stdin_name and
use instead the cmdline_params to specify a suitable syntax.

estdout_name: (optional) the name of the standard output file. Note, it is only possible to pass output to
stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string ‘> stdout_name” will not be passed to the code. Note: it is not
possible to substitute/remove the >’ if stdout_name is specified; if that is needed, avoid stdout_name and
use instead the cmdline_params to specify a suitable syntax.

estderr_name: (optional) a string, the name of the error file of the code.

*join_files: (optional) if True, redirects the error to the output file. If join_files=True, the code will be
called as:

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

code.x ... > stdout_name 2> stderr_name

ewithmpi: if True, executes the code with mpirun (or another MPI installed on the remote computer)
ecode_uuid: the uuid of the code associated to the Codelnfo

aiida.common.datastructures.sort_states (list_states)
Given a list of state names, return a sorted list of states (the first is the most recent) sorted according to their
logical appearance in the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note: The order of the internal variable _sorted_datastates is used.

Parameters list_states —a list (or tuple) of state strings.
Returns a sorted list of the given data states.

Raises ValueError if any of the given states is not a valid state.

Note: A :noindex: directive was added to avoid duplicate object description for this example. Do not put the keyword
in a real documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax used here, a
few extra examples of use would include:

:param parameters: some notes on input parameters
:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

224 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Changing The Docs

If you are creating a new .rst file, make sure to add it in the relevant index.rst tree. This can be done by:
* Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/source/ folder and not /doc/build)
* Making sure that all relevant .rst files are added to the relevant index.rst file
* Running make html in /aiida/docs/ folder

* Be sure to check for any warnings and correct if possible

This Page

Sphinx cheatsheet
R o o e e

A brief overview of some of the main functions of Sphinx
as used in the aiida documentation. View :ref: this-page’ to see

how this page was formatted. This is only a brief outline for more
please see “the Sphinx documentation <http://sphinx-doc.org/contents.html>"_

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting

Words can be written in xitalicsx or in xxboldx*. Text describing a specific
" computer_thing®® can be formatted as well.

Paragraph and Indentation

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will
appear on the same line.

While this sentence will appear
differently because there is an indent.

Terminal and Code Formatting

Something to be run in command line can be formatted like this::

3.1. Developer’s guide 225

AiiDA documentation, Release 0.5.0

>> Some command

As can be seen above, while snippets of python on code can be done like this::

import module
print ('hello world')

note:: Notes can be

Bullet Points and Lists

*

Bullet points can be
Just like this

*

* With sub-bullets 1i
#. While numerical bull
#. Can be added

#. Like this

Links, Code Display, Cr

External Links

Can be done like here f

Code Download

Code can be downloaded

Download: :download: th

Code Display

Can be done like this.

literalinclude:: dev

_self-reference:

Cross Reference Docs

Here is an example of a

Here is an example of a

added like this.

added
ke this

ets

oss References

or "AiiDA <www.aiida.net/> _

like this.

is example script <devel_tutorial/sum_executable.py>"

This entire document can be seen unformated below using this method.

el_tutorial/sum_executable.py

reference to the :ref: structure_tutorial® which is on xanother |pagex*

reference to something on the same page, :ref: self-reference’

note:: References within the same document need a reference label, see .. _self-refegrence:’

used in this
input text.x

Cross Reference Classes

section for an example. xHidden in formatted page, can only be segen in the

and Methods

226

Chapter 3. Developer’s guide

AiiDA documentation, Release 0.5.0

Any class can be referenced for example :py:class: ~aiida.orm.data.structure.StructureDg
StructureData data class.

Similarily any method can be referenced for example :py:meth: ~aiida.orm.data.structure

shows the StructureData class' append atom method.

Table of Contents Docs and Code

Table of Contents for Docs

An example of the table of contents syntax for the :ref: git-cheatsheet®™ can be seen her

note that these are especially important in the global structure of the
document, as found in index.rst files.

toctree::
:maxdepth: 2

git_cheatsheet

note:: The "maxdepth’ parameter can be used to change how deep the title indexing god

Table of Contents for Code

Table of contents, that cross reference code, can be done very similarly to how
it is done for documents. For example the parser docs can be indexed like this

toctree::
:maxdepth: 1

aiida.orm <../orm/dev>
../parsers/dev

Automodules Example

toctree::
:maxdepth: 2

automodule:: aiida.common.datastructures
:members:
:noindex:

note:: A ":noindex:’ directive was added to avoid duplicate object
description for this example. Do not put the keyword in a real

documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with {
a few extra examples of use would include::

:param parameters: some notes on input parameters

ta’ reference

StructureDat:

ts. See :ref:

he same synt:

3.1. Developer’s guide 227

AiiDA documentation, Release 0.5.0

:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

Changing The Docs

If you are creating a new .rst file, make sure to add it in
the relevant index.rst tree. This can be done by:

* Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/sourc¢e/ folder an

* Making sure that all relevant .rst files are added
to the relevant index.rst file

*+ Running "make html' in /aiida/docs/ folder
* Be sure to check for any warnings and correct if possible
_this-page:

This Page

literalinclude:: sphinx_cheatsheet.rst

3.1.14 Properties
Properties are configuration options that are stored in the config. json file (within the . aiida directory). They
can be accessed and modified thanks to verdi devel commands:

* delproperty: delete a given property.

 describeproperty: describe the content of a given property.

* getproperty: get the value of a given property.

* listproperties: list all user defined properties. With —a option, list all of them including those still at the default
values.

* setproperty: set a given property (usage: verdi devel setproperty PROPERTYNAME
PROPERTYVALUE).

For instance, modules to be loaded automatically in the verdi shell can be added by putting their paths (separated
by colons :) in the property verdishell .modules, e.g. by typing something like:

verdi devel setproperty verdishell.modules aiida.common.exceptions.NotExistent:aiida.or#.autogroup.Al

More information can be found in the source code: see setup.py.

228 Chapter 3. Developer’s guide

CHAPTER 4

Modules provided with aiida

4.1 Modules

4.1.1 aiida.common documentation

Calculation datastructures

This module defines the main data structures used by the Calculation.

class aiida.common.datastructures.CaleInfo (init={})
This object will store the data returned by the calculation plugin and to be passed to the ExecManager

class aiida.common.datastructures.CodelInfo (init={})
This attribute-dictionary contains the information needed to execute a code. Possible attributes are:

ecmdline_params: alist of strings, containing parameters to be written on the command line right after
the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[l] ... < stdin > stdout

estdin_name: (optional) the name of the standard input file. Note, it is only possible to use the stdin
with the syntax:

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be passed to the code. Note: it is not
possible to substitute/remove the ‘<’ if stdin_name is specified; if that is needed, avoid stdin_name and
use instead the cmdline_params to specify a suitable syntax.

estdout_name: (optional) the name of the standard output file. Note, it is only possible to pass output to
stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string “> stdout_name” will not be passed to the code. Note: it is not
possible to substitute/remove the ‘>’ if stdout_name is specified; if that is needed, avoid stdout_name and
use instead the cmdline_params to specify a suitable syntax.

estderr_name: (optional) a string, the name of the error file of the code.

*join_files: (optional) if True, redirects the error to the output file. If join_files=True, the code will be
called as:

229

AiiDA documentation, Release 0.5.0

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

code.x ... > stdout_name 2> stderr_name

ewithmpi: if True, executes the code with mpirun (or another MPI installed on the remote computer)
ecode_uuid: the uuid of the code associated to the Codelnfo

aiida.common.datastructures.sort_states (list_states)
Given a list of state names, return a sorted list of states (the first is the most recent) sorted according to their
logical appearance in the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note: The order of the internal variable _sorted_datastates is used.

Parameters 1list_states —alist (or tuple) of state strings.
Returns a sorted list of the given data states.

Raises ValueError if any of the given states is not a valid state.

Exceptions

exception aiida.common.exceptions.AiidaException
Base class for all AiiDA exceptions.

Each module will have its own subclass, inherited from this (e.g. ExecManagerException, TransportException,

)

exception aiida.common.exceptions.AuthenticationError
Raised when a user tries to access a resource for which it is not authenticated, e.g. an aiidauser tries to access a
computer for which there is no entry in the AuthInfo table.

exception aiida.common.exceptions.ConfigurationError
Error raised when there is a configuration error in AiiDA.

exception aiida.common.exceptions.ContentNotExistent
Raised when trying to access an attribute, a key or a file in the result nodes that is not present

exception aiida.common.exceptions.DbContentError
Raised when the content of the DB is not valid. This should never happen if the user does not play directly with
the DB.

exception aiida.common.exceptions.FailedError
Raised when accessing a calculation that is in the FAILED status

exception aiida.common.exceptions.FeatureDisabled
Raised when a feature is requested, but the user has chosen to disable it (e.g., for submissions on disabled
computers).

exception aiida.common.exceptions.FeatureNotAvailable
Raised when a feature is requested from a plugin, that is not available.

exception aiida.common.exceptions.InputValidationError
The input data for a calculation did not validate (e.g., missing required input data, wrong data, ...)

exception aiida.common.exceptions.InternalError
Error raised when there is an internal error of AiiDA.

230 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

exception aiida.common.exceptions.InvalidOperation
The allowed operation is not valid (e.g., when trying to add a non-internal attribute before saving the entry), or
deleting an entry that is protected (e.g., because it is referenced by foreign keys)

exception aiida.common.exceptions.LicensingException
Raised when requirements for data licensing are not met.

exception aiida.common.exceptions.LockPresent
Raised when a lock is requested, but cannot be acquired.

exception aiida.common.exceptions.MissingPluginError
Raised when the user tries to use a plugin that is not available or does not exist.

exception aiida.common.exceptions.ModificationNotAllowed
Raised when the user tries to modify a field, object, property, ... that should not be modified.

exception aiida.common.exceptions.MultipleObjectsError
Raised when more than one entity is found in the DB, but only one was expected.

exception aiida.common.exceptions.NotExistent
Raised when the required entity does not exist.

exception aiida.common.exceptions.ParsingError
Generic error raised when there is a parsing error

exception aiida.common.exceptions.PluginInternalError
Error raised when there is an internal error which is due to a plugin and not to the AiiDA infrastructure.

exception aiida.common.exceptions.ProfileConfigurationError
Configuration error raised when a wrong/inexistent profile is requested.

exception aiida.common.exceptions.RemoteOperationError
Raised when an error in a remote operation occurs, as in a failed kill() of a scheduler job.

exception aiida.common.exceptions.UniquenessError
Raised when the user tries to violate a uniqueness constraint (on the DB, for instance).

exception aiida.common.exceptions.ValidationError
Error raised when there is an error during the validation phase of a property.

exception aiida.common.exceptions.WorkflowInputValidationError
The input data for a workflow did not validate (e.g., missing required input data, wrong data, ...)

Extended dictionaries

class aiida.common.extendeddicts.AttributeDict (init={})
This class internally stores values in a dictionary, but exposes the keys also as attributes, i.e. asking for attr-
dict.key will return the value of attrdict[’key’] and so on.

Raises an AttributeError if the key does not exist, when called as an attribute, while the usual KeyError if the
key does not exist and the dictionary syntax is used.

copy ()
Shallow copy.

class aiida.common.extendeddicts.DefaultFieldsAttributeDict (init={})
A dictionary with access to the keys as attributes, and with an internal value storing the ‘default’ keys to be
distinguished from extra fields.

Extra methods defaultkeys() and extrakeys() divide the set returned by keys() in default keys (i.e. those defined
at definition time) and other keys. There is also a method get_default_fields() to return the internal list.

4.1. Modules 231

AiiDA documentation, Release 0.5.0

Moreover, for undefined default keys, it returns None instead of raising a KeyError/AttributeError exception.

Remember to define the _default_fields in a subclass! E.g.:

class TestExample (DefaultFieldsAttributeDict) :
_default_fields = ('a','b','c")

When the validate() method is called, it calls in turn all validate. KEY methods, where KEY is one of the default
keys. If the method is not present, the field is considered to be always valid. Each validate_ KEY method should
accept a single argument ‘value’ that will contain the value to be checked.

It raises a ValidationError if any of the validate_KEY function raises an exception, otherwise it simply returns.
NOTE: the validate_ functions are called also for unset fields, so if the field can be empty on validation, you
have to start your validation function with something similar to:

if value is None:
return

Todo

Decide behavior if I set to None a field. Current behavior, if a is an instance and ‘def field” one of the default
fields, that is undefined, we get:

*a.get ("def_field’): None

ca.get ("def_field’,’whatever’): ‘whatever’

*Note that a.defaultkeys () does NOT contain ‘def_field’
if wedoa.def_field = None, then the behavior becomes

*a.get ("def_field’): None

*a.get ("def_field’,’whatever’): None

*Note that a.defaultkeys () DOES contain ‘def_field’

See if we want that setting a default field to None means deleting it.

defaultkeys ()
Return the default keys defined in the instance.

extrakeys ()
Return the extra keys defined in the instance.

classmethod get_default_fields ()
Return the list of default fields, either defined in the instance or not.

validate ()
Validate the keys, if any validate_x method is available.

class aiida.common.extendeddicts.FixedFieldsAttributeDict (init={})

A dictionary with access to the keys as attributes, and with filtering of valid attributes. This is only the base
class, without valid attributes; use a derived class to do the actual work. E.g.:

class TestExample (FixedFieldsAttributeDict) :
_valid_fields = ('a','b','c")

classmethod get_valid_fields ()
Return the list of valid fields.

232

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Folders

class aiida.common. folders.Folder (abspath, folder_limit=None)

A class to manage generic folders, avoiding to get out of specific given folder borders.

Todo

fix this, os.path.commonprefix of /a/b/c and /a/b2/c will give a/b, check if this is wanted or if we want to put
trailing slashes. (or if we want to use os.path.relpath and check for a string starting with os.pardir?)

Todo

rethink whether the folder_limit option is still useful. If not, remove it alltogether (it was a nice feature, but
unfortunately all the calls to os.path.abspath or normpath are quite slow).

abspath
The absolute path of the folder.

create ()
Creates the folder, if it does not exist on the disk yet.

It will also create top directories, if absent.
It is always safe to call it, it will do nothing if the folder already exists.

create_file_from filelike (src_filelike, dest_name)
Create a file from a file-like object.

Note if the current file position in src_filelike is not 0, only the contents from the current file
position to the end of the file will be copied in the new file.

Parameters

* src_filelike - the file-like object (e.g., if you have a string called s, you can pass
StringIO.StringIO(s))

¢ dest_name — the destination filename will have this file name.

create_symlink (src, name)
Create a symlink inside the folder to the location ‘src’.

Parameters

* src - the location to which the symlink must point. Can be either a relative or an absolute
path. Should, however, be relative to work properly also when the repository is moved!

* name — the filename of the symlink to be created.

erase (create_empty_folder=False)
Erases the folder. Should be called only in very specific cases, in general folder should not be erased!

Doesn’t complain if the folder does not exist.
Parameters create_empty_ folder —if True, after erasing, creates an empty dir.

exists ()
Return True if the folder exists, False otherwise.

folder limit
The folder limit that cannot be crossed when creating files and folders.

get_abs_path (relpath, check_existence=False)
Return an absolute path for a file or folder in this folder.

4.1.

Modules 233

AiiDA documentation, Release 0.5.0

The advantage of using this method is that it checks that filename is a valid filename within this folder, and
not something e.g. containing slashes.

Parameters
e filename — The file or directory.

* check_existence - if False, just return the file path. Otherwise, also check if the file
or directory actually exists. Raise OSError if it does not.

get_content_1list (pattern="*’, only_paths=True)
Return a list of files (and subfolders) in the folder, matching a given pattern.

Example: If you want to exclude files starting with a dot, you can call this method with
pattern="[!.]x’

Parameters

* pattern — a pattern for the file/folder names, using Unix filename pattern matching (see
Python standard module fnmatch). By default, pattern is ‘*’, matching all files and folders.

* only paths — if False (default), return pairs (name, is_file). if True, return only a flat
list.

Returns a list of tuples of two elements, the first is the file name and the second is True if the
element is a file, False if it is a directory.

get_subfolder (subfolder, create=False, reset_limit=False)
Return a Folder object pointing to a subfolder.

Parameters

* subfolder — a string with the relative path of the subfolder, relative to the absolute path
of this object. Note that this may also contain ‘.. parts, as far as this does not go beyond
the folder_limit.

e create —if True, the new subfolder is created, if it does not exist.

e reset limit — when doing b = a.get_subfolder (' xxx’,
reset_limit=False), the limit of b will be the same limit of a. if True, the
limit will be set to the boundaries of folder b.

Returns a Folder object pointing to the subfolder.

insert_path (src, dest_name=None, overwrite=True)
Copy a file to the folder.

Parameters
* src - the source filename to copy

* dest_name — if None, the same basename of src is used. Otherwise, the destination
filename will have this file name.

* overwrite —if False, raises an error on existing destination; otherwise, delete it first.
isdir (relpath)
Return True if ‘relpath’ exists inside the folder and is a directory, False otherwise.

isfile (relpath)
Return True if ‘relpath’ exists inside the folder and is a file, False otherwise.

mode_dir
Return the mode with which the folders should be created

234 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

mode_file
Return the mode with which the files should be created

open (name, mode="r’")
Open a file in the current folder and return the corresponding file object.

remove_path (filename)
Remove a file or folder from the folder.

Parameters f£ilename - the relative path name to remove

replace_with_folder (srcdir, move=False, overwrite=False)
This routine copies or moves the source folder ‘srcdir’ to the local folder pointed by this Folder object.

Parameters
* srcdir — the source folder on the disk; this must be a string with an absolute path
* move — if True, the srcdir is moved to the repository. Otherwise, it is only copied.

e overwrite — if True, the folder will be erased first. if False, a IOError is raised if the
folder already exists. Whatever the value of this flag, parent directories will be created, if
needed.

Raises OSError or IOError: in case of problems accessing or writing the files.
Raises ValueError: if the section is not recognized.

class aiida.common. folders.RepositoryFolder (section, uuid, subfolder=".")
A class to manage the local AiiDA repository folders.

get_topdir ()
Returns the top directory, i.e., the section/uuid folder object.

section
The section to which this folder belongs.

subfolder
The subfolder within the section/uuid folder.

uuid
The uuid to which this folder belongs.

class aiida.common. folders.SandboxFolder
A class to manage the creation and management of a sandbox folder.

Note: this class must be used within a context manager, i.e.:
with SandboxFolder as f: ## do something with f

In this way, the sandbox folder is removed from disk (if it wasn’t removed already) when exiting the ‘with’
block.

Todo

Implement check of whether the folder has been removed.

Plugin loaders

aiida.common.pluginloader.BaseFactory (module, base_class, base_modname, suffix=None)
Return a given subclass of Calculation, loading the correct plugin.

4.1. Modules 235

AiiDA documentation, Release 0.5.0

Example If module="quantumespresso.pw’, base_class=JobCalculation, base_modname = ‘ai-
ida.orm.calculation.job’, and suffix="Calculation’, the code will first look for a pw subclass
of JobCalculation inside the quantumespresso module. Lacking such a class, it will try to look
for a ‘PwCalculation’ inside the quantumespresso.pw module. In the latter case, the plugin class
must have a specific name and be located in a specific file: if for instance plugin_name ==
‘ssh’ and base_class.__name__ == ‘Transport’, then there must be a class named ‘SshTransport’
which is a subclass of base_class in a file ‘ssh.py’ in the plugins_module folder. To create the
class name to look for, the code will attach the string passed in the base_modname (after the last
dot) and the suffix parameter, if passed, with the proper CamelCase capitalization. If suffix is
not passed, the default suffix that is used is the base_class class name.

Parameters
* module — a string with the module of the plugin to load, e.g. ‘quantumespresso.pw’.

* base_class — a base class from which the returned class should inherit. e.g.: JobCalcu-
lation

* base_modname — a basic module name, under which the module should be found. E.g.,
‘aiida.orm.calculation.job’.

* suffix - If specified, the suffix that the class name will have. By default, use the name of
the base_class.

aiida.common.pluginloader.existing_plugins (base_class, plugins_module_name,

max_depth=35, suffix=None)
Return a list of strings of valid plugins.

Parameters
* base_class — Identify all subclasses of the base_class

* plugins_module_name — a string with the full module name separated with dots that
points to the folder with plugins. It must be importable by python.

* max_depth — Maximum depth (of nested modules) to be used when looking for plugins

* suffix — The suffix that is appended to the basename when looking for the (sub)class
name. If not provided (or None), use the base class name.

Returns a list of valid strings that can be used using a Factory or with load_plugin.

aiida.common.pluginloader.get_class_typestring (type_string)
Given the type string, return three strings: the first one is one of the first-level classes that the Node can be:

LLINTS 9 <

“node”, “calculation”, “code”, “data”. The second string is the one that can be passed to the DataFactory or
CalculationFactory (or an empty string for nodes and codes); the third one is the name of the python class that
would be loaded.

aiida.common.pluginloader.load_plugin (base_class, plugins_module, plugin_type)
Load a specific plugin for the given base class.

This is general and works for any plugin used in AiiDA.

NOTE: actually, now plugins_module and plugin_type are joined with a dot, and the plugin is retrieved
splitting using the last dot of the resulting string.

TODO: understand if it is probably better to join the two parameters above to a single one.
Args:
base_class the abstract base class of the plugin.

plugins_module a string with the full module name separated with dots that points to the folder with
plugins. It must be importable by python.

236 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

plugin_type the name of the plugin.
Return: the class of the required plugin.
Raise: MissingPluginError if the plugin cannot be loaded
Example:
plugin_class = load_plugin(aiida.transport. Transport,’ aiida.transport.plugins’,’ssh.SshTransport’)

and plugin_class will be the class ‘aiida.transport.plugins.ssh.SshTransport’

Utilities

class aiida.common.utils.classproperty (getter)
A class that, when used as a decorator, works as if the two decorators @property and @classmethod where
applied together (i.e., the object works as a property, both for the Class and for any of its instance; and is called
with the class cls rather than with the instance as its first argument).

aiida.common.utils.conv_to_ fortran (val)
Parameters val — the value to be read and converted to a Fortran-friendly string.

aiida.common.utils.create_display_name (field)
Given a string, creates the suitable “default” display name: replace underscores with spaces, and capitalize each
word.

Returns the converted string

aiida.common.utils.escape_for_bash (str_to_escape)
This function takes any string and escapes it in a way that bash will interpret it as a single string.

Explanation:

At the end, in the return statement, the string is put within single quotes. Therefore, the only thing that I have to
escape in bash is the single quote character. To do this, I substitute every single quote ‘ with “”””” which means:

First single quote: exit from the enclosing single quotes

7310

Second, third and fourth character: is a single quote character, escaped by double quotes

Last single quote: reopen the single quote to continue the string

699999

Finally, note that for python I have to enclose the string
the complicated string found below.

within triple quotes to make it work, getting finally:

aiida.common.utils.export_shard_uuid (uuid)
Sharding of the UUID for the import/export

aiida.common.utils.get_class_string (obj)
Return the string identifying the class of the object (module + object name, joined by dots).

It works both for classes and for class instances.

aiida.common.utils.get_extremas_from positions (positions)
returns the minimum and maximum value for each dimension in the positions given

aiida.common.utils.get_new_ uuid()
Return a new UUID (typically to be used for new nodes). It uses the UUID version specified in ai-
ida.djsite.settings.settings_profile. AIIDANODES_UUID_VERSION

aiida.common.utils.get_object_from_string (string)
Given a string identifying an object (as returned by the get class_string method) load and return the actual
object.

4.1. Modules 237

AiiDA documentation, Release 0.5.0

aiida.common.utils.get_repository folder (subfolder=None)
Return the top folder of the local repository.

aiida.common.utils.get_suggestion (provided_string, allowed_strings)
Given a string and a list of allowed_strings, it returns a string to print on screen, with sensible text depending on
whether no suggestion is found, or one or more than one suggestions are found.

Args: provided_string: the string to compare allowed_strings: a list of valid strings
Returns: A string to print on output, to suggest to the user a possible valid value.

aiida.common.utils.get_unique_f£ilename (filename, list_of filenames)
Return a unique filename that can be added to the list_of_filenames.

If filename is not in list_of_filenames, it simply returns the filename string itself. Otherwise, it appends a integer
number to the filename (before the extension) until it finds a unique filename.

Parameters
e filename - the filename to add

e list_of_filenames — the list of filenames to which filename should be added, without
name duplicates

Returns FEither filename or its modification, with a number appended between the name and the
extension.

aiida.common.utils.grouper (n, iterable)
Given an iterable, returns an iterable that returns tuples of groups of elements from iterable of length n, except
the last one that has the required length to exaust iterable (i.e., there is no filling applied).

Parameters
* n —length of each tuple (except the last one,that will have length <=n
* iterable - the iterable to divide in groups

aiida.common.utils.gunzip_string (string)
Gunzip string contents.

Parameters string — a gzipped string
Returns a string

aiida.common.utils.gzip_string (string)
Gzip string contents.

Parameters string —a string
Returns a gzipped string

aiida.common.utils.md5_file (filename, block_size_factor=128)
Open a file and return its mdSsum (hexdigested).

Parameters
e filename — the filename of the file for which we want the md5sum

* block_size factor — the file is read at chunks of size block_size_factor =
md5.block_size, where md5.block_size is the block_size used internally by the
hashlib module.

Returns a string with the hexdigest md5.

Raises No checks are done on the file, so if it doesn’t exists it may raise IOError.

238 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

aiida.common.utils.shal_f£ile (filename, block_size_factor=128)
Open a file and return its shalsum (hexdigested).

Parameters
* filename - the filename of the file for which we want the shalsum

e block_size factor — the file is read at chunks of size block_size_ factor =
shal.block_size, where shal.block_size is the block_size used internally by
the hashlib module.

Returns a string with the hexdigest shal.
Raises No checks are done on the file, so if it doesn’t exists it may raise IOError.

aiida.common.utils.str_timedelta (df, max_num_fields=3, short=False, nega-

]) . tive_to_zero=False)
Given a dt in seconds, return it in a HH:MM:SS format.

Parameters
e dt — a TimeDelta object

e max_num_fields — maximum number of non-zero fields to show (for instance if the
number of days is non-zero, shows only days, hours and minutes, but not seconds)

* short — if False, print always max_num_fields fields, even if they are zero. If True,
do not print the first fields, if they are zero.

* negative_to_zero —if True, setdt =0 if dt < 0.

aiida.common.utils.validate_list_of string tuples (val, tuple_length)
Check that:

1.val is alist or tuple

2.each element of the list:

1.is a list or tuple
2.is of length equal to the parameter tuple_length

3.each of the two elements is a string

Return if valid, raise ValidationError if invalid

aiida.common.utils.xyz_parser_iterator (string)
Yields a tuple (natoms, comment, atomiter) for each frame in a XYZ file where ‘atomiter is an iterator yielding
a nested tuple (symbol, (x, y, z)) for each entry.

Parameters string — a string containing XYZ-structured text

4.1.2 aiida.transport documentation

This chapter describes the generic implementation of a transport plugin. The currently implemented are the local and
the ssh plugin. The local plugin makes use only of some standard python modules like os and shutil. The ssh plugin is
a wrapper to the library paramiko, that you installed with AiiDA.

A generic set of tests is contained in plugin_test.py, while plugin-specific tests are written separately.

4.1. Modules 239

AiiDA documentation, Release 0.5.0

Generic transport class

class aiida.transport._ init_ .FileAttribute (init={})
A class, resembling a dictionary, to describe the attributes of a file, that is returned by get_attribute(). Possible
keys: st_size, st_uid, st_gid, st_mode, st_atime, st_mtime

class aiida.transport.__init__ .Transport (*args, **kwargs)
Abstract class for a generic transport (ssh, local, ...) Contains the set of minimal methods

__enter_ ()
For transports that require opening a connection, opens all required channels (used in ‘with’ statements)

__exit__ (type, value, traceback)
Closes connections, if needed (used in ‘with’ statements).

chdir (path)
Change directory to ‘path’

Parameters path (str) — path to change working directory into.
Raises IOError, if the requested path does not exist
Return type string

chmod (path, mode)
Change permissions of a path.

Parameters
* path (str) — path to file
* mode (int) — new permissions

chown (path, uid, gid)
Change the owner (uid) and group (gid) of a file. As with python’s os.chown function, you must pass both
arguments, so if you only want to change one, use stat first to retrieve the current owner and group.

Parameters
* path (str) — path to the file to change the owner and group of
e uid (int) — new owner’s uid
* gid (int) — new group id

close ()
Closes the local transport channel

copy (remotesource, remotedestination, *args, **kwargs)
Copy a file or a directory from remote source to remote destination (On the same remote machine)

Parameters

* remotesource (str) — path of the remote source directory / file

* remotedestination (str) — path of the remote destination directory / file
Raises IOError, if one of src or dst does not exist

copy_from_remote_to_remote (transportdestination, remotesource, remotedestination,

**kwargs)
Copy files or folders from a remote computer to another remote computer.

Parameters

* transportdestination — transport to be used for the destination computer

240 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

* remotesource (str) — path to the remote source directory / file
* remotedestination (str) — path to the remote destination directory / file

* kwargs — keyword parameters passed to the call to transportdestination.put, except for
‘dereference’ that is passed to self.get

Note: the keyword ‘dereference’ SHOULD be set to False for the final put (onto the destination), while it
can be set to the value given in kwargs for the get from the source. In that way, a symbolic link would never

be followed in the final copy to the remote destination. That way we could avoid getting unknown (po-
tentially malicious) files into the destination computer. HOWEVER, since dereference=False is currently
NOT supported by all plugins, we still force it to True for the final put.

Note: the supported keys in kwargs are callback, dereference, overwrite and ignore_nonexisting.

copyfile (remotesource, remotedestination, *args, **kwargs)
Copy a file from remote source to remote destination (On the same remote machine)

Parameters

* remotesource (str) — path of the remote source directory / file

* remotedestination (str) — path of the remote destination directory / file
Raises IOError if one of src or dst does not exist

copytree (remotesource, remotedestination, *args, **kwargs)
Copy a folder from remote source to remote destination (On the same remote machine)

Parameters

* remotesource (str) — path of the remote source directory / file

* remotedestination (str) — path of the remote destination directory / file
Raises IOError if one of src or dst does not exist

exec_command_wait (command, **kwargs)
Execute the command on the shell, waits for it to finish, and return the retcode, the stdout and the stderr.

Enforce the execution to be run from the pwd (as given by self.getcwd), if this is not None.
Parameters command (str) — execute the command given as a string
Returns a list: the retcode (int), stdout (str) and stderr (str).

get (remotepath, localpath, *args, **kwargs)
Retrieve a file or folder from remote source to local destination dst must be an absolute path (src not
necessarily)

Parameters
e remotepath — (str) remote_folder_path
* localpath — (str) local_folder_path

get_attribute (path)
Return an object FixedFieldsAttributeDict for file in a given path, as defined in ai-
ida.common.extendeddicts Each attribute object consists in a dictionary with the following keys:

ost_size: size of files, in bytes
est_uid: user id of owner

est_gid: group id of owner

4.1.

Modules 241

AiiDA documentation, Release 0.5.0

st_mode: protection bits
est_atime: time of most recent access

est_mtime: time of most recent modification

Parameters path (str) — path to file
Returns object FixedFieldsAttributeDict
get_mode (path)
Return the portion of the file’s mode that can be set by chmod().
Parameters path (str) — path to file
Returns the portion of the file’s mode that can be set by chmod()

classmethod get_short_doc ()
Return the first non-empty line of the class docstring, if available

classmethod get_valid_auth_params ()
Return the internal list of valid auth_params

classmethod get_valid_transports ()
Returns a list of existing plugin names

getcwd ()
Get working directory

Returns a string identifying the current working directory

getfile (remotepath, localpath, *args, **kwargs)
Retrieve a file from remote source to local destination dst must be an absolute path (src not necessarily)

Parameters
* remotepath (str) — remote_folder_path
* localpath (str) — local_folder_path

gettree (remotepath, localpath, *args, **kwargs)
Retrieve a folder recursively from remote source to local destination dst must be an absolute path (src not
necessarily)

Parameters
* remotepath (str) — remote_folder_path
* localpath (str) — local_folder_path

glob (pathname)
Return a list of paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

gotocomputer_command (remotedir)
Return a string to be run using os.system in order to connect via the transport to the remote directory.

Expected behaviors:
*A new bash session is opened

*A reasonable error message is produced if the folder does not exist

Parameters remotedir (str) — the full path of the remote directory

242 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

iglob (pathname)
Return an iterator which yields the paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

isdir (path)
True if path is an existing directory.

Parameters path (str) — path to directory
Returns boolean

isfile (path)
Return True if path is an existing file.

Parameters path (str) — path to file
Returns boolean

listdir (path="", pattern=None)
Return a list of the names of the entries in the given path. The list is in arbitrary order. It does not include
the special entries ‘. and ‘.." even if they are present in the directory.

Parameters
* path (str) — path to list (default to *.”)

* pattern (str) — if used, listdir returns a list of files matching filters in Unix style. Unix
only.

Returns a list of strings

logger
Return the internal logger. If you have set extra parameters using _set_logger_extra(), a suitable Logger-
Adapter instance is created, bringing with itself also the extras.

makedirs (path, ignore_existing=False)
Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any interme-
diate path segment (not just the rightmost) will be created if it does not exist.

Parameters
* path (str) — directory to create

* ignore_existing (bool) — if set to true, it doesn’t give any error if the leaf directory
does already exist

Raises OSError, if directory at path already exists

mkdir (path, ignore_existing=False)
Create a folder (directory) named path.

Parameters
* path (str) — name of the folder to create

* ignore_existing (bool) — if True, does not give any error if the directory already
exists

Raises OSError, if directory at path already exists

normalize (path="")
Return the normalized path (on the server) of a given path. This can be used to quickly resolve symbolic
links or determine what the server is considering to be the “current folder”.

Parameters path (str) — path to be normalized

4.1.

Modules 243

AiiDA documentation, Release 0.5.0

Raises IOError if the path can’t be resolved on the server

open ()
Opens a local transport channel

path_exists (path)
Returns True if path exists, False otherwise.

put (localpath, remotepath, *args, **kwargs)
Put a file or a directory from local src to remote dst. src must be an absolute path (dst not necessarily))
Redirects to putfile and puttree.

Parameters
* localpath (str) — absolute path to local source
* remotepath (str) — path to remote destination

putfile (localpath, remotepath, *args, **kwargs)
Put a file from local src to remote dst. src must be an absolute path (dst not necessarily))

Parameters
* localpath (str) — absolute path to local file
* remotepath (str) — path to remote file

puttree (localpath, remotepath, *args, **kwargs)
Put a folder recursively from local src to remote dst. src must be an absolute path (dst not necessarily))

Parameters
* localpath (str) — absolute path to local folder
* remotepath (str) — path to remote folder

remove (path)
Remove the file at the given path. This only works on files; for removing folders (directories), use rmdir.

Parameters path (str) — path to file to remove
Raises IOError if the path is a directory

rename (oldpath, newpath)
Rename a file or folder from oldpath to newpath.

Parameters

* oldpath (str) — existing name of the file or folder

* newpath (str) — new name for the file or folder
Raises

e IOError — if oldpath/newpath is not found

* ValueError — if oldpath/newpath is not a valid string

rmdir (path)
Remove the folder named path. This works only for empty folders. For recursive remove, use rmtree.

Parameters path (str) — absolute path to the folder to remove

rmtree (path)
Remove recursively the content at path

Parameters path (str) — absolute path to remove

244 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

symlink (remotesource, remotedestination)
Create a symbolic link between the remote source and the remote destination.

Parameters
* remotesource — remote source
¢ remotedestination — remote destination

whoami ()
Get the remote username

Returns list of username (str), retval (int), stderr (str)

aiida.transport.__init__ .TransportFactory (module)
Used to return a suitable Transport subclass.

Parameters module (str) — name of the module containing the Transport subclass
Returns the transport subclass located in module ‘module’

exception aiida.transport.__init__ .TransportInternalError
Raised if there is a transport error that is raised to an internal error (e.g. a transport method called without
opening the channel first).

aiida.transport. init .copy_from_remote_to_remote (transportsource, transportdesti-
nation, remotesource, remotedes-

tination, **kwargs)
Copy files or folders from a remote computer to another remote computer.

Parameters
* transportsource — transport to be used for the source computer
* transportdestination — transport to be used for the destination computer
* remotesource (str) — path to the remote source directory / file
* remotedestination (str) — path to the remote destination directory / file

* kwargs — keyword parameters passed to the final put, except for ‘dereference’ that is
passed to the initial get

Note: it uses the method transportsource.copy_from_remote_to_remote

Developing a plugin

The transport class is actually almost never used in first person by the user. It is mostly utilized by the ExecutionMan-
ager, that use the transport plugin to connect to the remote computer to manage the calculation. The ExecutionManager
has to be able to use always the same function, or the same interface, regardless of which kind of connection is actually
really using.

The generic transport class contains a set of minimal methods that an implementation must support, in order to be
fully compatible with the other plugins. If not, a NotImplementedError will be raised, interrupting the managing of
the calculation or whatever is using the transport plugin.

Since it is important that all plugins have the same interface, or the same response behavior, a set of generic tests
has been written (alongside with set of tests that are implementation specific). After every modification, or when
implementing a new plugin, it is crucial to run the tests and verify that everything is passed. The modification of tests
possibly means breaking back-compatibility and/or modifications to every piece of code using a transport plugin.

If an unexpected behavior is observed during the usage, the way of fixing it is:

4.1. Modules 245

AiiDA documentation, Release 0.5.0

1. Write a new test that shows the problem (one test for one problem when possible)
2. Fix the bug
3. Verify that the test is passed correctly

The importance of point 1) is often neglected, but unittesting is a useful tool that helps you avoiding the repetition of
errors. Despite the appearence, it’s a time-saver! Not only, the tests help you seeing how the plugin is used.

As for the general functioning of the plugin, the _ init__ method is used only to initialize the class instance,
without actually opening the transport channel. The connection must be opened only by the __enter__ method,
(and closed by __exit__ . The __enter__ method let you use the transport class using the with statement (see
Python docs), in a way similar to the following:

t = TransportPlugin()
with open(t):
t.do_something_remotely

To ensure this, for example, the local plugin uses a hidden boolean variable _is_open that is set when the
__enter___and__exit__ methods are called. The Ssh logic is instead given by the property sftp.

The other functions that require some care are the copying functions, called using the following terminology:
1. put: from local source to remote destination
2. get: from remote source to local destination
3. copy: copying files from remote source to remote destination

Note that these functions must copy files or folders regardless, internally, they will fallback to functions like putfile
or puttree.

The last function requiring care is exec__command_wait, which is an analogue to the subprocess Python module.
The function gives the freedom to execute a string as a remote command, thus it could produce nasty effects if not
written with care. Be sure to escape any string for bash!

Currently, the implemented plugins are the Local and the Ssh transports. The Local one is simply a wrapper to some
standard Python modules, like shutil or os, those functions are simply interfaced in a different way with AiiDA.
The SSh instead is an interface to the Paramiko library.

Below, you can find a template to fill for a new transport plugin, with a minimal docstring that also work for the sphinx
documentation.

class NewTransport (aiida.transport.Transport) :

def __init__ (self, machine, =xxkwargs):
mwn

Initialize the Transport class.

:param machine: the machine to connect to

nun

def _ _enter_ (self):

nun

Open the connection
mwn

def __exit__ (self, type, value, traceback):
mwn

Close the connection
nmmwn

246 Chapter 4. Modules provided with aiida

http://docs.python.org/release/2.5/whatsnew/pep-343.html
http://docs.python.org/2/library/subprocess.html
http://www.lag.net/paramiko/

AiiDA documentation, Release 0.5.0

def chdir(self,path):

nun

Change directory to 'path'

:param str path: path to change working directory into.
:raises: IOError, if the requested path does not exist
:rtype: string

nun

def chmod(self,path,mode) :

Change permissions of a path.

:param str path: path to file

:param int mode: new permissions
nmwn

def copy(self, remotesource, remotedestination, xargs, xxkwargs) :
mwn

Copy a file or a directory from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raises: IOError, if source or destination does not exist
nmwn

raise NotImplementedError

def copyfile(self,remotesource, remotedestination, rargs, *xkwargs) :
nmn

Copy a file from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raises IOError: if one of src or dst does not exist
nmwn

def copytree(self, remotesource, remotedestination, rargs, xxkwargs) :
nmwn

Copy a folder from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raise IOError: if one of src or dst does not exist
nmwn

def exec_command_wait (self, command, xxkwargs):
nmn
Execute the command on the shell, waits for it to finish,
and return the retcode, the stdout and the stderr.

Enforce the execution to be run from the pwd (as given by
self.getcwd), if this is not None.

4.1. Modules

247

AiiDA documentation, Release 0.5.0

:param str command: execute the command given as a string

:return: a tuple: the retcode (int), stdout (str) and stderr (str).
mwn

def get_attribute(self,path):

nun

Return an object FixedFieldsAttributeDict for file in a given path,
as defined in aiida.common.extendeddicts
Each attribute object consists in a dictionary with the following keys:

* st_size: size of files, in bytes

* st_uid: user id of owner

* st_gid: group id of owner

* st_mode: protection bits

* st_atime: time of most recent access

* st_mtime: time of most recent modification

:param str path: path to file
:return: object FixedFieldsAttributeDict

nun

def getcwd(self):

nun

Get working directory

:return: a string identifying the current working directory
nmmwn

def get (self, remotepath, localpath, =xargs, xxkwargs):
nmmwn
Retrieve a file or folder from remote source to local destination
dst must be an absolute path (src not necessarily)

:param remotepath: (str) remote_folder_path
:param localpath: (str) local_folder_path

def getfile(self, remotepath, localpath, *args, xxkwargs):
nmmwn
Retrieve a file from remote source to local destination
dst must be an absolute path (src not necessarily)

:param str remotepath: remote_folder_path
:param str localpath: local_folder_path

def gettree(self, remotepath, localpath, =xargs, =xxkwargs):

Retrieve a folder recursively from remote source to local destination
dst must be an absolute path (src not necessarily)

:param str remotepath: remote_folder_path
:param str localpath: local_ folder_path

248 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

nun

def gotocomputer_command (self, remotedir):
mwn
Return a string to be run using os.system in order to connect
via the transport to the remote directory.

Expected behaviors:
* A new bash session is opened
* A reasonable error message is produced if the folder does not exist

:param str remotedir: the full path of the remote directory
nmwn

def isdir(self,path):

True if path is an existing directory.

:param str path: path to directory

:return: boolean
nmwn

def isfile(self,path):

nun

Return True if path is an existing file.

:param str path: path to file

:return: boolean
nmmwn

def listdir(self, path='.',pattern=None):
nmmwn
Return a list of the names of the entries in the given path.
The list is in arbitrary order. It does not include the special
entries '.' and '..' even if they are present in the directory.

:param str path: path to list (default to '.')

:param str pattern: if used, listdir returns a list of files matching
filters in Unix style. Unix only.

:return: a list of strings

nun

def makedirs(self,path,ignore_existing=False):
nmmwn
Super-mkdir; create a leaf directory and all intermediate ones.
Works like mkdir, except that any intermediate path segment (not
just the rightmost) will be created if it does not exist.

:param str path: directory to create
:param bool ignore_existing: if set to true, it doesn't give any error

if the leaf directory does already exist

:raises: OSError, if directory at path already exists
nmmwn

def mkdir (self,path, ignore_existing=False) :

4.1. Modules 249

AiiDA documentation, Release 0.5.0

nun

Create a folder (directory) named path.

:param str path: name of the folder to create
:param bool ignore_existing: if True, does not give any error if the
directory already exists

:raises: OSError, if directory at path already exists
nmwn

def normalize(self,path='."):
nmn
Return the normalized path (on the server) of a given path.
This can be used to quickly resolve symbolic links or determine
what the server is considering to be the "current folder".

:param str path: path to be normalized

:raise IOError: if the path can't be resolved on the server
nmwn

def put(self, localpath, remotepath, xargs, x* kwargs):
nmmwn
Put a file or a directory from local src to remote dst.
src must be an absolute path (dst not necessarily))
Redirects to putfile and puttree.

:param str localpath: path to remote destination

:param str remotepath: absolute path to local source
nmmwn

def putfile(self, localpath, remotepath, =*args, xx kwargs):
nmmwn
Put a file from local src to remote dst.
src must be an absolute path (dst not necessarily))

:param str localpath: path to remote file

:param str remotepath: absolute path to local file
mwn

def puttree(self, localpath, remotepath, =*args, xx kwargs):

nun

Put a folder recursively from local src to remote dst.
src must be an absolute path (dst not necessarily))

:param str localpath: path to remote folder

:param str remotepath: absolute path to local folder
mwn

def rename (src,dst):
mwn

Rename a file or folder from src to dst.

:param str oldpath: existing name of the file or folder
:param str newpath: new name for the file or folder

:raises IOError: if src/dst is not found
:raises ValueError: if src/dst is not a valid string

250 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

nun

def remove (self,path):

nun

Remove the file at the given path. This only works on files;
for removing folders (directories), use rmdir.

:param str path: path to file to remove

:raise IOError: if the path is a directory

nun

def rmdir (self,path):

nun

Remove the folder named path.
This works only for empty folders. For recursive remove, use rmtree.

:param str path: absolute path to the folder to remove
nmwn

raise NotImplementedError

def rmtree(self,path):

nun

Remove recursively the content at path

:param str path: absolute path to remove
mwn

4.1.3 aiida.scheduler documentation

We report here the generic AiiDA scheduler implementation.

Generic scheduler class

class aiida.scheduler.__init__ .Scheduler

Base class for all schedulers.

classmethod create_job_resource (**kwargs)
Create a suitable job resource from the kwargs specified

getJobs (jobs=None, user=None, as_dict=False)
Get the list of jobs and return it.

Typically, this function does not need to be modified by the plugins.
Parameters
* jobs (list) — a list of jobs to check; only these are checked
* user (str) — a string with a user: only jobs of this user are checked

* as_dict (list) — if False (default), a list of JobInfo objects is returned. If True, a dictio-
nary is returned, having as key the job_id and as value the JobInfo object.

Note: typically, only either jobs or user can be specified. See also comments in _get_joblist_command.

get_detailed_jobinfo (jobid)
Return a string with the output of the detailed_jobinfo command.

4.1.

Modules 251

AiiDA documentation, Release 0.5.0

At the moment, the output text is just retrieved and stored for logging purposes, but no parsing is per-
formed.

classmethod get_short_doc ()
Return the first non-empty line of the class docstring, if available

get_submit_script (job_tmpl)
Return the submit script as a string. :parameter job_tmpl: a aiida.scheduler.datastrutures.JobTemplate
object.

The plugin returns something like

#!/bin/bash <- this shebang line could be configurable in the future scheduler_dependent stuff to choose
numnodes, numcores, walltime, ... prepend_computer [also from calcinfo, joined with the following?]
prepend_code [from calcinfo] output of _get_script_main_content postpend_code postpend_computer

kill (jobid)
Kill a remote job, and try to parse the output message of the scheduler to check if the scheduler accepted
the command.

..note:: On some schedulers, even if the command is accepted, it may take some seconds for the job to
actually disappear from the queue.

Parameters jobid (str) — the job id to be killed
Returns True if everything seems ok, False otherwise.

logger
Return the internal logger.

set_transport (fransport)
Set the transport to be used to query the machine or to submit scripts. This class assumes that the transport
is open and active.

submit_from_script (working_directory, submit_script)
Goes in the working directory and submits the submit_script.

Return a string with the JobID in a valid format to be used for querying.
Typically, this function does not need to be modified by the plugins.

transport
Return the transport set for this scheduler.

aiida.scheduler.__init__ .SchedulerFactory (module)
Used to load a suitable Scheduler subclass.

Parameters module (str) — a string with the module name

Returns the scheduler subclass contained in module ‘module’

Scheduler datastructures

This module defines the main data structures used by the Scheduler.

In particular, there is the definition of possible job states (job_states), the data structure to be filled for job submission
(JobTemplate), and the data structure that is returned when querying for jobs in the scheduler (JobInfo).

class aiida.scheduler.datastructures.JobInfo (init={})
Contains properties for a job in the queue. Most of the fields are taken from DRMAA v.2.

252 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Note that default fields may be undefined. This is an expected behavior and the application must cope with this
case. An example for instance is the exit_status for jobs that have not finished yet; or features not supported by
the given scheduler.

Fields:
*job_1id: the job ID on the scheduler
etitle: the job title, as known by the scheduler
*exit_status: the exit status of the job as reported by the operating system on the execution host
sterminating_signal: the UNIX signal that was responsible for the end of the job.
eannotation: human-readable description of the reason for the job being in the current state or substate.
*job_state: the job state (one of those definedin aiida.scheduler.datastructures. job_states)
*job_substate: a string with the implementation-specific sub-state

*allocated_machines: a list of machines used for the current job. This is a list of MachineInfo
objects.

*job_owner: the job owner as reported by the scheduler
enum_mpiprocs: the fotal number of requested MPI procs
enum_cpus: the total number of requested CPUs (cores) [may be undefined]

enum_machines: the number of machines (i.e., nodes), required by the job. If allocated_machines
is not None, this number must be equal to 1len (allocated_machines). Otherwise, for schedulers
not supporting the retrieval of the full list of allocated machines, this attribute can be used to know at least
the number of machines.

equeue_name: The name of the queue in which the job is queued or running.
*wallclock_time_seconds: the accumulated wallclock time, in seconds
erequested_wallclock_time_seconds: the requested wallclock time, in seconds
ecpu_time: the accumulated cpu time, in seconds

esubmission_time: the absolute time at which the job was submitted, of type datetime.datetime

edispatch_time: the absolute time at which the job first entered the ‘started’ state, of type date-
time.datetime

efinish_time: the absolute time at which the job first entered the ‘finished’ state, of type date-
time.datetime

class aiida.scheduler.datastructures.JobResource (init={})
A class to store the job resources. It must be inherited and redefined by the specific plugin, that should contain
a _job_resource_class attribute pointing to the correct JobResource subclass.

It should at least define the get_tot_num_mpiprocs() method, plus an __init__ to accept its set of variables.
Typical attributes are:

enum_machines

snum_mpiprocs_per_machine
or (e.g. for SGE)

stot_num_mpiprocs

*parallel_env

4.1. Modules 253

AiiDA documentation, Release 0.5.0

The __init__ should take care of checking the values. The init should raise only ValueError or TypeError on
invalid parameters.

classmethod accepts_default_mpiprocs_per_machine ()

Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False otherwise.

Should be implemented in each subclass.

get_tot_num mpiprocs ()

Return the total number of cpus of this job resource.

classmethod get_valid_keys ()

Return a list of valid keys to be passed to the __init__

class aiida.scheduler.datastructures.JobTemplate (init={})

A template for submitting jobs. This contains all required information to create the job header.

The required fields are: working_directory, job_name, num_machines, num_mpiprocs_per_machine,

argv.

Fields:

esubmit_as_hold: if set, the job will be in a ‘hold’ status right after the submission
ererunnable: if the job is rerunnable (boolean)
*job_environment: a dictionary with environment variables to set before the execution of the code.

sworking_directory: the working directory for this job. During submission, the transport will first do
a ‘chdir’ to this directory, and then possibly set a scheduler parameter, if this is supported by the scheduler.

eemail: an email address for sending emails on job events.
eemail_on_started: if True, ask the scheduler to send an email when the job starts.

eemail_on_terminated: if True, ask the scheduler to send an email when the job ends. This should
also send emails on job failure, when possible.

*job_name: the name of this job. The actual name of the job can be different from the one specified here,
e.g. if there are unsupported characters, or the name is too long.

esched_output_path: a (relative) file name for the stdout of this job
esched_error_path: a (relative) file name for the stdout of this job
esched_join_files: if True, write both stdout and stderr on the same file (the one specified for stdout)

equeue_name: the name of the scheduler queue (sometimes also called partition), on which the job will
be submitted.

*job_resource: a suitable JobResource subclass with information on
how many nodes and cpus it should use. It must be an instance of the
aiida.scheduler.Scheduler._job_resource_class class. Use the Sched-

uler.create_job_resource method to create it.
enum_machines: how many machines (or nodes) should be used
enum_mpiprocs_per_machine: how many MPI procs should be used on each machine (or node).
*priority: a priority for this job. Should be in the format accepted by the specific scheduler.

e'max_memory_kb: The maximum amount of memory the job is allowed to allocate ON EACH NODE,
in kilobytes

'max_wallclock_seconds: The maximum wall clock time that all processes of a job are allowed to
exist, in seconds

254

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

ecustom_scheduler_commands: a string that will be inserted right after the last scheduler command,
and before any other non-scheduler command; useful if some specific flag needs to be added and is not
supported by the plugin

*prepend_text: a (possibly multi-line) string to be inserted in the scheduler script before the main
execution line

eappend_text: a (possibly multi-line) string to be inserted in the scheduler script after the main execu-
tion line

simport_sys_environment: import the system environment variables

ecodes_info: a list of aiida.common.datastructures.CalcInfo objects. Each contains the information
necessary to run a single code. At the moment, it can contain:

—cmdline_parameters: alist of strings with the command line arguments of the program to run.
This is the main program to be executed. NOTE: The first one is the executable name. For MPI runs,
this will probably be “mpirun” or a similar program; this has to be chosen at a upper level.

—stdin_name: the (relative) file name to be used as stdin for the program specified with argv.
—stdout_name: the (relative) file name to be used as stdout for the program specified with argv.
—stderr_name: the (relative) file name to be used as stderr for the program specified with argv.
—join_files: if True, stderr is redirected on the same file specified for stdout.

ecodes_run_mode: sets the run_mode with which the (multiple) codes have to be executed. For exam-
ple, parallel execution:

mpirun -np 8 a.x &
mpirun -np 8 b.x &
wait

The serial execution would be without the &’s. Values are given by ai-
ida.common.datastructures.code_run_modes.

class aiida.scheduler.datastructures.MachineInfo (init={})
Similarly to what is defined in the DRMAA v.2 as SlotInfo; this identifies each machine (also called ‘node’
on some schedulers) on which a job is running, and how many CPUs are being used. (Some of them could be
undefined)

ename: name of the machine
enum_cpus: number of cores used by the job on this machine
enum_mpiprocs: number of MPI processes used by the job on this machine

class aiida.scheduler.datastructures.NodeNumberJobResource (**kwargs)
An implementation of JobResource for schedulers that support the specification of a number of nodes and a
number of cpus per node

classmethod accepts_default_mpiprocs_per_machine ()
Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False otherwise.

get_tot_num mpiprocs ()
Return the total number of cpus of this job resource.

classmethod get_valid_keys ()
Return a list of valid keys to be passed to the __init__

class aiida.scheduler.datastructures.ParEnvJobResource (**kwargs)
An implementation of JobResource for schedulers that support the specification of a parallel environment (a
string) + the total number of nodes

4.1. Modules 255

AiiDA documentation, Release 0.5.0

classmethod accepts_default_mpiprocs_per_machine ()
Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False otherwise.

get_tot_num mpiprocs ()
Return the total number of cpus of this job resource.

4.1.4 aiida.cmdline documentation

Baseclass
classaiida.cmdline.baseclass.VerdiCommand
This command has no documentation yet.

complete (subargs_idx, subargs)
Method called when the user asks for the bash completion. Print a list of valid keywords. Returning
without printing will use standard bash completion.

Parameters

* subargs_idx — the index of the subargs where the TAB key was pressed (0 is the first
element of subargs)

* subargs — a list of subarguments to this command

classmethod get_command_name ()
Return the name of the verdi command associated to this class. By default, the lower-case version of the
class name.

get_full_ command_name (with_exec_name=True)
Return the current command name. Also tries to get the subcommand name.

Parameters with_exec_name — if True, return the full string, including the executable name
(‘verdi’). If False, omit it.

run (*args)
Method executed when the command is called from the command line.

class aiida.cmdline.baseclass.VerdiCommandWithSubcommands
Used for commands with subcommands. Just define, in the __init__, the self.valid_subcommands dictionary, in

the format:

self.valid_subcommands = {
'uploadfamily': (self.uploadfamily, self.complete_auto),
'listfamilies': (self.listfamilies, self.complete_none),

}

where the key is the subcommand name to give on the command line, and the value is a tuple of length 2, the
first is the function to call on execution, the second is the function to call on complete.

This class already defined the complete_auto and complete_none commands, that respectively call the default
bash completion for filenames/folders, or do not give any completion suggestion. Other functions can of course
be defined.

Todo

Improve the docstrings for commands with subcommands.

get_full command_name (*args, **kwargs)
Return the current command name. Also tries to get the subcommand name.

256 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Also tries to see if the caller function was one specific submethod.

Parameters with_exec_name — if True, return the full string, including the executable name
(‘verdi’). If False, omit it.

Verdi lib

Command line commands for the main executable ‘verdi’ of aiida

If you want to define a new command line parameter, just define a new class inheriting from VerdiCommand, and define
arun(self,*args) method accepting a variable-length number of parameters args (the command-line parameters), which
will be invoked when this executable is called as verdi NAME

Don’t forget to add the docstring to the class: the first line will be the short description, the following ones the long
description.

classaiida.cmdline.verdilib.Completion
Manage bash completion

Return a list of available commands, separated by spaces. Calls the correct function of the command if the TAB
has been pressed after the first command.

Returning without printing will use the default bash completion.

class aiida.cmdline.verdilib.CompletionCommand
Return the bash completion function to put in ~/.bashrc

This command prints on screen the function to be inserted in your .bashrc command. You can copy and paste
the output, or simply add eval “verdi completioncommand” to your .bashrc, AFTER having added the aiida/bin
directory to the path.

run (*args)
I put the documentation here, and I don’t print it, so we don’t clutter too much the .bashrc.

*“${THE_WORDS[@]}” (with the @) puts each element as a different parameter; note that the vari-
able expansion etc. is performed

I add a ‘x’ at the end and then remove it; in this way, $() will not remove trailing spaces
o[f the completion command did not print anything, we use the default bash completion for filenames

*If instead the code prints something empty, thanks to the workaround above $OUTPUT is not empty,
so we do go the the ‘else’ case and then, no substitution is suggested.

class aiida.cmdline.verdilib.Help
Describe a specific command

Pass a further argument to get a description of a given command.

classaiida.cmdline.verdilib.Install
Install/setup aiida for the current user

This command creates the ~/.aiida folder in the home directory of the user, interactively asks for the database
settings and the repository location, does a setup of the daemon and runs a migrate command to create/setup the
database.

complete (subargs_idx, subargs)
No completion after ‘verdi install’.

class aiida.cmdline.verdilib.ListParams
List available commands

List available commands and their short description. For the long description, use the ‘help’ command.

4.1. Modules 257

AiiDA documentation, Release 0.5.0

exception aiida.cmdline.verdilib.ProfileParsingException (*args, **kwargs)
Exception raised when parsing the profile command line option, if only -p is provided, and no profile is specified

classaiida.cmdline.verdilib.Run
Execute an AiiDA script

class aiida.cmdline.verdilib.Runserver
Run the AiiDA webserver on localhost

This command runs the webserver on the default port. Further command line options are passed to the Django
manage runserver command

class aiida.cmdline.verdilib.Shell
Run the interactive shell with the AiiDA environment loaded.

This command opens an ipython shell with the AiiDA environment loaded.

aiida.cmdline.verdilib.exec_from_cmdline (argv)
The main function to be called. Pass as parameter the sys.argv.

aiida.cmdline.verdilib.get_command_suggestion (command)
A function that prints on stderr a list of similar commands

aiida.cmdline.verdilib.get_listparams ()
Return a string with the list of parameters, to be printed

The advantage of this function is that the calling routine can choose to print it on stdout or stderr, depending on
the needs.

aiida.cmdline.verdilib.parse_profile (argv, merge_equal=False)
Parse the argv to see if a profile has been specified, return it with the command position shift (index where the
commands start)

Parameters merge_equal —if True, merge things like (‘verdi’, ‘—profile’, ‘=, ‘x’, ‘y’) to (‘verdi’,

‘—profile=x’, ‘y’) but then return the correct index for the original array.

Raises ProfileParsingException if there is only ‘verdi’ specified, or if only ‘verdi -p’ (in these
cases, one has respectively exception.minus_p_provided equal to False or True)

aiida.cmdline.verdilib.update_environment (*args, **kwds)
Used as a context manager, changes sys.argv with the new_argv argument, and restores it upon exit.

Daemon
class aiida.cmdline.commands.daemon .Daemon
Manage the AiiDA daemon
This command allows to interact with the AiiDA daemon. Valid subcommands are:
estart: start the daemon
estop: restart the daemon
erestart: restart the aiida daemon, waiting for it to cleanly exit before restarting it.
estatus: inquire the status of the Daemon.
elogshow: show the log in a continuous fashion, similar to the ‘tail -f* command. Press CTRL+C to exit.
dinit ()
A dictionary with valid commands and functions to be called: start, stop, status and restart.

configure_user (*args)
Configure the user that can run the daemon.

258 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

daemon_logshow (*args)
Show the log of the daemon, press CTRL+C to quit.

daemon_restart (*args)
Restart the daemon. Before restarting, wait for the daemon to really shut down.

daemon_start (*args)
Start the daemon

daemon_status (*args)
Print the status of the daemon

daemon_stop (*args, **kwargs)
Stop the daemon.

Parameters wait_for_death - If True, also verifies that the process was already killed. It
attempts at most max_retries times, with sleep_between_retries seconds be-
tween one attempt and the following one (both variables are for the time being hardcoded in
the function).

Returns None if wait_for_death is False. True/False if the process was actually dead or
after all the retries it was still alive.

get_daemon_pid()
Return the daemon pid, as read from the supervisord.pid file. Return None if no pid is found (or the pid is
not valid).

kill daemon ()
This is the actual call that kills the daemon.

There are some print statements inside, but no sys.exit, so it is safe to be called from other parts of the
code.

aiida.cmdline.commands.daemon.is_daemon_user ()
Return True if the user is the current daemon user, False otherwise.

Data
class aiida.cmdline.commands.data.Data
Setup and manage data specific types

There is a list of subcommands for managing specific types of data. For instance, ‘data upf’ manages pseudopo-
tentials in the UPF format.

__init__ ()
A dictionary with valid commands and functions to be called.

class aiida.cmdline.commands.data.Depositable
Provides shell completion for depositable data nodes.

Note: classes, inheriting Depositable, MUST NOT contain attributes, starting with _deposit_, which are
not plugins for depositing.

deposit (*args)
Deposit the data node to a given database.

Parameters args — a namespace with parsed command line parameters.

get_deposit_plugins ()
Get the list of all implemented deposition methods for data class.

4.1. Modules 259

AiiDA documentation, Release 0.5.0

class aiida.cmdline.commands.data.Exportable
Provides shell completion for exportable data nodes.

Note: classes, inheriting Exportable, MUST NOT contain attributes, starting with _export_, which are not
plugins for exporting.

export (*args)
Export the data node to a given format.

get_export_plugins ()
Get the list of all implemented exporters for data class.

class aiida.cmdline.commands.data.Importable
Provides shell completion for importable data nodes.

Note: classes, inheriting Importable, MUST NOT contain attributes, starting with _import_, which are not
plugins for importing.

get_import_ plugins ()
Get the list of all implemented importers for data class.

class aiida.cmdline.commands.data.Listable
Provides shell completion for listable data nodes.

Note: classes, inheriting Listable, MUST define value for property dataclass (preferably in __init_),
which has to point to correct *Data class.

append_list_cmdline_arguments (parser)
Append additional command line parameters, that are later parsed and used in the query construction.

Parameters parser — instance of argparse. ArgumentParser

get_column_names ()
Return the list with column names.

Note: neither the number nor correspondence of column names and actual columns in the output from
the query are checked.

list (*args)
List all instances of given data class.

Parameters args — a list of command line arguments.

query (args)
Perform the query and return information for the list.

Parameters args — a namespace with parsed command line parameters.
Returns table (list of lists) with information, describing nodes. Each row describes a single hit.

query_group (g_object, args)
Subselect to filter data nodes by their group.

Parameters
* q _object —a query object

* args — a namespace with parsed command line parameters.

260 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

query_past_days (g_object, args)
Subselect to filter data nodes by their age.

Parameters
* g _object — a query object
* args — a namespace with parsed command line parameters.

class aiida.cmdline.commands.data.Visualizable
Provides shell completion for visualizable data nodes.

Note: classes, inheriting Visualizable, MUST NOT contain attributes, starting with _show_, which are not
plugins for visualization.

In order to specify a default visualization format, one has to override _default_show_format property
(preferably in __init__), setting it to the name of default visualization tool.

get_show_plugins ()
Get the list of all implemented plugins for visualizing the structure.

show (*args)
Show the data node with a visualization program.

4.1.5 aiida.execmanager documentation
Execution Manager

This file contains the main routines to submit, check and retrieve calculation results. These are general and contain
only the main logic; where appropriate, the routines make reference to the suitable plugins for all plugin-specific
operations.

aiida.execmanager.get_authinfo (computer, aiidauser)
aiida.execmanager.retrieve_computed_for_authinfo (authinfo)
aiida.execmanager.retrieve_jobs ()

aiida.execmanager.submit_calc (calc, authinfo, transport=None)
Submit a calculation

Note if no transport is passed, a new transport is opened and then closed within this function. If you
want to use an already opened transport, pass it as further parameter. In this case, the transport
has to be already open, and must coincide with the transport of the the computer defined by the
authinfo.

Parameters
* calc - the calculation to submit (an instance of the aiida.orm.JobCalculation class)
* authinfo - the authinfo for this calculation.

* transport — if passed, must be an already opened transport. No checks are done on the
consistency of the given transport with the transport of the computer defined in the authinfo.

aiida.execmanager.submit_jobs ()
Submit all jobs in the TOSUBMIT state.

aiida.execmanager.submit_jobs_with_authinfo (authinfo)
Submit jobs in TOSUBMIT status belonging to user and machine as defined in the ‘dbauthinfo’ table.

4.1. Modules 261

AiiDA documentation, Release 0.5.0

aiida.execmanager.update_jobs ()

calls an update for each set of pairs (machine, aiidauser)

aiida.execmanager.update_running_calcs_status (authinfo)

Update the states of calculations in WITHSCHEDULER status belonging to user and machine as defined in the
‘dbauthinfo’ table.

4.1.6 aiida.djsite documentation

Database schema

class aiida.djsite.db.models.DbAttribute (*args, **kwargs)

This table stores attributes that uniquely define the content of the node. Therefore, their modification corrupts
the data.

class aiida.djsite.db.models.DbAttributeBaseClass (*args, **kwargs)

Abstract base class for tables storing element-attribute-value data. Element is the dbnode; attribute is the key
name. Value is the specific value to store.

This table had different SQL columns to store different types of data, and a datatype field to know the actual
datatype.

Moreover, this class unpacks dictionaries and lists when possible, so that it is possible to query inside recursive
lists and dicts.

classmethod del_value_for_ node (dbnode, key)
Delete an attribute from the database for the given dbnode.

Note no exception is raised if no attribute with the given key is found in the DB.
Parameters

* dbnode - the dbnode for which you want to delete the key.

* key - the key to delete.

classmethod get_all_values_for_node (dbnode)
Return a dictionary with all attributes for the given dbnode.

Returns a dictionary where each key is a level-0 attribute stored in the Db table, correctly con-
verted to the right type.

classmethod get_value_for_ node (dbnode, key)
Get an attribute from the database for the given dbnode.

Returns the value stored in the Db table, correctly converted to the right type.
Raises AttributeError if no key is found for the given dbnode

classmethod has_key (dbnode, key)
Return True if the given dbnode has an attribute with the given key, False otherwise.

classmethod 1ist_all node_elements (dbnode)
Return a django queryset with the attributes of the given node, only at deepness level zero (i.e., keys not
containing the separator).

classmethod set_value_ for_ node (dbnode, key, value, with_transaction=True,
stop_if _existing=False)
This is the raw-level method that accesses the DB. No checks are done to prevent the user from (re)setting
a valid key. To be used only internally.

Todo there may be some error on concurrent write; not checked in this unlucky case!

262

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Parameters

* dbnode - the dbnode for which the attribute should be stored; in an integer is passed, this
is used as the PK of the dbnode, without any further check (for speed reasons)

* key - the key of the attribute to store; must be a level-zero attribute (i.e., no separators in
the key)

¢ value — the value of the attribute to store

* with_transaction - if True (default), do this within a transaction, so that nothing
gets stored if a subitem cannot be created. Otherwise, if this parameter is False, no trans-
action management is performed.

* stop_if existing-—if True, it will stop with an UniquenessError exception if the key
already exists for the given node. Otherwise, it will first delete the old value, if existent.
The use with True is useful if you want to use a given attribute as a “locking” value, e.g. to
avoid to perform an action twice on the same node. Note that, if you are using transactions,
you may get the error only when the transaction is committed.

Raises ValueError if the key contains the separator symbol used internally to unpack dictionar-
ies and lists (defined in cls._sep).

class aiida.djsite.db.models.DbAuthInfo (*args, **kwargs)
Table that pairs aiida users and computers, with all required authentication information.

get_transport ()
Given a computer and an aiida user (as entries of the DB) return a configured transport to connect to the
computer.

class aiida.djsite.db.models.DbCalcState (*args, **kwargs)
Store the state of calculations.

The advantage of a table (with uniqueness constraints) is that this disallows entering twice in the same state
(e.g., retrieving twice).

class aiida.djsite.db.models.DbComment (id, uuid, dbnode_id, ctime, mtime, user_id, content)

class aiida.djsite.db.models.DbComputer (*args, **kwargs)
Table of computers or clusters.

Attributes: * name: A name to be used to refer to this computer. Must be unique. * hostname: Fully-qualified
hostname of the host * transport_type: a string with a valid transport type

Note: other things that may be set in the metadata:
empirun command
enum cores per node
*max num cores

eworkdir: Full path of the aiida folder on the host. It can contain the string {username}
that will be substituted by the username of the user on that machine. The actual workdir
is then obtained as workdir.format(username=THE_ACTUAL_USERNAME) Example: workdir =
“/scratch/{username }/aiida/”

eallocate full node = True or False
e... (further limits per user etc.)

classmethod get_dbcomputer (computer)
Return a DbComputer from its name (or from another Computer or DbComputer instance)

4.1. Modules 263

AiiDA documentation, Release 0.5.0

class aiida.djsite.db.models.DbExtra (*args, **kwargs)
This table stores extra data, still in the key-value format, that the user can attach to a node. Therefore, their
modification simply changes the user-defined data, but does not corrupt the node (it will still be loadable without
errors). Could be useful to add “duplicate” information for easier querying, or for tagging nodes.

class aiida.djsite.db.models.DbGroup (*args, **kwargs)
A group of nodes.

Any group of nodes can be created, but some groups may have specific meaning if they satisfy specific rules
(for instance, groups of UpdData objects are pseudopotential families - if no two pseudos are included for the
same atomic element).

class aiida.djsite.db.models.DbLink (*args, **kwargs)
Direct connection between two dbnodes. The label is identifying the link type.

class aiida.djsite.db.models.DbLock (key, creation, timeout, owner)

class aiida.djsite.db.models.DbLog (id, time, loggername, levelname, objname, objpk, message,
metadata)

classmethod add_from_logrecord (record)
Add a new entry from a LogRecord (from the standard python logging facility). No exceptions are man-
aged here.

class aiida.djsite.db.models.DbMultipleValueAttributeBaseClass (*args, **kwargs)
Abstract base class for tables storing attribute + value data, of different data types (without any association to a
Node).

classmethod create_value (key, value, subspecifier_value=None, other_attribs={})
Create a new list of attributes, without storing them, associated with the current key/value pair (and to the
given subspecifier, e.g. the DbNode for DbAttributes and DbExtras).

Note No hits are done on the DB, in particular no check is done on the existence of the given
nodes.

Parameters

* key — a string with the key to create (can contain the separator cls._sep if this is a sub-
attribute: indeed, this function calls itself recursively)

* value - the value to store (a basic data type or a list or a dict)

* subspecifier_ value — must be None if this class has no subspecifier set (e.g., the
DbSetting class). Must be the value of the subspecifier (e.g., the dbnode) for classes that
define it (e.g. DbAttribute and DbExtra)

* other_attribs — a dictionary of other parameters, to store only on the level-zero
attribute (e.g. for description in DbSetting).

Returns always a list of class instances; it is the user responsibility to store such entries (typi-
cally with a Django bulk_create() call).

classmethod del_value (key, only_children=False, subspecifier_value=None)
Delete a value associated with the given key (if existing).

Note No exceptions are raised if no entry is found.
Parameters
* key - the key to delete. Can contain the separator cls._sep if you want to delete a subkey.

* only_children - if True, delete only children and not the entry itself.

264 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

* subspecifier_value — must be None if this class has no subspecifier set (e.g., the
DbSetting class). Must be the value of the subspecifier (e.g., the dbnode) for classes that
define it (e.g. DbAttribute and DbExtra)

classmethod get_query_ dict (value)
Return a dictionary that can be used in a django filter to query for a specific value. This takes care of
checking the type of the input parameter ‘value’ and to convert it to the right query.

Parameters value — The value that should be queried. Note: can only be base datatype, not a
list or dict. For those, query directly for one of the sub-elements.

Todo see if we want to give the possibility to query for the existence of a (possibly empty)
dictionary or list, of for their length.

Note this will of course not find a data if this was stored in the DB as a serialized JSON.

Returns a dictionary to be used in the django .filter() method. For instance, if ‘value’ is a string,
it will return the dictionary {’ datatype’: ‘’txt’, ’'tval’: wvalue}.

Raise ValueError if value is not of a base datatype (string, integer, float, bool, None, or date)

getvalue ()
This can be called on a given row and will get the corresponding value, casting it correctly.

long_field length(()
Return the length of “long” fields. This is used, for instance, for the ‘key’ field of attributes. This returns
1024 typically, but it returns 255 if the backend is mysql.

Note Call this function only AFTER having called load_dbenv!

classmethod set_value (key, value, with_transaction=True, subspecifier_value=None,
other_attribs={}, stop_if _existing=False)
Set a new value in the DB, possibly associated to the given subspecifier.

Note This method also stored directly in the DB.
Parameters

* key — a string with the key to create (must be a level-0 attribute, that is it cannot contain
the separator cls._sep).

* value - the value to store (a basic data type or a list or a dict)

* subspecifier_ value — must be None if this class has no subspecifier set (e.g., the
DbSetting class). Must be the value of the subspecifier (e.g., the dbnode) for classes that
define it (e.g. DbAttribute and DbExtra)

* with_transaction - True if you want this function to be managed with transactions.
Set to False if you already have a manual management of transactions in the block where
you are calling this function (useful for speed improvements to avoid recursive transac-
tions)

* other_attribs — a dictionary of other parameters, to store only on the level-zero
attribute (e.g. for description in DbSetting).

* stop_if_ existing - if True, it will stop with an UniquenessError exception if the
new entry would violate an uniqueness constraint in the DB (same key, or same key+node,
depending on the specific subclass). Otherwise, it will first delete the old value, if existent.
The use with True is useful if you want to use a given attribute as a “locking” value, e.g. to
avoid to perform an action twice on the same node. Note that, if you are using transactions,
you may get the error only when the transaction is committed.

subspecifier_ pk
Return the subspecifier PK in the database (or None, if no subspecifier should be used)

. Modules 265

AiiDA documentation, Release 0.5.0

subspecifiers_dict
Return a dict to narrow down the query to only those matching also the subspecifier.

classmethod validate_key (key)
Validate the key string to check if it is valid (e.g., if it does not contain the separator symbol.).

Returns None if the key is valid

Raises ValidationError if the key is not valid

class aiida.djsite.db.models.DbNode (*args, **kwargs)

Generic node: data or calculation or code.
Nodes can be linked (DbLink table) Naming convention for Node relationships: A —> C —> B.
*A is ‘input’ of C.
*C is ‘output’ of A.
*A is ‘parent’ of B,C
*C,B are ‘children’ of A.

Note parents and children are stored in the DbPath table, the transitive closure table, automatically
updated via DB triggers whenever a link is added to or removed from the DbLink table.

Internal attributes, that define the node itself, are stored in the DbAttribute table; further user-defined attributes,
called ‘extra’, are stored in the DbExtra table (same schema and methods of the DbAttribute table, but the code
does not rely on the content of the table, therefore the user can use it at his will to tag or annotate nodes.

Note Attributes in the DbAttribute table have to be thought as belonging to the DbNode, (this is
the reason for which there is no ‘user’ field in the DbAttribute field). Moreover, Attributes
define uniquely the Node so should be immutable (except for the few ones defined in the _up-
datable_attributes attribute of the Node() class, that are updatable: these are Attributes that are
set by AiiDA, so the user should not modify them, but can be changed (e.g., the append_text of
a code, that can be redefined if the code has to be recompiled).

attributes
Return all attributes of the given node as a single dictionary.

extras
Return all extras of the given node as a single dictionary.

get_aiida_class ()
Return the corresponding aiida instance of class aiida.orm.Node or a appropriate subclass.

get_simple_name (invalid_result=None)
Return a string with the last part of the type name.

If the type is empty, use ‘Node’. If the type is invalid, return the content of the input variable
invalid_result.

Parameters invalid_result — The value to be returned if the node type is not recognized.

classaiida.djsite.db.models.DbPath (*args, **kwargs)

Transitive closure table for all dbnode paths.

expand ()
Method to expand a DbPath (recursive function), i.e., to get a list of all dbnodes that are traversed in the
given path.

Returns list of DbNode objects representing the expanded DbPath

266

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

class aiida.djsite.db.models.DbSetting (*args, **kwargs)
This will store generic settings that should be database-wide.

class aiida.djsite.db.models.DbUser (*args, **kwargs)
This class replaces the default User class of Django

class aiida.djsite.db.models.DbWork£flow (id, uuid, ctime, mtime, user_id, label, description,
nodeversion, lastsyncedversion, state, report, module,
module_class, script_path, script_md5)

get_aiida_class ()
Return the corresponding aiida instance of class aiida.worflow

is_subworkflow ()
Return True if this is a subworkflow, False if it is a root workflow, launched by the user.

class aiida.djsite.db.models.DbWork£flowData (id, parent_id, name, time, data_type, value_type,
Jjson_value, aiida_obj_id)

class aiida.djsite.db.models.DbWorkflowStep (id, parent_id, name, user_id, time, nextcall,

state)
aiida.djsite.db.models.deserialize_attributes (data, sep, original_class=None, origi-
nal_pk=None)
Deserialize the attributes from the format internally stored in the DB to the actual format (dictionaries, lists,
integers, ...
Parameters

* data — must be a dictionary of dictionaries. In the top-level dictionary, the key must be the
key of the attribute. The value must be a dictionary with the following keys: datatype, tval,
fval, ival, bval, dval. Other keys are ignored. NOTE that a type check is not performed! tval
is expected to be a string, dval a date, etc.

* sep - a string, the separator between subfields (to separate the name of a dictionary from
the keys it contains, for instance)

* original_class - if these elements come from a specific subclass of DbMultipleVal-
ueAttributeBaseClass, pass here the class (note: the class, not the instance!). This is used
only in case the wrong number of elements is found in the raw data, to print a more mean-
ingful message (if the class has a dbnode associated to it)

* original_pk - if the elements come from a specific subclass of DbMultipleValueAt-
tributeBaseClass that has a dbnode associated to it, pass here the PK integer. This is used
only in case the wrong number of elements is found in the raw data, to print a more mean-
ingful message

Returns a dictionary, where for each entry the corresponding value is returned, deserial-

ized back to lists, dictionaries, etc. Example: if data = {’a’: {’datatype’:
"list", "ival": 2, ...}, "a.0': {’datatype’ : "int", "ival":
2, ...}, '"a.l": {’'datatype’: "txt", "tval": "yy"}], it will return
{"a": [2, "yy"] }

4.1.7 ORM documentation: generic aiida.orm

This section describes the aiida/django object-relational mapping.
Some generic methods of the module aiida.orm

aiida.orm.CalculationFactory (module, from_abstract=False)
Return a suitable JobCalculation subclass.

4.1. Modules 267

AiiDA documentation, Release 0.5.0

Parameters
* module — a valid string recognized as a Calculation plugin

* from abstract — A boolean. If False (default), actually look only to subclasses to
JobCalculation, not to the base Calculation class. If True, check for valid strings for plugins
of the Calculation base class.

aiida.orm.DataFactory (module)

Return a suitable Data subclass.

aiida.orm.WorkflowFactory (module)

Return a suitable Workflow subclass.

aiida.orm.load_node (node_id=None, pk=None, uuid=None, parent_class=None)

Return an AiiDA node given PK or UUID.
Parameters
* node_id - PK (integer) or UUID (string) or a node
* pk — PK of a node
* uuid - UUID of a node

* parent_class - if specified, checks whether the node loaded is a subclass of par-
ent_class

Returns an AiiDA node
Raises

* ValueError - if none or more than one of parameters is supplied or type of node_id is
neither string nor integer.

* NotExistent —if the parent_class is specified and no matching Node is found.

aiida.orm.load_workflow (wf_id=None, pk=None, uuid=None)

Return an AiiDA workflow given PK or UUID.
Parameters
* wf_id - PK (integer) or UUID (string) or a workflow
* pk — PK of a workflow
* uuid - UUID of a workflow
Returns an AiiDA workflow

Raises ValueError if none or more than one of parameters is supplied or type of wf_id is neither
string nor integer

Computer

class aiida.orm.computer.Computer (**kwargs)

Base class to map a node in the DB + its permanent repository counterpart.
Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). After the call to store(),
in general attributes cannot be changed, except for those listed in the self._updatable_attributes tuple (empty for
this class, can be extended in a subclass).

268

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Only after storing (or upon loading from uuid) metadata can be modified and in this case they are directly set on
the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

copy ()
Return a copy of the current object to work with, not stored yet.

full text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get (computer)
Return a computer from its name (or from another Computer or DbComputer instance)

get_dbauthinfo (user)
Return the aiida.djsite.db.models.DbAuthInfo instance for the given user on this computer, if the computer
is not configured for the given user.

Parameters user — a DbUser instance.
Returns a aiida.djsite.db.models.DbAuthInfo instance
Raises NotExistent if the computer is not configured for the given user.

get_default_mpiprocs_per machine ()
Return the default number of CPUs per machine (node) for this computer, or None if it was not set.

get_mpirun_command ()
Return the mpirun command. Must be a list of strings, that will be then joined with spaces when submit-
ting.

I also provide a sensible default that may be ok in many cases.

is_user_configured (user)
Return True if the computer is configured for the given user, False otherwise.

Parameters user — a DbUser instance.
Returns a boolean.

is user enabled (user)
Return True if the computer is enabled for the given user (looking only at the per-user setting: the computer
could still be globally disabled).

Note Return False also if the user is not configured for the computer.
Parameters user —a DbUser instance.
Returns a boolean.

classmethod 1ist_names ()
Return a list with all the names of the computers in the DB.

logging = <module ‘logging’ from ‘/usr/lib/python2.7/logging/__init__.pyc’>

Pk
Return the principal key in the DB.

set_default_mpiprocs_per machine (def cpus_per_machine)

Set the default number of CPUs per machine (node) for this computer. Accepts None if you do not want
to set this value.

set_mpirun_command (val)
Set the mpirun command. It must be a list of strings (you can use string.split() if you have a single,
space-separated string).

4.1.

Modules 269

AiiDA documentation, Release 0.5.0

store ()
Store the computer in the DB.

Differently from Nodes, a computer can be re-stored if its properties are to be changed (e.g. a new mpirun
command, etc.)

uuid
Return the UUID in the DB.

validate ()
Check if the attributes and files retrieved from the DB are valid. Raise a ValidationError if something is
wrong.

Must be able to work even before storing: therefore, use the get_attr and similar methods that automatically
read either from the DB or from the internal attribute cache.

For the base class, this is always valid. Subclasses will reimplement this. In the subclass, always call the
super().validate() method first!

aiida.orm.computer.delete_computer (computer)
Delete a computer from the DB. It assumes that the DB backend does the proper checks and avoids to delete
computers that have nodes attached to them.

Implemented as a function on purpose, otherwise complicated logic would be needed to set the internal state of
the object after calling computer.delete().

Node

class aiida.orm.node.AttributeManager (node)
An object used internally to return the attributes as a dictionary.

Note Important! It cannot be used to change variables, just to read them. To change values (of
unstored nodes), use the proper Node methods.

__init__ (node)
Parameters node — the node object.

class aiida.orm.node.Node (**kwargs)
Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). After the call to store(),
in general attributes cannot be changed, except for those listed in the self._updatable_attributes tuple (empty for
this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) extras can be modified and in this case they are directly set on
the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

__init__ (**kwargs)
Initialize the object Node.

Parameters uuid (optional) — if present, the Node with given uuid is loaded from the database.
(It is not possible to assign a uuid to a new Node.)

add_comment (content, user=None)
Add a new comment.

Parameters content — string with comment

270 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

add_path (src_abs, dst_path)
Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders will be

created.
Copy to a cache directory if the entry has not been saved yet.
Parameters
* src_abs (str) — the absolute path of the file to copy.
* dst_filename (str) — the (relative) path on which to copy.

Todo in the future, add an add_attachment() that has the same meaning of a extras file. Decide
also how to store. If in two separate subfolders, remember to reset the limit.

attrs ()
Returns the keys of the attributes.

Returns a list of strings

copy ()
Return a copy of the current object to work with, not stored yet.

This is a completely new entry in the DB, with its own UUID. Works both on stored instances and with
not-stored ones.

Copies files and attributes, but not the extras. Does not store the Node to allow modification of attributes.
Returns an object copy

ctime
Return the creation time of the node.

dbnode
Returns the corresponding Django DbNode object.

del_extra (key)
Delete a extra, acting directly on the DB! The action is immediately performed on the DB. Since extras
can be added only after storing the node, this function is meaningful to be called only after the .store()

method.
Parameters key (str) — key name
Raise AttributeError: if key starts with underscore
Raise ModificationNotAllowed: if the node is not stored yet

description
Get the description of the node.

Returns a string

extras ()
Get the keys of the extras.

Returns a list of strings

folder
Get the folder associated with the node, whether it is in the temporary or the permanent repository.

Returns the RepositoryFolder object.

get_abs_path (path=None, section=None)
Get the absolute path to the folder associated with the Node in the AiiDA repository.

Parameters

4.1.

Modules 271

AiiDA documentation, Release 0.5.0

* path (str) — the name of the subfolder inside the section. If None returns the abspath of
the folder. Default = None.

* section — the name of the subfolder (‘path’ by default).
Returns a string with the absolute path
For the moment works only for one kind of files, ‘path’ (internal files)

get_attr (key, *args)
Get the attribute.

Parameters

* key — name of the attribute

* value (optional) — if no attribute key is found, returns value
Returns attribute value
Raises

* IndexError — If no attribute is found and there is no default

* ValueError — If more than two arguments are passed to get_attr

get_attrs ()
Return a dictionary with all attributes of this node.

get_comments (pk=None)
Return a sorted list of comment values, one for each comment associated to the node.

Parameters pk — integer or list of integers. If it is specified, returns the comment values with
desired pks. (pk refers to DbComment.pk)

Returns the list of comments, sorted by pk; each element of the list is a dictionary, containing
(pk, email, ctime, mtime, content)

get_computer ()
Get the computer associated to the node.

Returns the Computer object or None.

get_extra (key, *args)
Get the value of a extras, reading directly from the DB! Since extras can be added only after storing the
node, this function is meaningful to be called only after the .store() method.

Parameters

* key (str) — key name

* value (optional) — if no attribute key is found, returns value
Returns the key value
Raises ValueError If more than two arguments are passed to get_extra

get_extras ()
Get the value of extras.

Returns the dictionary of extras ({} if no extras)

get_folder_1list (subfolder="")
Get the the list of files/directory in the repository of the object.

Parameters subfolder (stroptional) — get the list of a subfolder

Returns a list of strings.

272 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

get_inputs (type=None, also_labels=False, only_in_db=False)
Return a list of nodes that enter (directly) in this node

Parameters

* type — If specified, should be a class, and it filters only elements of that specific type (or
a subclass of ‘type’)

* also_labels - If False (default) only return a list of input nodes. If True, return a list
of tuples, where each tuple has the following format: (‘label’, Node), with ‘label’ the link
label, and Node a Node instance or subclass

* only_in_db — Return only the inputs that are in the database, ignoring those that are in
the local cache. Otherwise, return all links.

get_inputs_dict (only_in_db=False)
Return a dictionary where the key is the label of the input link, and the value is the input node.

Returns a dictionary {label:object}

get_outputs (fype=None, also_labels=False)
Return a list of nodes that exit (directly) from this node

Parameters

* type — if specified, should be a class, and it filters only elements of that specific type (or
a subclass of ‘type’)

* also_labels - if False (default) only return a list of input nodes. If True, return a list
of tuples, where each tuple has the following format: (‘label’, Node), with ‘label’ the link
label, and Node a Node instance or subclass

get_outputs_dict ()
Return a dictionary where the key is the label of the output link, and the value is the input node. As some
Nodes (Datas in particular) can have more than one output with the same label, all keys have the name
of the link with appended the pk of the node in output. The key without pk appended corresponds to the
oldest node.

Returns a dictionary {linkname:object}

classmethod get_subclass_from_pk (pk)
Get a node object from the pk, with the proper subclass of Node. (integer primary key used in this
database), but loading the proper subclass where appropriate.

Parameters pk — a string with the pk of the object to be loaded.
Returns the object of the proper subclass.
Raise NotExistent: if there is no entry of the desired object kind with the given pk.

classmethod get_subclass_from_uuid (uuid)
Get a node object from the uuid, with the proper subclass of Node. (if Node(uuid=...) is called, only the
Node class is loaded).

Parameters uuid — a string with the uuid of the object to be loaded.
Returns the object of the proper subclass.
Raise NotExistent: if there is no entry of the desired object kind with the given uuid.

get_user ()
Get the user.

Returns a Django DbUser model object

4.1.

Modules 273

AiiDA documentation, Release 0.5.0

has_children
Property to understand if children are attached to the node :return: a boolean

has_parents
Property to understand if parents are attached to the node :return: a boolean

inp
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by means of the
linkname. Example: B = A.inp.parameters: returns the object (B), with link from B to A, with linkname
parameters C= A.inp: returns an InputManager, an object that is meant to be accessed as the previous
example

iterattrs (also_updatable=True)
Iterator over the attributes, returning tuples (key, value)

Todo optimize! At the moment, the call is very slow because it is also calling attr.getvalue() for
each attribute, that has to perform complicated queries to rebuild the object.

Parameters also_updatable (bool) — if False, does not iterate over attributes that are up-
datable

iterextras ()
Iterator over the extras, returning tuples (key, value)

Todo verify that I am not creating a list internally

label
Get the label of the node.

Returns a string.

logger
Get the logger of the Node object.

Returns Logger object

mtime
Return the modification time of the node.

out
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by means of
the linkname. Example: B = A.out.results: Returns the object B, with link from A to B, with linkname
parameters

Pk
Returns the principal key (the ID) as an integer, or None if the node was not stored yet

classmethod query (*args, **kwargs)
Map to the aiidaobjects manager of the DbNode, that returns Node objects (or their subclasses) instead of
DbNode entities.

TODO: VERY IMPORTANT: the recognition of a subclass from the type # does not work if the modules
defining the subclasses are not # put in subfolders. # In the future, fix it either to make a cache and to store
the # full dependency tree, or save also the path.

remove_path (path)
Remove a file or directory from the repository directory. Can be called only before storing.

Parameters path (str) — relative path to file/directory.

set (**kwargs)
For each k=v pair passed as kwargs, call the corresponding set_k(v) method (e.g., calling

274

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

self.set(property=5, mass=2) will call self.set_property(5) and self.set_mass(2). Useful especially in the
__init__.
Note it uses the _set_incompatibilities list of the class to check that we are not setting meth-

ods that cannot be set at the same time. _set_incompatibilities must be a list of tuples,

and each tuple specifies the elements that cannot be set at the same time. For instance,

if _set_incompatibilities = [(‘property’, ‘mass’)], then the call self.set(property=5, mass=2)

will raise a ValueError. If a tuple has more than two values, it raises ValueError if all keys

are provided at the same time, but it does not give any error if at least one of the keys is not

present.

Note If one element of _set_incompatibilities is a tuple with only one element, this element will
not be settable using this function (and in particular,

Raises ValueError if the corresponding set_k method does not exist in self, or if the methods
cannot be set at the same time.

set_computer (computer)
Set the computer to be used by the node.

Note that the computer makes sense only for some nodes: Calculation, RemoteData, ...
Parameters computer — the computer object

set_extra (key, value, exclusive=False)
Immediately sets an extra of a calculation, in the DB! No .store() to be called. Can be used only after
saving.

Parameters
* key (string) — key name
* value - key value

* exclusive - (default=False). If exclusive is True, it raises a UniquenessError if an
Extra with the same name already exists in the DB (useful e.g. to “lock” a node and avoid
to run multiple times the same computation on it).

Raises UniquenessError if extra already exists and exclusive is True.

set_extras (the_dict)
Immediately sets several extras of a calculation, in the DB! No .store() to be called. Can be used only after
saving.

Parameters the_dict - a dictionary of key:value to be set as extras

store (with_transaction=True)
Store a new node in the DB, also saving its repository directory and attributes.

Can be called only once. Afterwards, attributes cannot be changed anymore! Instead, extras can be
changed only AFTER calling this store() function.

Note After successful storage, those links that are in the cache, and for which also the parent
node is already stored, will be automatically stored. The others will remain unstored.

Parameters with_transaction - if False, no transaction is used. This is meant to be used
ONLY if the outer calling function has already a transaction open!

store_ all (with_transaction=True)
Store the node, together with all input links, if cached, and also the linked nodes, if they were not stored
yet.

Parameters with_ transaction - if False, no transaction is used. This is meant to be used
ONLY if the outer calling function has already a transaction open!

4.1.

Modules 275

AiiDA documentation, Release 0.5.0

uuid
Returns a string with the uuid

class aiida.orm.node.NodeInputManager (node)
To document

__init__ (node)
Parameters node — the node object.

class aiida.orm.node.NodeOutputManager (node)
To document

__init__ (node)
Parameters node — the node object.

aiida.orm.node.from_type_to_pluginclassname (fypestr)
Return the string to pass to the load_plugin function, starting from the ‘type’ field of a Node.

Workflow

class aiida.orm.workflow.Workflow (**kwargs)

Base class to represent a workflow. This is the superclass of any workflow implementations, and provides all

the methods necessary to interact with the database.

The typical use case are workflow stored in the aiida.workflow packages, that are initiated either by the user in

the shell or by some scripts, and that are monitored by the aiida daemon.

Workflow can have steps, and each step must contain some calculations to be executed. At the end of the step’s

calculations the workflow is reloaded in memory and the next methods is called.

add_attribute (_name, value)

Add one attributes to the Workflow. If another attribute is present with the same name it will be overwritten.

:param name: a string with the attribute name to store :param value: a storable object to store

add_attributes (_params)

Add a set of attributes to the Workflow. If another attribute is present with the same name it will be
overwritten. :param name: a string with the attribute name to store :param value: a storable object to store

add_path (src_abs, dst_path)

Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders will be

created.

Copy to a cache directory if the entry has not been saved yet. src_abs: the absolute path of the file to copy.

dst_filename: the (relative) path on which to copy.

add_result (_name, _value)

Add one result to the Workflow. If another result is present with the same name it will be overwritten.

:param name: a string with the result name to store :param value: a storable object to store

add_results (_params)

Add a set of results to the Workflow. If another result is present with the same name it will be overwritten.

:param name: a string with the result name to store :param value: a storable object to store

append_to_report (fext)
Adds text to the Workflow report.

Note Once, in case the workflow is a subworkflow of any other Workflow this method calls the
parent append_to_report method; now instead this is not the case anymore

276 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

attach_calculation (calc)
Adds a calculation to the caller step in the database. This is a lazy call, no calculations will be launched
until the next method gets called. For a step to be completed all the calculations linked have to be in
RETRIEVED state, after which the next method gets called from the workflow manager. :param calc: a
JobCalculation object :raise: AiidaException: in case the input is not of JobCalculation type

attach_workflow (sub_wf)
Adds a workflow to the caller step in the database. This is a lazy call, no workflow will be started until
the next method gets called. For a step to be completed all the workflows linked have to be in FIN-
ISHED state, after which the next method gets called from the workflow manager. :param next_method: a
Workflow object

clear_report ()
Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this method calls

the parent clear_report method.

current_folder
Get the current repository folder, whether the temporary or the permanent.

Returns the RepositoryFolder object.

dbworkflowinstance
Get the DbWorkflow object stored in the super class.

Returns DbWorkflow object from the database

description
Get the description of the workflow.

Returns a string

exit ()
This is the method to call in next to finish the Workflow. When exit is the next method, and no errors are
found, the Workflow is set to FINISHED and removed from the execution manager duties.

get_abs_path (path, section=None)
TODO: For the moment works only for one kind of files, ‘path’ (internal files)

get_all_calcs (calc_class=<class ‘aiida.orm.calculation.job.JobCalculation’>, calc_state=None,

depth=16)
Get all calculations connected with this workflow and all its subworflows up to a given depth. The list of

calculations can be restricted to a given calculation type and state :param calc_class: the calculation class
to which the calculations should belong (default: JobCalculation)

Parameters
* calc_state — a specific state to filter the calculations to retrieve

* depth - the maximum depth level the recursion on sub-workflows will try to reach (0
means we stay at the step level and don’t go into sub-workflows, 1 means we go down to
one step level of the sub-workflows, etc.)

Returns a list of JobCalculation objects

get_attribute (_name)
Get one Workflow attribute :param name: a string with the attribute name to retrieve :return: a dictionary

of storable objects

get_attributes ()
Get the Workflow attributes :return: a dictionary of storable objects

get_folder_list (subfolder=".)
Get the the list of files/directory in the repository of the object.

4.1. Modules 277

AiiDA documentation, Release 0.5.0

Parameters subfolder (stroptional) — get the list of a subfolder
Returns a list of strings.

get_parameter (_name)
Get one Workflow paramenter :param name: a string with the parameters name to retrieve :return: a
dictionary of storable objects

get_parameters ()
Get the Workflow paramenters :return: a dictionary of storable objects

get_report ()
Return the Workflow report.

Note once, in case the workflow is a subworkflow of any other Workflow this method calls the
parent get_report method. This is not the case anymore.

Returns a list of strings

get_result (_name)
Get one Workflow result :param name: a string with the result name to retrieve :return: a dictionary of
storable objects

get_results ()
Get the Workflow results :return: a dictionary of storable objects

get_state ()
Get the Workflow’s state :return: a state from wf_states in aiida.common.datastructures

get_step (step_method)
Retrieves by name a step from the Workflow. :param step_method: a string with the name of the step to
retrieve or a method :raise: ObjectDoesNotExist: if there is no step with the specific name. :return: a
DbWorkflowStep object.

get_step_calculations (step_method, calc_state=None)
Retrieves all the calculations connected to a specific step in the database. If the step is not existent it
returns None, useful for simpler grammatic in the workflow definition. :param next_method: a Workflow
step (decorated) method :param calc_state: a specific state to filter the calculations to retrieve :return: a
list of JobCalculations objects

get_step_workflows (step_method)
Retrieves all the workflows connected to a specific step in the database. If the step is not existent it returns
None, useful for simpler grammatic in the workflow definition. :param next_method: a Workflow step
(decorated) method

get_steps (state=None)
Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list to a spe-
cific step’s state. :param state: a state from wf_states in aiida.common.datastructures :return: a list of
DbWorkflowStep objects.

classmethod get_subclass_from_dbnode (wf_db)
Loads the workflow object and reaoads the python script in memory with the importlib library, the main
class is searched and then loaded. :param wf_db: a specific DbWorkflowNode object representing the
Workflow :return: a Workflow subclass from the specific source code

classmethod get_subclass_from_pk (pk)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input pk. :param
pk: a primary key index for the DbWorkflowNode :return: a Workflow subclass from the specific source
code

278 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

classmethod get_subclass_from_uuid (uuid)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input uuid. :param
uuid: a uuid for the DbWorkflowNode :return: a Workflow subclass from the specific source code

get_temp_folder ()
Get the folder of the Node in the temporary repository.

Returns a SandboxFolder object mapping the node in the repository.

has_failed()
Returns True is the Workflow’s state is ERROR

has finished ok ()
Returns True is the Workflow’s state is FINISHED

has_step (step_method)
Return if the Workflow has a step with a specific name. :param step_method: a string with the name of the
step to retrieve or a method

info ()
Returns an array with all the informations about the modules, file, class to locate the workflow source code

is_new ()
Returns True is the Workflow’s state is CREATED

is_running ()
Returns True is the Workflow’s state is RUNNING

is_subworkflow ()
Return True is this is a subworkflow (i.e., if it has a parent), False otherwise.

kill (verbose=False)
Stop the Workflow execution and change its state to FINISHED.

This method calls the k111 method for each Calculation and each subworkflow linked to each RUNNING
step.

Parameters verbose — True to print the pk of each subworkflow killed

Raises InvalidOperation if some calculations cannot be killed (the workflow will be also put to
SLEEP so that it can be killed later on)

kill step_calculations (step)
Calls the k111 method for each Calculation linked to the step method passed as argument. :param step: a
Workflow step (decorated) method

label
Get the label of the workflow.

Returns a string

logger
Get the logger of the Workflow object, so that it also logs to the DB.

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ embedded

next (next_method)
Adds the a new step to be called after the completion of the caller method’s calculations and subworkflows.

This method must be called inside a Workflow step, otherwise an error is thrown. The code finds the caller
method and stores in the database the input next_method as the next method to be called. At this point no
execution in made, only configuration updates in the database.

4.1. Modules 279

AiiDA documentation, Release 0.5.0

If during the execution of the caller method the user launched calculations or subworkflows, this method
will add them to the database, making them available to the workflow manager to be launched. In fact all
the calculation and subworkflow submissions are lazy method, really executed by this call.

Parameters next_method — a Workflow step method to execute after the caller method
Raise AiidaException: in case the caller method cannot be found or validated

Returns the wrapped methods, decorated with the correct step name

Pk
Returns the DbWorkflow pk

classmethod query (*args, **kwargs)
Map to the aiidaobjects manager of the DbWorkflow, that returns Workflow objects instead of DbWorkflow
entities.

remove_path (path)
Remove a file or directory from the repository directory.

Can be called only before storing.

repo_folder
Get the permanent repository folder. Use preferentially the current_folder method.

Returns the permanent RepositoryFolder object

set_params (params, force=False)
Adds parameters to the Workflow that are both stored and used every time the workflow engine re-initialize
the specific workflow to launch the new methods.

set_state (state)
Set the Workflow’s state :param name: a state from wf_states in aiida.common.datastructures

sleep ()
Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated method.

classmethod step (fun)
This method is used as a decorator for workflow steps, and handles the method’s execution, the state
updates and the eventual errors.

The decorator generates a wrapper around the input function to execute, adding with the correct step name
and a utility variable to make it distinguishable from non-step methods.

When a step is launched, the wrapper tries to run the function in case of error the state of the workflow is
moved to ERROR and the traceback is stored in the report. In general the input method is a step obtained
from the Workflow object, and the decorator simply handles a controlled execution of the step allowing
the code not to break in case of error in the step’s source code.

The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state, in this
case all the calculations and subworkflows of the step are killed and a new execution is allowed.

Parameters fun — a methods to wrap, making it a Workflow step
Raise AiidaException: in case the workflow state doesn’t allow the execution
Returns the wrapped methods,

store ()
Stores the DbWorkflow object data in the database

uuid
Returns the DbWorkflow uuid

280 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

exception aiida.orm.workflow.WorkflowKillError (*args, **kwargs)
An exception raised when a workflow failed to be killed. The error_message_list attribute contains the error
messages from all the subworkflows.

exception aiida.orm.workflow.WorkflowUnkillable
Raised when a workflow cannot be killed because it is in the FINISHED or ERROR state.

aiida.orm.workflow.get_workflow_info (w, tab_size=2, short=False, pre_string="", depth=16)
Return a string with all the information regarding the given workflow and all its calculations and subworkflows.
This is a recursive function (to print all subworkflows info as well).

Parameters
* w— a DbWorkflow instance
* tab_size — number of spaces to use for the indentation

* short —if True, provide a shorter output (only total number of calculations, rather than the
state of each calculation)

* pre_string - string appended at the beginning of each line

* depth - the maximum depth level the recursion on sub-workflows will try to reach (0
means we stay at the step level and don’t go into sub-workflows, 1 means we go down to
one step level of the sub-workflows, etc.)

Return lines list of lines to be outputed

aiida.orm.workflow.kill all ()
Kills all the workflows not in FINISHED state running the kill_from_uuid method in a loop.

Parameters uuid — the UUID of the workflow to kill

aiida.orm.workflow.kill_from_pk (pk, verbose=False)
Kills a workflow without loading the class, useful when there was a problem and the workflow definition module
was changed/deleted (and the workflow cannot be reloaded).

Parameters
* pk — the principal key (id) of the workflow to kill
* verbose — True to print the pk of each subworkflow killed

aiida.orm.workflow.kill_from_uuid (uuid)
Kills a workflow without loading the class, useful when there was a problem and the workflow definition module
was changed/deleted (and the workflow cannot be reloaded).

Parameters uuid — the UUID of the workflow to kill

Code

class aiida.orm.code.Code (**kwargs)
A code entity. It can either be ‘local’, or ‘remote’.

*Local code: it is a collection of files/dirs (added using the add_path() method), where one file is flagged as
executable (using the set_local_executable() method).

*Remote code: it is a pair (remotecomputer, remotepath_of executable) set using the
set_remote_computer_exec() method.

For both codes, one can set some code to be executed right before or right after the execution of the code,
using the set_preexec_code() and set_postexec_code() methods (e.g., the set_preexec_code() can be used to
load specific modules required for the code to be run).

4.1. Modules 281

AiiDA documentation, Release 0.5.0

can_run_on (computer)
Return True if this code can run on the given computer, False otherwise.

Local codes can run on any machine; remote codes can run only on the machine on which they reside.
TODO: add filters to mask the remote machines on which a local code can run.

full text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get (label, computername=None, useremail=None)
Get a code from its label.

Parameters
* label - the code label
* computername — filter only codes on computers with this name
* useremail - filter only codes belonging to a user with this email
Raises
* NotExistent - if no matches are found

* MultipleObjectsError — if multiple matches are found. In this case you may want
to pass the additional parameters to filter the codes, or relabel the codes.

get_append_text ()
Return the postexec_code, or an empty string if no post-exec code was defined.

get_execname ()

Return the executable string to be put in the script. For local codes, itis /LOCAL_EXECUTABLE_NAME

For remote codes, it is the absolute path to the executable.

classmethod get_from_string (code_string)

Get a Computer object with given identifier string, that can either be the numeric ID (pk), or the label (if
unique); the label can either be simply the label, or in the format label @machinename. See the note below

for details on the string detection algorithm.

Note: If a string that can be converted to an integer is given, the numeric ID is verified first (therefore, is
a code A with a label equal to the ID of another code B is present, code A cannot be referenced by label).

Similarly, the (leftmost) ‘@’ symbol is always used to split code and computername. Therefore do not use

‘@’ in the code name if you want to use this function (‘@ in the computer name are instead valid).

Parameters code_string — the code string identifying the code to load
Raises
* NotExistent —if no code identified by the given string is found
* MultipleObjectsError - if the string cannot identify uniquely a code
get_input_plugin_name ()
Return the name of the default input plugin (or None if no input plugin was set.

get_prepend_text ()

Return the code that will be put in the scheduler script before the execution, or an empty string if no

pre-exec code was defined.

is_local ()

Return True if the code is ‘local’, False if it is ‘remote’ (see also documentation of the set_local and

set_remote functions).

282 Chapter 4. Modules provided with aiida

mailto:label@machinename

AiiDA documentation, Release 0.5.0

classmethod 1ist_for_ plugin (plugin, labels=True)
Return a list of valid code strings for a given plugin.

Parameters
e plugin — The string of the plugin.
* labels —if True, return a list of code names, otherwise return the code PKs (integers).

Returns a list of string, with the code names if labels is True, otherwise a list of integers with
the code PKs.

new_calc (*args, **kwargs)
Create and return a new Calculation object (unstored) with the correct plugin subclass, as otained by the
self.get_input_plugin_name() method.

Parameters are passed to the calculation __init__ method.

Note it also directly creates the link to this code (that will of course be cached, since the new
node is not stored yet).

Raises
* MissingPluginError - if the specified plugin does not exist.
* ValueError - if no plugin was specified.

set_append_text (code)
Pass a string of code that will be put in the scheduler script after the execution of the code.

set_files (files)
Given a list of filenames (or a single filename string), add it to the path (all at level zero, i.e. without
folders). Therefore, be careful for files with the same name!

Todo decide whether to check if the Code must be a local executable to be able to call this
function.

set_input_plugin_name (input_plugin)
Set the name of the default input plugin, to be used for the automatic generation of a new calculation.

set_local_ executable (exec_name)
Set the filename of the local executable. Implicitly set the code as local.

set_prepend_text (code)
Pass a string of code that will be put in the scheduler script before the execution of the code.

set_remote_computer_exec (remote_computer_exec)
Set the code as remote, and pass the computer on which it resides and the absolute path on that computer.

Args:

remote_computer_exec: a tuple (computer, remote_exec_path), where computer is a ai-
ida.orm.Computer or an aiida.djsite.db.models.DbComputer object, and remote_exec_path is the
absolute path of the main executable on remote computer.

aiida.orm.code.delete_code (code)
Delete a code from the DB. Check before that there are no output nodes.

NOTE! Not thread safe... Do not use with many users accessing the DB at the same time.

Implemented as a function on purpose, otherwise complicated logic would be needed to set the internal state of
the object after calling computer.delete().

4.1. Modules 283

AiiDA documentation, Release 0.5.0

4.1.8 ORM documentation: Data
class aiida.orm.data.Data (**kwargs)
This class is base class for all data objects.

convert (object_format=None, *args)
Convert the AiiDA StructureData into another python object

Parameters object_format — Specify the output format

export (fname, fileformat=None)
Save a Data object to a file.

Parameters
* fname - string with file name. Can be an absolute or relative path.

e fileformat — kind of format to use for the export. If not present, it will try to use the
extension of the file name.

import£ile (fname, fileformat=None)
Populate a Data object from a file.

Parameters
* fname - string with file name. Can be an absolute or relative path.

» fileformat — kind of format to use for the export. If not present, it will try to use the
extension of the file name.

importstring (inputstring, fileformat, **kwargs)
Converts a Data object to other text format.

Parameters fileformat — a string (the extension) to describe the file format.
Returns a string with the structure description.

set_source (source)
Sets the dictionary describing the source of Data object.

source
Gets the dictionary describing the source of Data object. Possible fields:

db_name: name of the source database.

edb_uri: URI of the source database.

euri: URI of the object’s source. Should be a permanent link.

*id: object’s source identifier in the source database.

eversion: version of the object’s source.

eextras: a dictionary with other fields for source description.

esource_mdS5: MDS5 checksum of object’s source.

edescription: human-readable free form description of the object’s source.

elicense: a string with a type of license.

Note: some limitations for setting the data source exist, see _validate ().

Returns dictionary describing the source of Data object.

284 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Structure

This module defines the classes for structures and all related functions to operate on them.

class aiida.orm.data.structure.Kind (**kwargs)
This class contains the information about the species (kinds) of the system.

It can be a single atom, or an alloy, or even contain vacancies.

__init__ (**kwargs)
Create a site. One can either pass:

Parameters
* raw — the raw python dictionary that will be converted to a Kind object.
* ase —an ase Atom object
* kind - a Kind object (to get a copy)
Or alternatively the following parameters:
Parameters
* symbols — a single string for the symbol of this site, or a list of symbol strings

* (optional) (mass) — the weights for each atomic species of this site. If only a single
symbol is provided, then this value is optional and the weight is set to 1.

* (optional) - the mass for this site in atomic mass units. If not provided, the mass is
set by the self.reset_mass() function.

* name — a string that uniquely identifies the kind, and that is used to identify the sites.

compare_with (other_kind)
Compare with another Kind object to check if they are different.

Note: This does NOT check the ‘type’ attribute. Instead, it compares (with reasonable thresholds,
where applicable): the mass, and the list of symbols and of weights. Moreover, it compares the

_internal_tag, if defined (at the moment, defined automatically only when importing the Kind from
ASE, if the atom has a non-zero tag). Note that the _internal_tag is only used while the class is loaded, but
is not persisted on the database.

Returns A tuple with two elements. The first one is True if the two sites are ‘equivalent’ (same
mass, symbols and weights), False otherwise. The second element of the tuple is a string,
which is either None (if the first element was True), or contains a ‘human-readable’ descrip-
tion of the first difference encountered between the two sites.

get_raw ()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is actually used
to store each kind of the structure in the DB.

Returns a python dictionary with the kind.

get_symbols_string ()
Return a string that tries to match as good as possible the symbols of this kind. If there is only one symbol
(no alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups the full string in curly
brackets, and try to write also the composition (with 2 precision only).

Note: If there is a vacancy (sum of weights<1), we indicate it with the X symbol followed by 1-
sum(weights) (still with 2 digits precision, so it can be 0.00)

4.1. Modules 285

AiiDA documentation, Release 0.5.0

Note: Note the difference with respect to the symbols and the symbol properties!

has_vacancies ()
Returns True if the sum of the weights is less than one. It uses the internal variable _sum_threshold as a
threshold.

Returns a boolean

is_alloy ()
To understand if kind is an alloy.

Returns True if the kind has more than one element (i.e., len(self.symbols) != 1), False other-
wise.

mass
The mass of this species kind.

Returns a float

name
Return the name of this kind. The name of a kind is used to identify the species of a site.

Returns a string

reset_mass ()
Reset the mass to the automatic calculated value.

The mass can be set manually; by default, if not provided, it is the mass of the constituent atoms, weighted
with their weight (after the weight has been normalized to one to take correctly into account vacancies).

This function uses the internal _symbols and _weights values and thus assumes that the values are vali-
dated.

It sets the mass to None if the sum of weights is zero.

set_automatic_kind_name (tag=None)
Set the type to a string obtained with the symbols appended one after the other, without spaces, in alpha-
betical order; if the site has a vacancy, a X is appended at the end too.

set_symbols_and weights (symbols, weights)
Set the chemical symbols and the weights for the site.

Note: Note that the kind name remains unchanged.

symbol

If the kind has only one symbol, return it; otherwise, raise a ValueError.

symbols
List of symbols for this site. If the site is a single atom, pass a list of one element only, or simply the string
for that atom. For alloys, a list of elements.

Note: Note that if you change the list of symbols, the kind name remains unchanged.

weights
Weights for this species kind. Refer also to :func:validate_symbols_tuple for the validation rules on the
weights.

class aiida.orm.data.structure.Site (**kwargs)

This class contains the information about a given site of the system.

286

Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

It can be a single atom, or an alloy, or even contain vacancies.

__init__ (**kwargs)
Create a site.

Parameters

* kind_name - a string that identifies the kind (species) of this site. This has to be found
in the list of kinds of the StructureData object. Validation will be done at the StructureData
level.

e position — the absolute position (three floats) in angstrom

get_ase (kinds)
Return a ase.Atom object for this site.

Parameters kinds - the list of kinds from the StructureData object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase() routine).

get_raw ()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is actually used
to store each site of the structure in the DB.

Returns a python dictionary with the site.

kind name
Return the kind name of this site (a string).

The type of a site is used to decide whether two sites are identical (same mass, symbols, weights, ...) or
not.

position
Return the position of this site in absolute coordinates, in angstrom.

class aiida.orm.data.structure.StructureData (**kwargs)
This class contains the information about a given structure, i.e. a collection of sites together with a cell, the
boundary conditions (whether they are periodic or not) and other related useful information.

append_atom (**kwargs)
Append an atom to the Structure, taking care of creating the corresponding kind.

Parameters

* ase —the ase Atom object from which we want to create a new atom (if present, this must
be the only parameter)

e position — the position of the atom (three numbers in angstrom)

* symbols, weights, name (..) —any further parameter is passed to the constructor
of the Kind object. For the ‘name’ parameter, see the note below.

Note: Note on the ‘name’ parameter (that is, the name of the kind):

«if specified, no checks are done on existing species. Simply, a new kind with that name is created. If
there is a name clash, a check is done: if the kinds are identical, no error is issued; otherwise, an error
is issued because you are trying to store two different kinds with the same name.

«if not specified, the name is automatically generated. Before adding the kind, a check is done. If other
species with the same properties already exist, no new kinds are created, but the site is added to the
existing (identical) kind. (Actually, the first kind that is encountered). Otherwise, the name is made
unique first, by adding to the string containing the list of chemical symbols a number starting from 1,
until an unique name is found

4.1. Modules 287

AiiDA documentation, Release 0.5.0

Note: checks of equality of species are done using the compare with () method.

append_kind (kind)
Append a kind to the St ructureData. It makes a copy of the kind.

Parameters kind - the site to append, must be a Kind object.

append_site (site)
Append a site to the St ructureData. It makes a copy of the site.

Parameters site — the site to append. It must be a Site object.

cell
Returns the cell shape.

Returns a 3x3 list of lists.

cell_angles
Get the angles between the cell lattice vectors in degrees.

cell_ lengths
Get the lengths of cell lattice vectors in angstroms.

clear_kinds ()
Removes all kinds for the StructureData object.

Note: Also clear all sites!

clear_sites ()
Removes all sites for the StructureData object.

get_ase ()
Get the ASE object. Requires to be able to import ase.

Returns an ASE object corresponding to this St ructureDat a object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase() routine).

get_cell_volume ()
Returns the cell volume in Angstrom”3.

Returns a float.

get_formula (mode="hill’, separator="")
Return a string with the chemical formula.

Parameters

* mode - a string to specify how to generate the formula, can assume one of the following
values:

— ‘hill’ (default): count the number of atoms of each species, then use Hill nota-
tion, i.e. alphabetical order with C and H first if one or several C atom(s) is
(are) present, e.g. ['C’,'H’,'H’,’H’,’0O",'C’,"H","H","H"] will return
"C2H60O’" [’S’,’0",’0Q","H’,"0’,"H’,"0’] will return ' H204S’ From E.
A. Hill, J. Am. Chem. Soc., 22 (8), pp 478-494 (1900)

— ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.

288 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

[’C’,IHI,’H’,’H',IO’,’CI,’HI,’H’,’H’,IOI,’O,,’O’] Will re-
turn ' CH302'

— ‘reduce’: group repeated symbols e.g. ["Ba’, ’'Ti’, 'O", 'O’', '0O’,
IBa’, /’I‘il, IO’, ’OI, IO’, /BaI, I'I‘i’, I'I‘il, ’OV, IOI,

70’] will return ' BaT1i03BaTi03BaTi203’

— ‘group’: will try to group as much as possible parts of the formula
e.g. [IBaI, ITiI, IO’, IOI, IOI, lBaI, I’I‘i’, IOI, IO’, IOI,
"Ba’, 'Ti’, 'Ti’, '0’, '0O’, "0O’'] willreturn’ (BaTi03)2BaTi203"

— ‘count’: same as hill (i.e. one just counts the number of atoms of each species) without

the re-ordering (take the order of the atomic sites),e.g. ['Ba’, 'Ti’, '0’, '0’,
ro’,’Ba’, 'Ti’, 'O’, '0O’, "0O’] willreturn ' Ba2T1i206"

— ‘count_compact’: same as count but the number of atoms for each species is divided
by the greatest common divisor of all of them, e.g. ['Ba’, ’'Ti’, ’'0’, '0O',
ro’,"Ba’, 'Ti’, '0’, '0O', '0O’] willreturn ' BaTi03’

* separator —a string used to concatenate symbols. Default empty.

Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms were
appended by the user is used to group and/or order the symbols in the formula

get_kind (kind_name)
Return the kind object associated with the given kind name.

Parameters kind name — String, the name of the kind you want to get

Returns The Kind object associated with the given kind_name, if a Kind with the given name is
present in the structure.

Raise ValueError if the kind_name is not present.

get_kind names ()
Return a list of kind names (in the same order of the self .kinds property, but return the names rather
than Kind objects)

Note: This is NOT necessarily a list of chemical symbols! Use get_symbols_set for chemical symbols

Returns a list of strings.

get_pymatgen ()
Get pymatgen object. Returns Structure for structures with periodic boundary conditions (in three dimen-
sions) and Molecule otherwise.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

get_pymatgen_molecule ()
Get the pymatgen Molecule object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

Returns a pymatgen Molecule object corresponding to this St ructureData object.

4.1.

Modules 289

AiiDA documentation, Release 0.5.0

get_pymatgen_structure ()
Get the pymatgen Structure object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

Returns a pymatgen Structure object corresponding to this St ructureData object.

Raises ValueError if periodic boundary conditions do not hold in at least one dimension of real
space.

get_site_kindnames ()
Return a list with length equal to the number of sites of this structure, where each element of the list is the
kind name of the corresponding site.

Note: This is NOT necessarily a list of chemical symbols! Use [
self.get_kind(s.kind_name) .get_symbols_string() for s in self.sites] for
chemical symbols

Returns a list of strings

get_symbols_set ()
Return a set containing the names of all elements involved in this structure (i.e., for it joins the list of
symbols for each kind k in the structure).

Returns a set of strings of element names.

has_vacancies ()
To understand if there are vacancies in the structure.

Returns a boolean, True if at least one kind has a vacancy

is_alloy ()
To understand if there are alloys in the structure.

Returns a boolean, True if at least one kind is an alloy

kinds
Returns a list of kinds.

pbc
Get the periodic boundary conditions.

Returns a tuple of three booleans, each one tells if there are periodic boundary conditions for
the i-th real-space direction (i=1,2,3)

reset_cell (new_cell)
Reset the cell of a structure not yet stored to a new value.

Parameters new_cell - list specifying the cell vectors
Raises ModificationNotAllowed: if object is already stored

reset_sites_positions (new_positions, conserve_particle=True)
Replace all the Site positions attached to the Structure

Parameters
* new_positions - list of (3D) positions for every sites.

* conserve_particle —if True, allows the possibility of removing a site. currently not
implemented.

290 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Raises
* ModificationNotAllowed - if object is stored already

* ValueError - if positions are invalid

Note: it is assumed that the order of the new_positions is given in the same order of the one it’s substitut-
ing, i.e. the kind of the site will not be checked.

set_ase (aseatoms)
Load the structure from a ASE object

set_pymatgen (obj, **kwargs)
Load the structure from a pymatgen object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

set_pymatgen_molecule (mol, margin=>5)
Load the structure from a pymatgen Molecule object.

Parameters margin — the margin to be added in all directions of the bounding box of the
molecule.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

set_pymatgen_structure (struct)
Load the structure from a pymatgen Structure object.

Note: periodic boundary conditions are set to True in all three directions.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause errors).

sites
Returns a list of sites.

aiida.orm.data.structure.ase_refine_cell (aseatoms, **kwargs)
Detect the symmetry of the structure, remove symmetric atoms and refine unit cell.

Parameters
* aseatoms — an ase.atoms.Atoms instance
* symprec — symmetry precision, used by pyspglib
Return newase refined cell with reduced set of atoms
Return symmetry a dictionary describing the symmetry space group

aiida.orm.data.structure.calec _cell volume (cell)
Calculates the volume of a cell given the three lattice vectors.

It is calculated as cell[0] . (cell[1] x cell[2]), where . represents a dot product and X a cross product.

Parameters cell — the cell vectors; the must be a 3x3 list of lists of floats, no other checks are
done.

Returns the cell volume.

aiida.orm.data.structure.get_formula (symbol_list, mode="hill’, separator="")
Return a string with the chemical formula.

4.1. Modules 291

AiiDA documentation, Release 0.5.0

Parameters
* symbol_1list —alist of symbols,e.g. ["H’ ,’H’, "0’]

* mode - a string to specify how to generate the formula, can assume one of the following
values:

— ‘hill’ (default): count the number of atoms of each species, then use Hill nota-
tion, i.e. alphabetical order with C and H first if one or several C atom(s) is
(are) present, e.g. ['C’,’H’,'H’,’'H’,’0O’,’C’,"H',"H","H’] will return
"C2H60’" ['S’,’0Q",'0Q","H’,"0","H’,"0"] will return " H204S’ From E. A.
Hill, J. Am. Chem. Soc., 22 (8), pp 478494 (1900)

— ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
[ICI,IHI,IHI,IH/,IOI,ICI,IHI,lHl,lHl,IOI,IOI,IOI] Will return
"CH302'

— ‘reduce’: group repeated symbolse.g. ['Ba’, 'Ti’, 'O’, ’'0O’, 'O’', 'Ba’,
ITiI’ IOI, IOI’ IOI, IBaI’ ITiI, ITiI, IOI, Iol, IOI] will re-
turn " BaTiO3BaTi03BaTi203’

— ‘group’: will try to group as much as possible parts of the formulae.g. ["Ba’, ’Ti’,
IOI, IOI, IOI, IBal, I’I‘il, IOI, IOI, IOI, IBaI, I'I‘i!, I’I‘il,
ror, '0’, '0’] willreturn ’ (BaTi03)2BaTi203’

— ‘count’: same as hill (i.e. one just counts the number of atoms of each species) without

the re-ordering (take the order of the atomic sites), e.g. [’ Ba’, ’'Ti’, ’'0’, ’'0O',
ro’,"Ba’, 'Ti’, '0’, '0O'", 'O’] willreturn " Ba2Ti206’

— ‘count_compact’: same as count but the number of atoms for each species is divided
by the greatest common divisor of all of them, e.g. [’Ba’, ’Ti’, '0’, '0O’,
ro’,’Ba’, 'Ti’, '0’, '0O', '0O’] willreturn ' BaTi03’

* separator - a string used to concatenate symbols. Default empty.

Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms were appended
by the user is used to group and/or order the symbols in the formula

aiida.orm.data.structure.get_formula_from symbol_1list (_list, separator="")
Return a string with the formula obtained from the list of symbols. Examples: *
[[1,’Ba’]l,[1,’Ti’1, [3,70’]1] will return ' BaTiO3’ * [[2, [[1, ’Ba’]l, [1, 'Ti’]]
11 will return ¥ (BaTi) 2’

Parameters
* _list —alist of symbols and multiplicities as obtained from the function group_symbols
* separator — a string used to concatenate symbols. Default empty.

Returns a string

aiida.orm.data.structure.get_formula_group (symbol_list, separator="")
Return a string with the chemical formula from a list of chemical symbols. The formula is written in a compact”
way, i.e. trying to group as much as possible parts of the formula.

Note: it works for instance very well if structure was obtained from an ASE supercell.

292 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Example of result: [’Ba’, ’Ti’, '0O’, '0O’, ’'0O’, ’'Ba’, ’'Ti’, ’0O’, ’'0O’, 'O’, ’'Ba’,
rTi’, 'Ti’, '0’, ’'0O’, '0O’] willreturn ' (BaTi03)2BaTi203".

Parameters
* symbol_1list - list of symbols (e.g. ['Ba’,Ti’,;’O’, 0, O’])
* separator — a string used to concatenate symbols. Default empty.
Returns a string with the chemical formula for the given structure.
aiida.orm.data.structure.get_pymatgen_version ()
Returns string with pymatgen version, None if can not import.

aiida.orm.data.structure.get_symbols_string (symbols, weights)
Return a string that tries to match as good as possible the symbols and weights. If there is only one symbol (no
alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups the full string in curly brackets,
and try to write also the composition (with 2 precision only). If (sum of weights<1), we indicate it with the X
symbol followed by 1-sum(weights) (still with 2 digits precision, so it can be 0.00)

Parameters
* symbols — the symbols as obtained from <kind>._symbols

* weights — the weights as obtained from <kind>._weights

Note: Note the difference with respect to the symbols and the symbol properties!

aiida.orm.data.structure.get_valid_pbc (inputpbc)
Return a list of three booleans for the periodic boundary conditions, in a valid format from a generic input.

Raises ValueError if the format is not valid.

aiida.orm.data.structure.group_symbols (_list)
Group a list of symbols to a list containing the number of consecutive identical symbols, and the symbol itself.

Examples:
e[’Ba’,’Ti’,’0’,’0’,’0’,’Ba’] willreturn [[1,'Ba’], [1,’Ti’1, [3,70"]1,[1,’Ba’]]
L [[1,’Ba’1,I[1,'Ti"] 1, [(1,’Ba’],[1,’Ti’] 1 1 wil return [[2, [[1,
"Ba’l, [1, "Ti"]1 1 1]
Parameters _1ist — alist of elements representing a chemical formula

Returns a list of length-2 lists of the form [multiplicity , element]

aiida.orm.data.structure.has_ase()

Returns True if the ase module can be imported, False otherwise.
aiida.orm.data.structure.has_pymatgen ()

Returns True if the pymatgen module can be imported, False otherwise.
aiida.orm.data.structure.has_pyspglib ()

Returns True if the pyspglib module can be imported, False otherwise.

aiida.orm.data.structure.has_vacancies (weights)
Returns True if the sum of the weights is less than one. It uses the internal variable _sum_threshold as a
threshold. :param weights: the weights :return: a boolean

4.1. Modules 293

AiiDA documentation, Release 0.5.0

alida.orm.data.structure.is_ase_atoms (ase_atoms)
Check if the ase_atoms parameter is actually a ase.Atoms object.

Parameters ase_atoms — an object, expected to be an ase.Atoms.
Returns a boolean.
Requires the ability to import ase, by doing ‘import ase’.

aiida.orm.data.structure.is_valid_symbol (symbol)
Validates the chemical symbol name.

Returns True if the symbol is a valid chemical symbol (with correct capitalization), False otherwise.
Recognized symbols are for elements from hydrogen (Z=1) to lawrencium (Z=103).

aiida.orm.data.structure.symop_fract_from_ortho (cell)
Creates a matrix for conversion from fractional to orthogonal coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell — array of cell parameters (three lengths and three angles)

aiida.orm.data.structure.symop_ortho_from_ fract (cell)
Creates a matrix for conversion from orthogonal to fractional coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell — array of cell parameters (three lengths and three angles)

aiida.orm.data.structure.validate_symbols_tuple (symbols_tuple)
Used to validate whether the chemical species are valid.

Parameters symbols_tuple — a tuple (or list) with the chemical symbols name.

Raises ValueError if any symbol in the tuple is not a valid chemical symbols (with correct capital-
ization).

Refer also to the documentation of :func:is_valid_symbol

aiida.orm.data.structure.validate_weights_tuple (weights_tuple, threshold)
Validates the weight of the atomic kinds.

Raise ValueError if the weights_tuple is not valid.
Parameters

* weights_tuple - the tuple to validate. It must be a a tuple of floats (as created by
:func:_create_weights_tuple).

* threshold - a float number used as a threshold to check that the sum of the weights is
<=1.

If the sum is less than one, it means that there are vacancies. Each element of the list must be >= 0, and the sum
must be <= 1.

Folder

class aiida.orm.data.folder.FolderData (**kwargs)
Stores a folder with subfolders and files.
No special attributes are set.

get_file content (path)
Return the content of a path stored inside the folder as a string.

294 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Raises NotExistent if the path does not exist.

replace_with_folder (folder, overwrite=True)
Replace the data with another folder, always copying and not moving the original files.

Args: folder: the folder to copy from overwrite: if to overwrite the current content or not

Singlefile

Implement subclass for a single file in the permanent repository files = [one_single_file] jsons = {}
methods: * get_content * get_path * get_aiidaurl (?) * get_md5 * ...
To discuss: do we also need a simple directory class for full directories in the perm repo?

class aiida.orm.data.singlefile.SinglefileData (**kwargs)
Pass as input a file parameter with the (absolute) path of a file on the hard drive. It will get copied inside the
node.

Internally must have a single file, and stores as internal attribute the filename in the ‘filename’ attribute.

add_path (src_abs, dst_filename=None)
Add a single file

del_file (filename)
Remove a file from SingleFileData :param filename: name of the file stored in the DB

filename
Returns the name of the file stored

get_file abs_path()
Return the absolute path to the file in the repository

set_file (filename)
Add a file to the singlefiledata :param filename: absolute path to the file

Upf

This module manages the UPF pseudopotentials in the local repository.

class aiida.orm.data.upf .UpfData (**kwargs)
Function not yet documented.

classmethod £rom_md5 (md5)
Return a list of all UPF pseudopotentials that match a given MDS5 hash.

Note that the hash has to be stored in a _md5 attribute, otherwise the pseudo will not be found.

classmethod get_or_create (filename, use_first=False, store_upf=True)
Pass the same parameter of the init; if a file with the same md5 is found, that UpfData is returned.

Parameters
¢ filename — an absolute filename on disk

* use_first —if False (default), raise an exception if more than one potential is found. If
it is True, instead, use the first available pseudopotential.

* store_upf (bool) — If false, the UpfData objects are not stored in the database. de-
fault=True.

Return (upf, created) where upf is the UpfData object, and create is either True if the object
was created, or False if the object was retrieved from the DB.

4.1. Modules 295

AiiDA documentation, Release 0.5.0

get_upf family names ()
Get the list of all upf family names to which the pseudo belongs

classmethod get_upf_group (group_name)
Return the UpfFamily group with the given name.

classmethod get_upf groups (filter_elements=None, user=None)
Return all names of groups of type UpfFamily, possibly with some filters.

Parameters

* filter elements — A string or a list of strings. If present, returns only the groups
that contains one Upf for every element present in the list. Default=None, meaning that
all families are returned.

* user — if None (default), return the groups for all users. If defined, it should be either a
DbUser instance, or a string for the username (that is, the user email).

set_file (filename)
I pre-parse the file to store the attributes.

store (*args, **kwargs)
Store the node, reparsing the file so that the md5 and the element are correctly reset.

aiida.orm.data.upf.get_pseudos_from structure (structure, family_name)
Given a family name (a UpfFamily group in the DB) and a AiiDA structure, return a dictionary associating each
kind name with its UpfData object.

Raises
* MultipleObjectsError — if more than one UPF for the same element is found in the
group.
* NotExistent —if no UPF for an element in the group is found in the group.
aiida.orm.data.upf.parse_upf (fname, check_filename=True)

Try to get relevant information from the UPF. For the moment, only the element name. Note that even UPF v.2
cannot be parsed with the XML minidom! (e.g. due to the & characters in the human-readable section).

If check_filename is True, raise a ParsingError exception if the filename does not start with the element name.

aiida.orm.data.upf.upload_upf_ family (folder, group_name, group_description,
stop_if_existing=True)
Upload a set of UPF files in a given group.

Parameters

* folder - a path containing all UPF files to be added. Only files ending in .UPF (case-
insensitive) are considered.

* group_name — the name of the group to create. If it exists and is non-empty, a Unique-
nessError is raised.

* group_description — a string to be set as the group description. Overwrites previous
descriptions, if the group was existing.

* stop_if_existing - if True, check for the md5 of the files and, if the file already exists
in the DB, raises a MultipleObjectsError. If False, simply adds the existing UPFData node
to the group.

296 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Cif

classaiida.orm.data.cif.CifData (**kwargs)

Wrapper for Crystallographic Interchange File (CIF)

Note: the file (physical) is held as the authoritative source of information, so all conversions are done through
the physical file: when setting ase or values, a physical CIF file is generated first, the values are updated

from the physical CIF file.

ase
ASE object, representing the CIF.

Note: requires ASE module.

classmethod £rom_md5 (md5)
Return a list of all CIF files that match a given MDS5 hash.

Note: the hash has to be stored in a _md?5 attribute, otherwise the CIF file will not be found.

generate_md5 ()
Generate MDS5 hash of the file’s contents on-the-fly.

get_ase (**kwargs)
Returns ASE object, representing the CIF. This function differs from the property ase by the possibility
to pass the keyworded arguments (kwargs) to ase.io.cif.read_cif().

Note: requires ASE module.

get_formulae (mode="sum’)
Get the formula.

classmethod get_or_create (filename, use_first=False, store_cif=True)
Pass the same parameter of the init; if a file with the same md>5 is found, that CifData is returned.

Parameters
e filename — an absolute filename on disk

* use_first - if False (default), raise an exception if more than one CIF file is found. If
it is True, instead, use the first available CIF file.

* store_cif (bool) — If false, the CifData objects are not stored in the database. de-
fault=True.

Return (cif, created) where cif is the CifData object, and create is either True if the object was
created, or False if the object was retrieved from the DB.

get_spacegroup_numbers ()
Get the spacegroup international number.

has_attached_ hydrogens ()
Check if there are hydrogens without coordinates, specified as attached to the atoms of the structure.
:return: True if there are attached hydrogens, False otherwise.

has_partial_occupancies ()
Check if there are float values in the atom occupancies. :return: True if there are partial occupancies, False
otherwise.

4.1. Modules 297

AiiDA documentation, Release 0.5.0

set_file (filename)
Set the file. If the source is set and the MDS5 checksum of new file is different from the source, the source
has to be deleted.

store (*args, **kwargs)
Store the node.

values
PyCifRW structure, representing the CIF datablocks.

Note: requires PyCifRW module.

aiida.orm.data.cif.cif_from_ase (ase, full_occupancies=False, add_fake_biso=False)
Construct a CIF datablock from the ASE structure. The code is taken from
https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif, as the original ASE code contains a
bug in printing the Hermann-Mauguin symmetry space group symbol.

Parameters ase — ASE “images”

Returns array of CIF datablocks
aiida.orm.data.cif.has_pycifrw ()

Returns True if the PyCifRW module can be imported, False otherwise.

aiida.orm.data.cif.parse_formula (formula)
Parses the Hill formulae, written with spaces for separators.

aiida.orm.data.cif.pycifrw_f£from_cif (datablocks, loops={}, names=None)
Constructs PyCifRW’s CifFile from an array of CIF datablocks.

Parameters
* datablocks — an array of CIF datablocks
* loops — optional list of lists of CIF tag loops.
* names — optional list of datablock names
Returns CifFile

aiida.orm.data.cif.symop_string from_symop_matrix_tr (matrix, tr=[0, 0, 0], eps=0)
Construct a CIF representation of symmetry operator plus translation. See International Tables for Crystallog-
raphy Vol. A. (2002) for definition.

Parameters
* matrix — 3x3 matrix, representing the symmetry operator
* tr —translation vector of length 3 (default [0, 0, 0])
* eps — epsilon parameter for fuzzy comparison x ==

Returns CIF representation of symmetry operator

Parameter
classaiida.orm.data.parameter.ParameterData (**kwargs)
Pass as input in the init a dictionary, and it will get stored as internal attributes.

Usual rules for attribute names apply (in particular, keys cannot start with an underscore). If this is the case, a
ValueError will be raised.

You can then change/delete/add more attributes before storing with the usual methods of aiida.orm.Node

298 Chapter 4. Modules provided with aiida

https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif

AiiDA documentation, Release 0.5.0

dict
To be used to get direct access to the underlying dictionary with the syntax node.dict.key or
node.dict[’key’].

Returns an instance of the AttributeResultManager.

get_dict ()
Return a dict with the parameters

keys ()
Iterator of valid keys stored in the ParameterData object

set_dict (dict)
Replace the current dictionary with another one.

Parameters dict — The dictionary to set.

update_dict (dict)
Update the current dictionary with the keys provided in the dictionary.

Parameters dict — a dictionary with the keys to substitute. It works like dict.update(), adding
new keys and overwriting existing keys.

Remote

class aiida.orm.data.remote.RemoteData (**kwargs)
Store a link to a file or folder on a remote machine.

Remember to pass a computer!

add_path (src_abs, dst_filename=None)
Disable adding files or directories to a RemoteData

is_empty ()
Check if remote folder is empty

ArrayData

class aiida.orm.data.array.ArrayData (*args, **kwargs)
Store a set of arrays on disk (rather than on the database) in an efficient way using numpy.save() (therefore, this
class requires numpy to be installed).

Each array is stored within the Node folder as a different .npy file.

Note Before storing, no caching is done: if you perform a get_array () call, the array will be
re-read from disk. If instead the ArrayData node has already been stored, the array is cached in
memory after the first read, and the cached array is used thereafter. If too much RAM memory
is used, you can clear the cache with the ciear_internal_ cache () method.

arraynames ()
Return a list of all arrays stored in the node, listing the files (and not relying on the properties).

clear_internal cache ()
Clear the internal memory cache where the arrays are stored after being read from disk (used in order
to reduce at minimum the readings from disk). This function is useful if you want to keep the node in
memory, but you do not want to waste memory to cache the arrays in RAM.

delete_array (name)
Delete an array from the node. Can only be called before storing.

Parameters name — The name of the array to delete from the node.

4.1. Modules 299

AiiDA documentation, Release 0.5.0

get_array (name)
Return an array stored in the node

Parameters name — The name of the array to return.

get_shape (name)
Return the shape of an array (read from the value cached in the properties for efficiency reasons).

Parameters name — The name of the array.

iterarrays ()
Iterator that returns tuples (name, array) for each array stored in the node.

set_array (name, array)
Store a new numpy array inside the node. Possibly overwrite the array if it already existed.

Internally, it stores a name.npy file in numpy format.
Parameters
* name — The name of the array.

¢ array - The numpy array to store.

ArrayData subclasses

The following are Data classes inheriting from ArrayData.

KpointsData This module defines the classes related to band structures or dispersions in a Brillouin zone, and how
to operate on them.

class aiida.orm.data.array.kpoints.KpointsData (*args, **kwargs)
Class to handle array of kpoints in the Brillouin zone. Provide methods to generate either user-defined k-points
or path of k-points along symmetry lines. Internally, all k-points are defined in terms of crystal (fractional)
coordinates. Cell and lattice vector coordinates are in Angstroms, reciprocal lattice vectors in Angstrom”-1 .
:note: The methods setting and using the Bravais lattice info assume the PRIMITIVE unit cell is provided in
input to the set_cell or set_cell_from_structure methods.

cell
The crystal unit cell. Rows are the crystal vectors in Angstroms. :return: a 3x3 numpy.array

get_kpoints (also_weights=False, cartesian=False)
Return the list of kpoints

Parameters
* also_weights — if True, returns also the list of weights. Default = False

* cartesian —if True, returns points in cartesian coordinates, otherwise, returns in crystal
coordinates. Default = False.

get_kpoints_mesh (print_list=False)
Get the mesh of kpoints.

Parameters print_1list — default=False. If True, prints the mesh of kpoints as a list
Raises AttributeError if no mesh has been set

Return mesh,offset (if print_list=False) a list of 3 integers and a list of three floats O<x<l1, rep-
resenting the mesh and the offset of kpoints

300 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Return kpoints (if print_list = True) an explicit list of kpoints coordinates, similar to what re-
turned by get_kpoints()

labels
Labels associated with the list of kpoints. List of tuples with kpoint index and kpoint name:
[(0,G"),(13/M"),...]

pbc
The periodic boundary conditions along the vectors al,a2,a3.

Returns a tuple of three booleans, each one tells if there are periodic boundary conditions for
the i-th real-space direction (i=1,2,3)

set_cell (cell, ppc=None)
Set a cell to be used for symmetry analysis. To set a cell from an AiiDA structure, use
“set_cell_from_structure”.

Parameters

* cell - 3x3 matrix of cell vectors. Orientation: each row represent a lattice vector. Units
are Angstroms.

* pbc — list of 3 booleans, True if in the nth crystal direction the structure is periodic.
Default = [True,True, True]

set_cell from structure (structuredata)
Set a cell to be used for symmetry analysis from an AiiDA structure. Inherits both the cell and the pbc’s.
To set manually a cell, use “set_cell”

Parameters structuredata — an instance of StructureData

set_kpoints (kpoints, cartesian="False, labels=None, weights=None, fill_values=0)
Set the list of kpoints. If a mesh has already been stored, raise a ModificationNotAllowed

Parameters

* kpoints — a list of kpoints, each kpoint being a list of one, two or three coordinates,
depending on self.pbc: if structure is 1D (only one True in self.pbc) one allows singletons
or scalars for each k-point, if it’s 2D it can be a length-2 list, and in all cases it can be a
length-3 list. Examples:

- [[0.,0.,0.1,[0.1,0.1,0.1]....] for 1D, 2D or 3D
- [[0.,0.1,[0.1,0.1,],...] for 1D or 2D

- [[0.1,[0.1]....] for 1D

- [0., 0.1, ...] for 1D (list of scalars)

For OD (all pbc are False), the list can be any of the above or empty - then only Gamma
point is set. The value of k for the non-periodic dimension(s) is set by fill_values

* cartesian - if True, the coordinates given in input are treated as in cartesian units. If
False, the coordinates are crystal, i.e. in units of b1,b2,b3. Default = False

* labels - optional, the list of labels to be set for some of the kpoints. See labels for more
info

» weights — optional, a list of floats with the weight associated to the kpoint list

e fill values — scalar to be set to all non-periodic dimensions (indicated by False in
self.pbc), or list of values for each of the non-periodic dimensions.

4.1.

Modules 301

AiiDA documentation, Release 0.5.0

set_kpoints_mesh (mesh, offset=[0.0, 0.0, 0.0])
Set KpointsData to represent a uniformily spaced mesh of kpoints in the Brillouin zone. This excludes the
possibility of set/get kpoints

Parameters
* mesh — a list of three integers, representing the size of the kpoint mesh along b1,b2,b3.

* offset ((optional)) — a list of three floats between 0 and 1. [0.,0.,0.] is Gamma centered
mesh [0.5,0.5,0.5] is half shifted [1.,1.,1.] by periodicity should be equivalent to [0.,0.,0.]
Default = [0.,0.,0.].

TrajectoryData
class aiida.orm.data.array.trajectory.TrajectoryData (*args, **kwargs)
Stores a trajectory (a sequence of crystal structures with timestamps, and possibly with velocities).

get_cells()
Return the array of cells, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_positions ()
Return the array of positions, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_step_data (index)
Return a tuple with all information concerning the step with given index (0 is the first step, 1 the second
step and so on). If you know only the step value, use the get_step_index () method to get the
corresponding index.

If no velocities were specified, None is returned as the last element.

Returns A tuple in the format (step, time, cell, symbols, positions,
velocities), where step is an integer, time is a float, cell is a 3 x 3 matrix,
symbols is an array of length n, positions is a n x 3 array, and velocities is either None or
an X 3 array

Parameters index — The index of the step that you want to retrieve, from 0 to
self.numsteps - 1.

Raises
* IndexError — if you require an index beyond the limits.
* KeyError — if you did not store the trajectory yet.

get_step_index (step)
Given a value for the step (i.e., a value among those of the steps array), return the array index of that
step, that can be used in other methods such as get_step_data () or step_to_structure ().

Note: Note that this function returns the first index found (i.e. if multiple steps are present with the same
value, only the index of the first one is returned).

Raises ValueError if no step with the given value is found.

get_steps ()
Return the array of steps, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

302 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

get_symbols ()
Return the array of symbols, if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_times ()

Return the array of times (in ps), if it has already been set.

Raises KeyError if the trajectory has not been set yet.

get_velocities ()
Return the array of velocities, if it has already been set.

Note: This function (differently from all other get_ » functions, will not raise an exception if the veloci-
ties are not set, but rather return None (both if no trajectory was not set yet, and if it the trajectory was set

but no velocities were specified).

numsites

Return the number of stored sites, or zero if nothing has been stored yet.

numsteps

Return the number of stored steps, or zero if nothing has been stored yet.

set_structurelist (structurelist)
Create trajectory from the listof aiida.orm.data.structure. StructureData instances.

Parameters structurelist —alistofaiida.orm.data.structure.StructureData

instances.

Raises ValueError if symbol lists of supplied structures are different

set_trajectory (steps, cells, symbols, positions, times=None, velocities=None)
Store the whole trajectory, after checking that types and dimensions are correct. Velocities are optional, if
they are not passed, nothing is stored.

Parameters

* steps - integer array with dimension s, where s is the number of steps. Typically rep-

resents an internal counter within the code. For instance, if you want to store a trajectory
with one step every 10, starting from step 65, the array will be [65, 75,85, ...]1. No
checks are done on duplicate elements or on the ordering, but anyway this array should be
sorted in ascending order, without duplicate elements. If your code does not provide an
internal counter, just provide for instance arange (s) .

cells — float array with dimension s X 3 x 3, where s is the length of the steps array.
Units are angstrom. In particular, cells[i, j, k] is the k-th component of the j-th
cell vector at the time step with index i (identified by step number step[i] and with
timestamp times [1]).

symbols - string array with dimension n, where n is the number of atoms (i.e., sites) in
the structure. The same array is used for each step. Normally, the string should be a valid
chemical symbol, but actually any unique string works and can be used as the name of the
atomic kind (see also the step to_structure () method).

positions — float array with dimension s X n X 3, where s is the length of the steps
array and n is the length of the symbols array. Units are angstrom. In particular,
positions[i, j, k] is the k-th component of the j-th atom (or site) in the structure
at the time step with index i (identified by step number step [1] and with timestamp
times[i]).

4.1. Modules

303

AiiDA documentation, Release 0.5.0

* times — if specified, float array with dimension s, where s is the length of the steps
array. Contains the timestamp of each step in picoseconds (ps).

* velocities - if specified, must be a float array with the same dimensions of the
positions array. The array contains the velocities in the atoms.

Todo

Choose suitable units for velocities

step_to_structure (index, custom_kinds=None)
Return an AiiDA aiida.orm.data.structure.StructureData node (not stored yet!) with
the coordinates of the given step, identified by its index. If you know only the step value, use the
get_step_index () method to get the corresponding index.

Note: The periodic boundary conditions are always set to True.

Parameters

* index — The index of the step that you want to retrieve, from 0 to self.numsteps—
1.

* custom_kinds - (Optional) If passed must be a list of
aiida.orm.data.structure.Kind objects. There must be one kind ob-
ject for each different string in the symbols array, with kind.name set to
this string. If this parameter is omitted, the automatic kind generation of AiiDA
aiida.orm.data.structure.StructureData nodes is used, meaning that the
strings in the symbols array must be valid chemical symbols.

4.1.9 ORM documentation: Calculations

class aiida.orm.calculation.Calculation (**kwargs)
This class provides the definition of an “abstract” AiiDA calculation. A calculation in this sense is any compu-
tation that converts data into data.

You will typically use one of its subclasses, often a JobCalculation for calculations run via a scheduler.

get_code ()
Return the code for this calculation, or None if the code was not set.

get_linkname (link, *args, **kwargs)
Return the linkname used for a given input link

Pass as parameter “NAME” if you would call the use_ NAME method. If the use_ NAME method requires
a further parameter, pass that parameter as the second parameter.

logger
Get the logger of the Calculation object, so that it also logs to the DB.

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ embedded

class aiida.orm.calculation.inline.InlineCalculation (**kwargs)
Subclass used for calculations that are automatically generated using the make_inline wrapper/decorator.

This is used to automatically create a calculation node for a simple calculation

get_function_name ()
Get the function name.

304 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Returns a string

aiida.orm.calculation.inline.make_inline (func)

This make_inline wrapper/decorator takes a function with specific requirements, runs it and stores the result as
an InlineCalculation node. It will also store all other nodes, including any possibly unstored input node! The
return value of the wrapped calculation will also be slightly changed, see below.

The wrapper:
echecks that the function name ends with the string / _inline’
echecks that each input parameter is a valid Data node (can be stored or unstored)
eruns the actual function
egets the result values

echecks that the result value is a dictionary, where the key are all strings and the values are all unstored
data nodes

ecreates an InlineCalculation node, links all the kwargs as inputs and the returned nodes as outputs, using
the keys as link labels

estores all the nodes (including, possibly, unstored input nodes given as kwargs)

ereturns a length-two tuple, where the first element is the InlineCalculation node, and the second is the
dictionary returned by the wrapped function

To use this function, you can use it as a decorator of a wrapped function:

@make_inline
def copy_inline (source) :
return {copy: source.copy ()}

In this way, every time you call copy_inline, the wrapped version is actually called, and the return value will be
a tuple with the InlineCalculation instance, and the returned dictionary. For instance, if s is a valid Dat a node,
with the following lines:

c, s_copy_dict = copy_inline (source=s)
s_copy = s_copy_dict['copy"]

c will contain the new InlineCalculation instance, s_copy the (stored) copy of s (with the side effect
that, if s was not stored, after the function call it will be automatically stored).

Note If you use a wrapper, make sure to write explicitly in the docstrings that the function is going
to store the nodes.

The second possibility, if you want that by default the function does not store anything, but can be wrapped
when it is necessary, is the following. You simply define the function you want to wrap (copy_inline in the
example above) without decorator:

def copy_inline (source):
return {copy: source.copy ()}

This is a normal function, so to call it you will normally do:

s_copy_dict = copy_inline(s)

while if you want to wrap it, so that an InlineCalculation is created, and everything is stored, you will
run:

c, s_copy_dict = make_inline(f) (s=s)

4.1.

Modules 305

AiiDA documentation, Release 0.5.0

Note that, with the wrapper, all the parameters to £ () have to be passed as keyworded arguments. Moreover,
the return value is different, i.e. (c, s_copy_dict) instead of simply s_copy_dict.

Note: EXTREMELY IMPORTANT! The wrapped function MUST have the following requirements in order
to be reproducible. These requirements cannot be enforced, but must be followed when writing the wrapped

function.

*The function MUST NOT USE information that is not passed in the kwargs. In particular, it cannot read
files from the hard-drive (that will not be present in another user’s computer), it cannot connect to external
databases and retrieve the current entries in that database (that could change over time), etc.

*The only exception to the above rule is the access to the AiiDA database for the parents of the input nodes.
That is, you can take the input nodes passed as kwargs, and use also the data given in their inputs, the
inputs of their inputs, ... but you CANNOT use any output of any of the above-mentioned nodes (that
could change over time).

*The function MUST NOT have side effects (creating files on the disk, adding entries to an external
database, ...).

Note: The function will also store:

ethe source of the function in an attribute “source_code”, and the first line at which the function appears
(attribute “first_line_source_code”), as returned by inspect.getsourcelines;

othe full source file in “source_file”, if it is possible to retrieve it (this will be set to None otherwise, e.g. if
the function was defined in the interactive shell).

For this reason, try to keep, if possible, all the code to be run within the same file, so that it is possible to keep the
provenance of the functions that were run (if you instead call a function in a different file, you will never know
in the future what that function did). If you call external modules and you matter about provenance, if would be
good to also return in a suitable dictionary the version of these modules (e.g., after importing a module XXX,
you can check if the module defines a variable XXX.__version__ or XXX.VERSION or something similar, and
store it in an output node).

Todo For the time being, I am storing the function source code and the full source code file in the
attributes of the calculation. To be moved to an input Code node!

Note All nodes will be stored, including unstored input nodes!!
Parameters kwargs — all kwargs are passed to the wrapped function

Returns a length-two tuple, where the first element is the InlineCalculation node, and the second is
the dictionary returned by the wrapped function. All nodes are stored.

Raises

* TypeError — if the return value is not a dictionary, the keys are not strings, or the values
are not data nodes. Raise also if the input values are not data nodes.

* ModificationNotAllowed - if the returned Data nodes are already stored.
* Exception — All other exceptions from the wrapped function are not catched.
aiida.orm.calculation.inline.optional_inline (func)
optional_inline wrapper/decorator takes a function, which can be called either as wrapped in InlineCalculation

or a simple function, depending on ‘store’ keyworded argument (True stands for InlineCalculation, False for
simple function). The wrapped function has to adhere to the requirements by make_inline wrapper/decorator.

Usage example:

306 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

@Qoptional_inline
def copy_inline (source=None) :
return {'copy': source.copy ()}

Function copy_inline will be wrapped in InlineCalculation when invoked in following way:

copy_inline (source=node, store=True)

while it will be called as a simple function when invoked:

copy_inline (source=node)

In any way the copy_inline will return the same results.

class aiida.orm.calculation. job.CalculationResultManager (calc)
An object used internally to interface the calculation object with the Parser and consequentially with the Param-
eterData object result. It shouldn’t be used explicitely by a user.

__init_ (calc)
Parameters calc — the calculation object.

classaiida.orm.calculation. job.JobCalculation (**kwargs)
This class provides the definition of an AiiDA calculation that is run remotely on a job scheduler.

get_append_text ()
Get the calculation-specific append text, which is going to be appended in the scheduler-job script, just
after the code execution.

get_custom_scheduler_commands ()
Return a (possibly multiline) string with the commands that the user wants to manually set for the sched-
uler. See also the documentation of the corresponding set_ method.

Returns the custom scheduler command, or an empty string if no custom command was defined.

get_environment_variables ()
Return a dictionary of the environment variables that are set for this calculation.

Return an empty dictionary if no special environment variables have to be set for this calculation.

get_import_sys_environment ()
To check if it’s loading the system environment on the submission script.

Returns a boolean. If True the system environment will be load.

get_job_id()
Get the scheduler job id of the calculation.

Returns a string

get_max memory_ kb ()
Get the memory (in KiloBytes) requested to the scheduler.

Returns an integer

get_max wallclock_ seconds ()
Get the max wallclock time in seconds requested to the scheduler.

Returns an integer

get_mpirun_extra_params ()
Return a list of strings, that are the extra params to pass to the mpirun (or equivalent) command after the
one provided in computer.mpirun_command. Example: mpirun -np 8 extra_params[0] extra_params[1] ...
exec.x

4.1. Modules 307

AiiDA documentation, Release 0.5.0

Return an empty list if no parameters have been defined.

get_parser_ name ()
Return a string locating the module that contains the output parser of this calculation, that will be searched
in the ‘aiida/parsers/plugins’ directory. None if no parser is needed/set.

Returns a string.

get_parserclass ()
Return the output parser object for this calculation, or None if no parser is set.

Returns a Parser class.
Raise MissingPluginError from ParserFactory no plugin is found.

get_prepend_text ()
Get the calculation-specific prepend text, which is going to be prepended in the scheduler-job script, just
before the code execution.

get_priority ()
Get the priority, if set, of the job on the cluster.

Returns a string or None

get_queue_name ()
Get the name of the queue on cluster.

Returns a string or None.

get_resources (full=False)
Returns the dictionary of the job resources set.

Parameters full — if True, also add the default values, e.g.
default_mpiprocs_per_machine

Returns a dictionary

get_retrieved_node ()
Return the retrieved data folder, if present.

Returns the retrieved data folder object, or None if no such output node is found.
Raises MultipleObjectsError if more than one output node is found.

get_scheduler_error ()
Return the output of the scheduler error (a string) if the calculation has finished, and output node is present,
and the output of the scheduler was retrieved.

Return None otherwise.

get_scheduler_output ()
Return the output of the scheduler output (a string) if the calculation has finished, and output node is
present, and the output of the scheduler was retrieved.

Return None otherwise.

get_scheduler_state()
Return the status of the calculation according to the cluster scheduler.

Returns a string.

get_state (from_attribute=False)
Get the state of the calculation.

Note: the ‘most recent” state is obtained wusing the logic in the
aiida.common.datastructures.sort_states function.

308 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Todo

Understand if the state returned when no state entry is found in the DB is the best choice.

Parameters from_attribute - if set to True, read it from the attributes (the attribute is also
set with set_state, unless the state is set to IMPORTED:; in this way we can also see the state
before storing).

Returns a string. If from_attribute is True and no attribute is found, return None. If
from_attribute is False and no entry is found in the DB, also return None.

get_withmpi ()
Get whether the job is set with mpi execution.

Returns a boolean. Default=True.

has_failed()
Get whether the calculation is in a failed status, i.e. SUBMISSIONFAILED, RETRIEVALFAILED, PARS-
INGFAILED or FAILED.

Returns a boolean

has_finished ok /()
Get whether the calculation is in the FINISHED status.

Returns a boolean

kill ()
Kill a calculation on the cluster.

Can only be called if the calculation is in status WITHSCHEDULER.

The command tries to run the kill command as provided by the scheduler, and raises an exception is
something goes wrong. No changes of calculation status are done (they will be done later by the calculation
manager).

res
To be used to get direct access to the parsed parameters.

Returns an instance of the CalculationResultManager.

Note a practical example on how it is meant to be used: let’s say that there is a key ‘energy’ in the
dictionary of the parsed results which contains a list of floats. The command calc.res.energy
will return such a list.

set_append_text (val)
Set the calculation-specific append text, which is going to be appended in the scheduler-job script, just
after the code execution.

Parameters val — a (possibly multiline) string

set_custom_scheduler_commands (val)
Set a (possibly multiline) string with the commands that the user wants to manually set for the scheduler.

The difference of this method with respect to the set_prepend_text is the position in the scheduler sub-
mission file where such text is inserted: with this method, the string is inserted before any non-scheduler
command.

set_environment variables (env_vars_dict)
Set a dictionary of custom environment variables for this calculation.

4.1.

Modules 309

AiiDA documentation, Release 0.5.0

Both keys and values must be strings.

In the remote-computer submission script, it’s going to export variables as export
"keys’="values’

set_import_sys_environment (val)
If set to true, the submission script will load the system environment variables.

Parameters val (bool) —load the environment if True

set_max_memory_kb (val)
Set the maximum memory (in KiloBytes) to be asked to the scheduler.

Parameters val — an integer. Default=None

set_max_wallclock_seconds (val)
Set the wallclock in seconds asked to the scheduler.

Parameters val — An integer. Default=None

set_mpirun_extra_params (extra_params)
Set the extra params to pass to the mpirun (or equivalent) command after the one provided in com-
puter.mpirun_command. Example: mpirun -np 8 extra_params[(0] extra_params[1] ... exec.x

Parameters extra_params — must be a list of strings, one for each extra parameter

set_parser_name (parser)
Set a string for the output parser Can be None if no output plugin is available or needed.

Parameters parser — a string identifying the module of the parser. Such module must be
located within the folder ‘aiida/parsers/plugins’

set_prepend_text (val)
Set the calculation-specific prepend text, which is going to be prepended in the scheduler-job script, just
before the code execution.

See also set_custom_scheduler_commands
Parameters val — a (possibly multiline) string

set_priority (val)
Set the priority of the job to be queued.

Parameters val — the values of priority as accepted by the cluster scheduler.

set_queue_name (val)
Set the name of the queue on the remote computer.

Parameters val (str) — the queue name

set_resources (resources_dict)
Set the dictionary of resources to be used by the scheduler plugin, like the number of nodes, cpus, ... This
dictionary is scheduler-plugin dependent. Look at the documentation of the scheduler. (scheduler type can
be found with calc.get_computer().get_scheduler_type())

set_withmpi (val)
Set the calculation to use mpi.

Parameters val — A boolean. Default=True

store (*args, **kwargs)
Override the store() method to store also the calculation in the NEW state as soon as this is stored for the
first time.

310 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

submit ()
Puts the calculation in the TOSUBMIT status.

Actual submission is performed by the daemon.

submit_test (folder=None, subfolder_name=None)
Test submission, creating the files in a local folder.

Note this submit_test function does not require any node (neither the calculation nor the input
links) to be stored yet.

Parameters

* folder — A Folder object, within which each calculation files are created; if not passed,
a subfolder ‘submit_test’ of the current folder is used.

* subfolder name — the name of the subfolder to use for this calculation (within
Folder). If not passed, a unique string starting with the date and time in the format
yymmdd—-HHMMS S— is used.

Quantum Espresso - PW

Plugin to create a Quantum Espresso pw.x file.

class aiida.orm.calculation. job.quantumespresso.pw.PwCalculation (**kwargs)
Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution. For more information, refer to
http://www.quantum-espresso.org/

Quantum Espresso - PW immigrant

Plugin to immigrate a Quantum Espresso pw.x job that was not run using AiiDa.

class aiida.orm.calculation. job.quantumespresso.pwimmigrant .PwimmigrantCalculation (**kwargs)
Create a PwCalculation object that can be used to import old jobs.

This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation with slight modifications to some of
the class variables and additional methods that

1.parse the job’s input file to create the calculation’s input nodes that would exist if the calculation were
submitted using AiiDa,

2.bypass the functions of the daemon, and prepare the node’s attributes such that all the processes (copying
of the files to the repository, results parsing, ect.) can be performed

Note: The keyword arguments of PwCalculation are also available.

Parameters

* remote_workdir (str) — Absolute path to the directory where the job was run. The
transport of the computer you link ask input to the calculation is the transport that will
be used to retrieve the calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

* input_file_name (str) — The file name of the job’s input file.

* output_file_name (str) — The file name of the job’s output file (i.e. the file containing
the stdout of QE).

4.1. Modules 311

http://www.quantum-espresso.org/

AiiDA documentation, Release 0.5.0

create_input_nodes (open_transport, input_file_name=None, output_file_name=None, re-

mote_workdir=None)
Create calculation input nodes based on the job’s files.

Parameters open_transport (aiida.transport.plugins.local. LocalTransport | ai-
ida.transport.plugins.ssh.SshTransport) — An open instance of the transport class of
the calculation’s computer. See the tutorial for more information.

This method parses the files in the job’s remote working directory to create the input nodes that would
exist if the calculation were submitted using AiiDa. These nodes are

*a 'parameters’ ParameterData node, based on the namelists and their variable-value pairs;
*a ' kpoints’ KpointsData node, based on the K_POINTS card;

°a ’structure’ StructureData node, based on the ATOMIC_POSITIONS and
CELL_PARAMETERS cards;

eone ' pseudo_X’ UpfData node for the pseudopotential used for the atomic species with name X,
as specified in the ATOMIC_SPECIES card,

*a ' settings’ ParameterData node, if there are any fixed coordinates, or if the gamma kpoint is
used;

and can be retrieved as a dictionary using the get_inputs_dict () method. These input links are
cached-links; nothing is stored by this method (including the calculation node itself).

Note: QE stores the calculation’s pseudopotential files in the <outdir>/<prefix>.save/ subfolder
of the job’s working directory, where outdir and prefix are QE CONTROL variables (see pw input

file description). This method uses these files to either get—if the a node already exists for the pseudo—or
create a UpfData node for each pseudopotential.

Keyword arguments

Note: These keyword arguments can also be set when instantiating the class or using the set__ methods
(e.g. set_remote_workdir). Offering to set them here simply offers the user an additional place to

set their values. Only the values that have not yet been set need to be specified.

Parameters
e input_file_name (str) — The file name of the job’s input file.

e output_file_name (str) — The file name of the job’s output file (i.e. the file containing
the stdout of QE).

* remote_workdir (str) — Absolute path to the directory where the job was run. The
transport of the computer you link ask input to the calculation is the transport that will
be used to retrieve the calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

Raises

* aiida.common.exceptions.InputValidationError - if
open_transport is a different type of transport than the computer’s.

* aiida.common.exceptions.InvalidOperation — if open_transport is
not open.

* aiida.common.exceptions.InputValidationError — if
remote_workdir, input_file_name, and/or output_file_name are not
set prior to or during the call of this method.

312

Chapter 4. Modules provided with aiida

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.5.0

* aiida.common.exceptions.FeatureNotAvailable — if the input file uses
anything other than ibrav = 0, which is not currently implimented in aiida.

* aiida.common.exceptions.ParsingError — if there are issues parsing the in-
put file.

* IOError —if there are issues reading the input file.
prepare_for_ retrieval_and_parsing (open_transport)
Tell the daemon that the calculation is computed and ready to be parsed.

Parameters open_transport (aiida.transport.plugins.local.LocalTransport | ai-
ida.transport.plugins.ssh.SshTransport) — An open instance of the transport class of
the calculation’s computer. See the tutorial for more information.

The next time the daemon updates the status of calculations, it will see this job is in the ‘COMPUTED’
state and will retrieve its output files and parse the results.

If the daemon is not currently running, nothing will happen until it is started again.

This method also stores the calculation and all input nodes. It also copies the original input file to the
calculation’s repository folder.

Raises

* aiida.common.exceptions.InputValidationError - if
open_transport is a different type of transport than the computer’s.

* aiida.common.exceptions.InvalidOperation — if open_transport is
not open.

set_input_file_name (input_file_name)
Set the file name of the job’s input file (e.g. ' pw.in”’).

Parameters input_file_name (str) — The file name of the job’s input file.

set_output_file_ name (output_file_name)
Set the file name of the job’s output file (e.g. ' pw.out’).

Parameters output_file_name (str) — The file name of file containing the job’s stdout.

set_output_subfolder (output_subfolder)
Manually set the job’s outdir variable (e.g. * . /out/").

Note: The outdir variable is normally set automatically by

1.looking for the outdir CONTROL namelist variable

2.looking for the SESPRESSO_TMPDIR environment variable on the calculation’s computer (using the
transport)

3.using the QE default, the calculation’s remote_workdir

but this method is made available to the user, in the event that they wish to set it manually.

Parameters output_subfolder (str) — The job’s outdir variable.

set_prefix (prefix)
Manually set the job’s prefix variable (e.g. ' pwscf’).

Note: The prefix variable is normally set automatically by

1.looking for the prefix CONTROL namelist variable

4.1.

Modules 313

AiiDA documentation, Release 0.5.0

2.using the QE default, ' pwscf’

but this method is made available to the user, in the event that they wish to set it manually.

Parameters prefix (str) — The job’s prefix variable.

set_remote_workdir (remote_workdir)

Set the job’s remote working directory.

Parameters remote_workdir (str) — Absolute path of the job’s remote working directory.

TemplateReplacer

This is a simple plugin that takes two node inputs, both of type ParameterData, with the following labels: template
and parameters. You can also add other SinglefileData nodes as input, that will be copied according to what is written
in ‘template’ (see below).

» parameters: a set of parameters that will be used for substitution.

* template: can contain the following parameters:

input_file_template: a string with substitutions to be managed with the format() function of python,
i.e. if you want to substitute a variable called ‘varname’, you write {varname} in the text. See
http://www.python.org/dev/peps/pep-3101/ for more details. The replaced file will be the input file.

input_file_name: a string with the file name for the input. If it is not provided, no file will be created.

output_file_name: a string with the file name for the output. If it is not provided, no redirection will be
done and the output will go in the scheduler output file.

cmdline_params: a list of strings, to be passed as command line parameters. Each one is substituted with
the same rule of input_file_template. Optional

input_through_stdin: if True, the input file name is passed via stdin. Default is False if missing.

files_to_copy: if defined, a list of tuple pairs, with format (‘link_name’, ‘dest_rel_path’); for each tuple, an input link
and with file type ‘Singlefile’, and the content is copied to a remote file named ‘dest_rel_path’ Errors
are raised in the input links are non-existent, or of the wrong type, or if there are unused input files.

TODO: probably use Python’s Template strings instead?? TODO: catch exceptions

class aiida.orm.calculation. job.simpleplugins.templatereplacer.TemplatereplacerCalculation (**
Simple stub of a plugin that can be used to replace some text in a given template. Can be used for many different
codes, or as a starting point to develop a new plugin.

4.1.10 Calculation parsers

This section describes the different parsers classes for calculations.

Quantum ESPRESSO parsers

aiida.parsers.plugins.quantumespresso.convert_ge2aiida_structure (output_dict,

in-
put_structure=None)

Receives the dictionary cell parsed from quantum espresso Convert it into an AiiDA structure object

314

Chapter 4. Modules provided with aiida

http://www.python.org/dev/peps/pep-3101/

AiiDA documentation, Release 0.5.0

Basic Raw Cp Parser

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_text_output (data,

xml_data)
data must be a list of strings, one for each lines, as returned by readlines(). On output, a dictionary with parsed

values

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_traj_stanzas (num_elements,
split-
lines,
prepend_name,

rescale=1.0)
num_elements: Number of lines (with three elements) between lines with two only elements (containing step

number and time in ps). num_elements is 3 for cell, and the number of atoms for coordinates and positions.
splitlines: a list of lines of the file, already split in pieces using string.split

prepend_name: a string to be prepended to the name of keys returned in the return dictionary.

rescale: the values in each stanza are multiplied by this factor, for units conversion

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_counter_output (data)
Parse xml file print_counter.xml data must be a single string, as returned by file.read() (notice the difference
with parse_text_output!) On output, a dictionary with parsed values.

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_output (data)
Parse xml data data must be a single string, as returned by file.read() (notice the difference with
parse_text_output!) On output, a dictionary with parsed values. Democratically, we have decided to use pi-
coseconds as units of time, eV for energies, Angstrom for lengths.

Basic Raw Pw Parser

A collection of function that are used to parse the output of Quantum Espresso PW. The function that needs to be called
from outside is parse_raw_output(). The functions mostly work without aiida specific functionalities. The parsing will
try to convert whatever it can in some dictionary, which by operative decision doesn’t have much structure encoded,
[the values are simple]

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.cell_volume (al,
a2,

a3)
returns the volume of the primitive cell: lal.(a2xa3)l

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_list_to_matrix (in_matrix,
n_rows,

n_columns)
converts a list into a list of lists (a matrix like) with n_rows and n_columns

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_ge_time_to_sec (timestr)
Given the walltime string of Quantum Espresso, converts it in a number of seconds (float).

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_QE_errors (lines,
count,
warn-
ings)
Parse QE errors messages (those appearing between some lines with ’ $%$%$%%%%%")
Parameters

* lines — list of strings, the output text file as read by readlines() or as obtained by
data.split(‘n’) when data is the text file read by read()

4.1. Modules 315

AiiDA documentation, Release 0.5.0

* count - the line at which we identified some ’ $%$%%$%%%%’
* warnings — the warnings already parsed in the file
Return messages a list of QE error messages

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_text_output (data,
xml_data=None,
struc-
ture_data=None,
in-

put_dict=None)
Parses the text output of QE-PWscf.

Parameters

* data - a string, the file as read by read()

* xml_data - the dictionary with the keys read from xml.

* structure_data — dictionary, coming from the xml, with info on the structure
Return parsed_data dictionary with key values, referring to quantities at the last scf step.

Return trajectory_data key,values referring to intermediate scf steps, as in the case of vc-relax.
Empty dictionary if no value is present.

Return critical_messages a list with critical messages. If any is found in parsed_data[’warnings’],
the calculation is FAILED!

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_xml_output (data,

dir_with_bands=N
Parse the xml data of QE v5.0.x Input data must be a single string, as returned by file.read() Returns a dictionary

with parsed values

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_raw_output (out_file,
in-
put_dict,
parser_opts=None,
xml_file=None,

dir_with_bands=None
Parses the output of a calculation Receives in input the paths to the output file and the xml file.

Parameters
* out_file — path to pw std output
* input_dict —notused
* parser_opts —not used
* dir_with_bands — path to directory with all k-points (Kxxxxx) folders
* xml_file - path to QE data-file.xml
Returns out_dict a dictionary with parsed data
Return successful a boolean that is False in case of failed calculations
Raises
* QEOutputParsingError — for errors in the parsing,
* AssertionError — if two keys in the parsed dicts are found to be qual

3 different keys to check in output: parser_warnings, xml_warnings and warnings. On an upper level, these
flags MUST be checked. The first two are expected to be empty unless QE failures or unfinished jobs.

316 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Basic Pw Parser

class aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser (calc)
This class is the implementation of the Parser class for PWscf.

get_linkname_out_kpoints ()
Returns the name of the link to the output_kpoints Node exists if cell has changed and no bands are stored.

get_linkname_outarray ()
Returns the name of the link to the output_array Node may exist in case of calculation="scf’

get_linkname_outstructure ()
Returns the name of the link to the output_structure Node exists if positions or cell changed.

get_linkname_outtrajectory ()
Returns the name of the link to the output_trajectory. Node exists in case of calculation="md’, ‘vc-md’,
‘relax’, ‘ve-relax’

get_parser_settings_key ()
Return the name of the key to be used in the calculation settings, that contains the dictionary with the
parser_options

parse_with_retrieved (retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

Constants

Physical or mathematical constants. Since every code has its own conversion units, this module defines what
QE understands as for an eV or other quantities. Whenever possible, we try to use the constants defined in
:py:mod:aiida.common.constants:, but if some constants are slightly different among different codes (e.g., different
standard definition), we define the constants in this file.

Cp Parser

class aiida.parsers.plugins.quantumespresso.cp.CpParser (calc)
This class is the implementation of the Parser class for Cp.

get_linkname_trajectory ()
Returns the name of the link to the output_structure (None if not present)

parse_with_retrieved (retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

4.1.11 QueryTool documentation

This section describes the querytool class for querying nodes with an easy Python interface.

class aiida.orm.querytool.QueryTool
Class to make easy queries without extensive knowledge of SQL, Django and/or the internal storage mechanism
of AiiDA.

Note: This feature is under constant development, so the name of the methods may change in future versions
to allow for increased querying capabilities.

Todo

4.1. Modules 317

AiiDA documentation, Release 0.5.0

missing features:

eadd __in fil

ter

eallow __in filter to accept other querytool objects to perform a single query

eimplement

searches through the TC table

edocument the methods

eallow to get attributes of queried data via a single query with suitable methods

eadd checks

to verify whether filters as <=, ==, etc are valid for the specified data type (e.g.,

numbers and dates, ...)

eprobably m

any other things...

add_attr_ filter (key, filtername, value, negate=False, relnode=None, relnodeclass=None)

Add a new

filter on the value of attributes of the nodes you want to query.

Parameters

key — the value of the key

filtername - the type of filter to apply. Multiple filters are supported (depending on the
type of value), like ‘<=", ‘<’, *>’, “>=", ‘=", ‘contains’, ‘iexact’, ‘startswith’, ‘endswith’,

‘istartswith’, ‘iendswith’, ... (the prefix ‘i’ means “case-insensitive”, in the case of strings).
value — the value of the attribute
negate — if True, add the negation of the current filter

relnode - if specified, asks to apply the filter not on the node that is currently
being queried, but rather on a node linked to it. Can be “res” for output results,
“inp. LINKNAME” for input nodes with a given link name, “out. LINKNAME” for out-
put nodes with a given link name.

relnodeclass — if relnode is specified, you can here add a further filter on the type of
linked node for which you are executing the query (e.g., if you want to filter for outputs
whose ‘energy’ value is lower than zero, but only if ‘energy’ is in a ParameterData node).

add_extra_filter (key, filtername, value, negate=False, relnode=None, relnodeclass=None)

Add a new

filter on the value of extras of the nodes you want to query.

Parameters

key - the value of the key

filtername - the type of filter to apply. Multiple filters are supported (depending on the

type of value), like ‘<=, ‘<’, >, ‘>=, , ‘contains’, ‘iexact’, ‘startswith’, ‘endswith’,
‘istartswith’, ‘iendswith’, ... (the prefix ‘i’ means “case-insensitive”, in the case of strings).

value — the value of the extra
negate — if True, add the negation of the current filter

relnode - if specified, asks to apply the filter not on the node that is currently
being queried, but rather on a node linked to it. Can be “res” for output results,
“inp.LINKNAME” for input nodes with a given link name, “out. LINKNAME” for out-
put nodes with a given link name.

relnodeclass - if relnode is specified, you can here add a further filter on the type of
linked node for which you are executing the query (e.g., if you want to filter for outputs
whose ‘energy’ value is lower than zero, but only if ‘energy’ is in a ParameterData node).

318

Chapter 4. Modules provided with aiida

gt only with

AiiDA documentation, Release 0.5.0

create_attrs_dict ()
Return a dictionary of the raw data from the attributes associated to the queried nodes.

create_extras_dict ()
Return a dictionary of the raw data from the extras associated to the queried nodes.

get_attributes ()
Get the raw values of all the attributes of the queried nodes.

limit_pks (pk_list)
Limit the query to a given list of pks.

Parameters pk_1list — the list of pks you want to limit your query to.

run_query (with_data=False, order_by=None)
Run the query using the filters that have been pre-set on this class, and return a generator of the obtained

Node (sub)classes.

Parameters order_by - if specified, order by the given field

set_class (the_class)
Pass a class to filter results only of a specific Node (sub)class, and its subclasses.

set_group (group, exclude=False)
Filter calculations only within a given node. This can be called multiple times for an AND query.

Todo
Add the possibility of specifying the group as an object rather than with its name, so that one can also
query special groups, etc.

Todo
Add the possibility of specifying “OR” type queries on multiple groups, and any combination of AND,
OR, NOT.

Parameters
¢ group - the name of the group

¢ exclude — if True, excude results

4.1.12 Dbimporter documentation

Generic database importer class

This section describes the base class for the import of data from external databases.

aiida.tools.dbimporters.DbImporterFactory (pluginname)
This function loads the correct DbImporter plugin class

class aiida.tools.dbimporters.baseclasses.CifEntry (db_name=None, db_uri=None,
id=None, version=None, extras={},
uri=None)

Represents an entry from the structure database (COD, ICSD, ...).

cif
Returns raw contents of a CIF file as string.

4.1. Modules 319

AiiDA documentation, Release 0.5.0

get_aiida_structure()
Returns AiiDA-compatible structure, representing the crystal structure from the CIF file.

get_ase_structure ()
Returns ASE representation of the CIF.

Note: To be removed, as it is duplicated in aiida.orm.data.cif.CifData.

get_cif_ node (store=False)
Creates a CIF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.cif.CifData object

get_parsed_cif ()
Returns data structure, representing the CIF file. Can be created using PyCIFRW or any other open-source
parser.

Returns list of lists

get_raw_cif ()
Returns raw contents of a CIF file as string.

Returns contents of a file as string

class aiida.tools.dbimporters.baseclasses.DbEntry (db_name=None, db_uri=None,
id=None, version=None, extras={},
uri=None)

Represents an entry from external database.

contents
Returns raw contents of a file as string.

class aiida.tools.dbimporters.baseclasses.DbImporter
Base class for database importers.

get_supported_keywords ()
Returns the list of all supported query keywords.

Returns list of strings

query (**kwargs)
Method to query the database.

Parameters
» id - database-specific entry identificator
* element - element name from periodic table of elements
* number_of_elements — number of different elements
* mineral_ name — name of mineral
¢ chemical_ name — chemical name of substance
e formula - chemical formula
* volume — volume of the unit cell in cubic angstroms
* spacegroup — symmetry space group symbol in Hermann-Mauguin notation
* spacegroup_hall — symmetry space group symbol in Hall notation
* a —length of lattice vector in angstroms

* b —length of lattice vector in angstroms

320 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

* c —length of lattice vector in angstroms

* alpha - angles between lattice vectors in degrees
* beta - angles between lattice vectors in degrees

e gamma — angles between lattice vectors in degrees
* z —number of the formula units in the unit cell

* measurement_temp — temperature in kelvins at which the unit-cell parameters were
measured

* measurement_pressure — pressure in kPa at which the unit-cell parameters were
measured

* diffraction_temp — mean temperature in kelvins at which the intensities were mea-
sured

* diffraction_pressure — mean pressure in kPa at which the intensities were mea-
sured

* authors — authors of the publication
* journal - name of the journal
e title —title of the publication
* year — year of the publication
* journal_volume — journal volume of the publication
* journal_issue —journal issue of the publication
» first_page — first page of the publication
* last_page — last page of the publication
* doi - digital object identifyer (DOI), refering to the publication
Raises NotImplementedError if search using given keyword is not implemented.

setup_db (**kwargs)
Sets the database parameters. The method should reconnect to the database using updated parameters, if
already connected.

class aiida.tools.dbimporters.baseclasses.DbSearchResults (results)
Base class for database results.

All classes, inheriting this one and overriding at (), are able to benefit from having functions __iter__,
len_ _and _ _getitem_ .

class DbSearchResultsIterator (results, increment=1)
Iterator for search results

DbSearchResults.__iter_ ()
Instances of aiida.tools.dbimporters.baseclasses.DbSearchResults can be used as
iterators.

DbSearchResults.at (position)
Returns position-thresultas aiida.tools.dbimporters.baseclasses.DbEntry.

Parameters position — zero-based index of a result.

Raises IndexError if position is out of bounds.

4.1. Modules 321

AiiDA documentation, Release 0.5.0

DbSearchResults.fetch_all ()
Returns all query results as an array of aiida.tools.dbimporters.baseclasses.DbEntry.

DbSearchResults.next ()
Returns the next result of the query (instance of aiida. tools.dbimporters.baseclasses.DbEntry).

Raises Stoplteration when the end of result array is reached.

class aiida.tools.dbimporters.baseclasses.UpfEntry (db_name=None, db_uri=None,
id=None, version=None, extras={},
uri=None)

Represents an entry from the pseudopotential database.

get_upf_node (store=False)
Creates an UPF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.upf.UpfData object

Structural databases

COD database importer

class aiida.tools.dbimporters.plugins.cod.CodDbImporter (**kwargs)
Database importer for Crystallography Open Database.

get_supported_keywords ()
Returns the list of all supported query keywords.

Returns list of strings

query (**kwargs)
Performs a query on the COD database using keyword = wvalue pairs, specified in kwargs.

Returns aninstanceof aiida.tools.dbimporters.plugins.cod.CodSearchResults.

query_sql (**kwargs)
Forms a SQL query for querying the COD database using keyword = value pairs, specified in
kwargs.

Returns string containing a SQL statement.

setup_db (**kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.cod.CodEntry (uri, db_name="Crystallography
Open Database’,
db_uri="http://www.crystallography.net’,
**kwargs)

Represents an entry from COD.

class aiida.tools.dbimporters.plugins.cod.CodSearchResults (results)
Results of the search, performed on COD.

ICSD database importer

exception aiida.tools.dbimporters.plugins.icsd.CifFileErrorExp
Raised when the author loop is missing in a CIF file.

322 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

class aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter (**kwargs)
Importer for the Inorganic Crystal Structure Database, short ICSD, provided by FIZ Karlsruhe. It allows to run
queries and analyse all the results. See the DbImporter documentation and tutorial page for more information.

Parameters

server — Server URL, the web page of the database. It is required in order to have access
to the full database. I t should contain both the protocol and the domain name and end with
a slash, as in:

server = "http://ICSDSERVER.com/"

urladd - part of URL which is added between query and and the server URL (default:
index.php?). only needed for web page query

querydb — boolean, decides whether the mysql database is queried (default: True). If
False, the query results are obtained through the web page query, which is restricted to a
maximum of 1000 results per query.

dl_db - icsd comes with a full (default: icsd) and a demo database (icsdd). This
parameter allows the user to switch to the demo database for testing purposes, if the access
rights to the full database are not granted.

host — MySQL database host. If the MySQL database is hosted on a different machine,
use “127.0.0.1” as host, and open a SSH tunnel to the host using:

ssh -L 3306:1localhost:3306 username@hostname.com

or (if e.g. you get an URLError with Errno 111 (Connection refused) upon querying):

ssh -L 3306:1localhost:3306 -L 8010:localhost:80 username@hostname.com

user — mysql database username (default: dba)
passwd — mysql database password (default: sql)
db — name of the database (default: icsd)

port — Port to access the mysql database (default: 3306)

get_supported_keywords ()

Returns List of all supported query keywords.

query (**kwargs)
Depending on the db_parameters, the mysql database or the web page are queried. Valid parameters are
found using IcsdDbImporter.get_supported_keywords().

Parameters kwargs — A list of “’keyword = [values]” pairs.

setup_db (**kwargs)
Change the database connection details. At least the host server has to be defined.

Parameters kwargs — db_parameters for the mysql database connection (host, user, passwd,

db, port)

class aiida.tools.dbimporters.plugins.icsd.IesdEntry (uri, **kwargs)
Represent an entry from Icsd.

Note

Before July 2nd 2015, source[’id’] contained icsd.IDNUM (internal icsd id number) and
source|’extras’][’cif_nr’] the cif number (icsd. COLL_CODE).

4.1. Modules

323

AiiDA documentation, Release 0.5.0

o After July 2nd 2015, source[’id’] has been replaced by the cif number and
source[’extras’|[’idnum’] is icsd.IDNUM .

cif

Returns cif file of Icsd entry.
get_aiida_structure()

Returns AiiDA structure corresponding to the CIF file.
get_ase_structure ()

Returns ASE structure corresponding to the cif file.

get_cif node ()
Create a CIF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.cif.CifData object

get_corrected_cif ()
Add quotes to the lines in the author loop if missing.

Note ase raises an AssertionError if the quotes in the author loop are missing.

class aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults (query,
db_parameters)
Result manager for the query performed on ICSD.

Parameters
* query — mysql query or webpage query

* db_parameters — database parameter setup during the initialisation of the IcsdDbIm-
porter.

at (position)
Return position-th result as IcsdEntry.

next ()
Return next result as IcsdEntry.

query db_version ()
Query the version of the icsd database (last row of RELEASE_TAGS).

query_page ()
Query the mysql or web page database, depending on the db_parameters. Store the number_of_results, cif
file number and the corresponding icsd number.

Note Icsd uses its own number system, different from the CIF file numbers.

exception aiida.tools.dbimporters.plugins.icsd.NoResultsWebExp
Raised when a webpage query returns no results.

aiida.tools.dbimporters.plugins.icsd.correct_cif (cif)
Correct the format of the CIF files. At the moment, it only fixes missing quotes in the authors field
(ase.read.io only works if the author names are quoted, if not an AssertionError is raised).

Parameters cif — A string containing the content of the CIF file.

Returns a string containing the corrected CIF file.

324 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

MPOD database importer

class aiida.tools.dbimporters.plugins.mpod.MpodDbImporter (**kwargs)
Database importer for Material Properties Open Database.

get_supported_keywords ()
Returns the list of all supported query keywords.

Returns list of strings

query (**kwargs)
Performs a query on the MPOD database using keyword = wvalue pairs, specified in kwargs.

Returns aninstanceof aiida.tools.dbimporters.plugins.mpod.MpodSearchResults.

query_get (**kwargs)
Forms a HTTP GET query for querying the MPOD database. May return more than one query in case an
intersection is needed.

Returns a list containing strings for HTTP GET statement.

setup_db (query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.mpod.MpodEntry (uri, **kwargs)
Represents an entry from MPOD.

class aiida.tools.dbimporters.plugins.mpod.MpodSearchResults (results)
Results of the search, performed on MPOD.

OQMD database importer

class aiida.tools.dbimporters.plugins.ogmd.OgmdDbImporter (**kwargs)
Database importer for Open Quantum Materials Database.

get_supported_keywords ()
Returns the list of all supported query keywords.

Returns list of strings

query (**kwargs)
Performs a query on the OQMD database using keyword = wvalue pairs, specified in kwargs.

Returns aninstanceof aiida.tools.dbimporters.plugins.ogmd.OgmdSearchResults.

query_get (**kwargs)
Forms a HTTP GET query for querying the OQMD database.

Returns a strings for HTTP GET statement.

setup_db (query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.ogmd.OgmdEntry (uri, **kwargs)
Represents an entry from OQMD.

class aiida.tools.dbimporters.plugins.ogmd.OgmdSearchResults (results)
Results of the search, performed on OQMD.

4.1. Modules 325

AiiDA documentation, Release 0.5.0

PCOD database importer

class aiida.tools.dbimporters.plugins.pcod.PcodDbImporter (**kwargs)
Database importer for Predicted Crystallography Open Database.

query (**kwargs)
Performs a query on the PCOD database using keyword = value pairs, specified in kwargs.

Returns aninstanceof aiida.tools.dbimporters.plugins.pcod.PcodSearchResults.

query_sql (**kwargs)
Forms a SQL query for querying the PCOD database using keyword = value pairs, specified in
kwargs.

Returns string containing a SQL statement.

class aiida.tools.dbimporters.plugins.pcod.PcodEntry (uri, db_name=’Predicted Crys-
tallography ~ Open Database’,
db_uri="http://www.crystallography.net/pcod’,

**kwargs)
Represents an entry from PCOD.

class aiida.tools.dbimporters.plugins.pcod.PcodSearchResults (results)
Results of the search, performed on PCOD.

TCOD database importer

class aiida.tools.dbimporters.plugins.tcod.TcodDbImporter (**kwargs)
Database importer for Theoretical Crystallography Open Database.

query (**kwargs)
Performs a query on the TCOD database using keyword = value pairs, specified in kwargs.

Returns aninstanceof aiida.tools.dbimporters.plugins.tcod.TcodSearchResults.

class aiida.tools.dbimporters.plugins.tcod.TcodEntry (uri, db_name="Theoretical
Crystallography Open Database’,
db_uri="http://www.crystallography.net/tcod’,

**kwargs)
Represents an entry from TCOD.

class aiida.tools.dbimporters.plugins.tcod.TcodSearchResults (results)
Results of the search, performed on TCOD.

Other databases

NNINC database importer

class aiida.tools.dbimporters.plugins.nninc.NnincDbImporter (**kwargs)
Database importer for NNIN/C Pseudopotential Virtual Vault.

get_supported_keywords ()
Returns the list of all supported query keywords.

Returns list of strings

query (**kwargs)
Performs a query on the NNIN/C Pseudopotential Virtual Vault using keyword = wvalue pairs, speci-
fied in kwargs.

326 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Returns aninstanceof aiida.tools.dbimporters.plugins.nninc.NnincSearchResults.

query_get (**kwargs)
Forms a HTTP GET query for querying the NNIN/C Pseudopotential Virtual Vault.

Returns a string with HTTP GET statement.

setup_db (query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.nninc.NnincEntry (uri, **kwargs)
Represents an entry from NNIN/C Pseudopotential Virtual Vault.

class aiida.tools.dbimporters.plugins.nninc.NnincSearchResults (results)
Results of the search, performed on NNIN/C Pseudopotential Virtual Vault.

4.1.13 DbExporter documentation

TCOD database exporter

aiida.tools.dbexporters.tcod.cif_encode_contents (content, gzip=False,

gzip_threshold=1024)
Encodes data for usage in CIF text field in a best possible way: binary data is encoded using Base64 encoding;

text with non-ASCII symbols, too long lines or lines starting with semicolons (‘;”) is encoded using Quoted-
printable encoding.

Parameters content - the content to be encoded
Return content encoded content

Return encoding a string specifying used encoding (None, ‘base64’, ‘ncr’, ‘quoted-printable’,
‘gzip+base64’)

aiida.tools.dbexporters.tcod.decode_textfield (content, method)
Decodes the contents of encoded CIF textfield.

Parameters
e content - the content to be decoded

* method — method, which was used for encoding the contents (None, ‘base64’, ‘ncr’,
‘quoted-printable’, ‘gzip+base64’)

Returns decoded content
Raises ValueError if the encoding method is unknown

aiida.tools.dbexporters.tcod.decode_textfield base64 (content)
Decodes the contents for CIF textfield from Base64 wusing standard Python implementation
(base64.standard_bo64decode ())

Parameters content — a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield_gzip_ base64 (content)
Decodes the contents for CIF textfield from Base64 and decompresses them with gzip.

Parameters content — a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield ncr (content)
Decodes the contents for CIF textfield from Numeric Character Reference.

4.1. Modules 327

AiiDA documentation, Release 0.5.0

Parameters content — a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield quoted printable (content)
Decodes the contents for CIF textfield from quoted-printable encoding.

Parameters content — a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.deposit (what, type, author_name=None, au-
thor_email=None, url=None, title=None, user-
name=None, password=False, user_email=None,
code_label="cif _cod_deposit’, computer_name=None,
replace=None, message=None, **kwargs)
Launches a aiida.orm.calculation. job.JobCalculation to deposit data node to *COD-type
database.

Returns launched aiida.orm.calculation. job.JobCalculation instance.
Raises ValueError if any of the required parameters are not given.

aiida.tools.dbexporters.tcod.deposition_cmdline_parameters (parser, exp-

class="Data’)
Provides descriptions of command line options, that are used to control the process of deposition to TCOD.

Parameters
* parser — an argparse.Parser instance

* expclass — name of the exported class to be shown in help string for the command line
options

Note: This method must not set any default values for command line options in order not to clash with any
other data deposition plugins.

aiida.tools.dbexporters.tcod.encode_textfield_base64 (content, foldwidth=76)
Encodes the contents for CIF textfield in Base64 using standard Python implementation
(base64.standard_b6dencode ()).

Parameters

* content - a string with contents

¢ foldwidth — maximum width of line (default is 76)
Returns encoded string

aiida.tools.dbexporters.tcod.encode_textfield_gzip_base64 (content, **kwargs)
Gzips the given string and encodes it in Base64.

Parameters content — a string with contents
Returns encoded string

aiida.tools.dbexporters.tcod.encode_textfield ncr (content)
Encodes the contents for CIF textfield in Numeric Character Reference. Encoded characters:

\x09, \x0A, \x0D, \x20-\x7E;
¢, , if encountered on the beginning of the line;
.‘\t‘

‘. “and ‘?°, if comprise the entire textfield.

328 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

Parameters content — a string with contents
Returns encoded string
aiida.tools.dbexporters.tcod.encode_textfield quoted_printable (content)

Encodes the contents for CIF textfield in quoted-printable encoding. In addition to non-ASCII characters, that
are encoded by Python function quopri.encodestring (), following characters are encoded:

¢, , if encountered on the beginning of the line;
o\ttt

*‘.“and ‘?°, if comprise the entire textfield.

Parameters content — a string with contents

Returns encoded string

aiida.tools.dbexporters.tcod.export_cif (what, **kwargs)
Exports given coordinate-containing *Data node to string of CIF format.

Returns string with contents of CIF file.

aiida.tools.dbexporters.tcod.export_cifnode (what, parameters=None, trajec-
tory_index=None, store=False, re-
duce_symmetry=True, **kwargs)
The main exporter function. Exports given coordinate-containing *Data node to

aiida.orm.data.cif.CifData node, ready to be exported to TCOD. All *Data types, having
method _get_cif (), are supported in addition to aiida.orm.data.cif.CifData.

Parameters
* what — data node to be exported.

* parameters —a aiida.orm.data.parameter.ParameterData instance, pro-
duced by the same calculation as the original exported node.

* trajectory _index - a step to be converted and exported in case a
aiida.orm.data.array.trajectory.TrajectoryData is exported.

* store - boolean indicating whether to store intermediate nodes or not. Default False.

* dump_aiida_database - boolean indicating whether to include the dump of AiiDA
database (containing only transitive closure of the exported node). Default True.

* exclude_external_contents — boolean indicating whether to exclude nodes from
AiiDA database dump, that are taken from external repositores and have a URL link allow-
ing to refetch their contents. Default False.

* gzip — boolean indicating whether to Gzip large CIF text fields. Default False.

* gzip_threshold - integer indicating the maximum size (in bytes) of uncompressed CIF
text fields when the gzip option is in action. Default 1024.

Returns a aiida.orm.data.cif.CifData node.

aiida.tools.dbexporters.tcod.export_values (what, **kwargs)
Exports given coordinate-containing *Data node to PyCIFRW CIF data structure.

Returns CIF data structure.

Note: Requires PyCIFRW.

4.1. Modules 329

AiiDA documentation, Release 0.5.0

aiida.tools.dbexporters.tcod.extend _with_cmdline_parameters (parser, exp-

class="Data’)
Provides descriptions of command line options, that are used to control the process of exporting data to TCOD

CIF files.
Parameters
* parser — an argparse.Parser instance

* expclass — name of the exported class to be shown in help string for the command line
options

Note: This method must not set any default values for command line options in order not to clash with any
other data export plugins.

aiida.tools.dbexporters.tcod.translate_calculation_specific_values (calc,
translator,
**kwargs)
Translates calculation-specific values from aiida.orm.calculation. job.JobCalculation sub-

class to appropriate TCOD CIF tags.
Parameters

* calc — an instance of aiida.orm.calculation. job.JobCalculation sub-
class.

e translator —class, derived from aiida.tools.dbexporters.tcod plugins.BaseTcodtransla

Raises ValueError if translator is not derived from proper class.

TCOD parameter translator documentation

Base class

class aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
Base translator from calculation-specific input and output parameters to TCOD CIF dictionary tags.

classmethod get_BZ_integration_grid_X (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_Y (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_Z (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Z.

classmethod get_BZ_integration_grid_shift_X (calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_shift_Y (calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_shift_Z (calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Z.

classmethod get_atom_site_residual_force_Cartesian_x (calc, **kwargs)
Returns a list of x components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

330 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

classmethod get_atom_site_residual_force_Cartesian_y (calc, **kwargs)
Returns a list of y components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_z (calc, **kwargs)
Returns a list of z components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

classmethod get_atom_type_basisset (calc, **kwargs)
Returns a list of basisset names for each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_atom_type_symbol (calc, **kwargs)
Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be sorted.

classmethod get_atom_type_valence_configuration (calc, **kwargs)
Returns valence configuration of each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_computation_wallclock_time (calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_ewald_energy (calc, **kwargs)
Returns Ewald energy in eV.

classmethod get_exchange_correlation_energy (calc, **kwargs)
Returns exchange correlation (XC) energy in eV.

classmethod get_fermi_energy (calc, **kwargs)
Returns Fermi energy in eV.

classmethod get_hartree_energy (calc, **kwargs)
Returns Hartree energy in eV.

classmethod get_integration_Methfessel_Paxton_order (calc, **kwargs)
Returns the order of Methfessel-Paxton approximation if used.

classmethod get_integration_smearing method (calc, **kwargs)
Returns the smearing method name as string.

classmethod get_integration_smearing method_other (calc, **kwargs)
Returns the smearing method name as string if the name is different from specified in cif_dft.dic.

classmethod get_kinetic_energy cutoff_ EEX (calc, **kwargs)
Returns kinetic energy cutoff for exact exchange (EEX) operator in eV.

classmethod get_kinetic_energy cutoff_ charge_density (calc, **kwargs)
Returns kinetic energy cutoff for charge density in eV.

classmethod get_kinetic_energy cutoff wavefunctions (calc, **kwargs)
Returns kinetic energy cutoff for wavefunctions in eV.

classmethod get_number_ of_ electrons (calc, **kwargs)
Returns the number of electrons.

classmethod get_one_electron_energy (calc, **kwargs)
Returns one electron energy in eV.

classmethod get_software_executable_path (calc, **kwargs)
Returns the file-system path to the executable that was run for this computation.

4.1.

Modules 331

AiiDA documentation, Release 0.5.0

classmethod get_software_package (calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package or program
name should be used, e.g. “VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_software_package_compilation_timestamp (calc, **kwargs)
Returns the timestamp of package/program compilation in ISO 8601 format.

classmethod get_software_package_version (calc, **kwargs)
Returns software package version used to compute and produce the computed structure file. Only version
designator should be used, e.g. ‘3.4.0°, 2.1rc3’.

classmethod get_total_energy (calc, **kwargs)
Returns the total energy in eV.

CcP

class aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
Quantum ESPRESSO’s CP-specific input and output parameter translator to TCOD CIF dictionary tags.

classmethod get_computation_wallclock_time (calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_number of_electrons (calc, **kwargs)
Returns the number of electrons.

classmethod get_software_package (calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package or program
name should be used, e.g. “VASP’, ‘psi3’, ‘Abinit’, etc.

NWChem (pymatgen-based)

class aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
NWChem’s input and output parameter translator to TCOD CIF dictionary tags.

classmethod get_atom_type_basisset (calc, **kwargs)
Returns a list of basisset names for each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_atom_type_symbol (calc, **kwargs)
Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be sorted.

classmethod get_atom_type_valence_configuration (calc, **kwargs)
Returns valence configuration of each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_software_package (calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package or program
name should be used, e.g. “VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_software_package_compilation_timestamp (calc, **kwargs)
Returns the timestamp of package/program compilation in ISO 8601 format.

classmethod get_software_package_version (calc, **kwargs)
Returns software package version used to compute and produce the computed structure file. Only version
designator should be used, e.g. ‘3.4.0°, 2.1rc3’.

332 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

PW

class aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

Quantum ESPRESSO’s PW-specific input and output parameter translator to TCOD CIF dictionary tags.

classmethod get_BZ_integration_grid_X (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_Y (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_Z (calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Z.

classmethod get_BZ_integration_grid_shift_X (calc, ¥**kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_shift_Y (calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_shift_2 (calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Z.

classmethod get_atom_site_residual_force_Cartesian_x (calc, **kwargs)
Returns a list of x components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_y (calc, ¥*kwargs)
Returns a list of y components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_z (calc, **kwargs)
Returns a list of z components for Cartesian coordinates of residual force for atom. The list order MUST
be the same as in the resulting structure.

classmethod get_computation_wallclock_time (calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_ewald_energy (calc, **kwargs)
Returns Ewald energy in eV.

classmethod get_exchange_correlation_energy (calc, **kwargs)
Returns exchange correlation (XC) energy in eV.

classmethod get_fermi_energy (calc, **kwargs)
Returns Fermi energy in eV.

classmethod get_hartree_energy (calc, **kwargs)
Returns Hartree energy in eV.

classmethod get_integration_Methfessel_Paxton_order (calc, **kwargs)
Returns the order of Methfessel-Paxton approximation if used.

classmethod get_integration_smearing method (calc, **kwargs)
Returns the smearing method name as string.

classmethod get_integration_smearing method_other (calc, **kwargs)
Returns the smearing method name as string if the name is different from specified in cif_dft.dic.

classmethod get_kinetic_energy_cutoff EEX (calc, **kwargs)
Returns kinetic energy cutoff for exact exchange (EEX) operator in eV.

Note: by default returns ecutrtho, as indicated in http://www.quantum-espresso.org/wp-

4.1.

Modules 333

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.5.0

content/uploads/Doc/INPUT_PW.html

classmethod get_kinetic_energy cutoff charge density (calc, **kwargs)
Returns kinetic energy cutoff for charge density in eV.

Note: by default returns 4 * ecutwfc, as indicated in http://www.quantum-espresso.org/wp-
content/uploads/Doc/INPUT_PW.html

classmethod get_kinetic_energy_cutoff wavefunctions (calc, **kwargs)
Returns kinetic energy cutoff for wavefunctions in eV.

classmethod get_number_ of_ electrons (calc, **kwargs)
Returns the number of electrons.

classmethod get_one_electron_energy (calc, **kwargs)
Returns one electron energy in eV.

classmethod get_software_package (calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package or program
name should be used, e.g. “VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_total_energy (calc, **kwargs)
Returns the total energy in eV.

4.1.14 aiida.tools documentation
Tools

pw input parser

Tools for parsing QE PW input files and creating AiiDa Node objects based on them.
TODO: Parse CONSTRAINTS, OCCUPATIONS, ATOMIC_FORCES once they are implemented in AiiDa

class aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile (pwinput)
Class used for parsing Quantum Espresso pw.x input files and using the info.

Variables

* namelists — A nested dictionary of the namelists and their key-value pairs. The namelists
will always be upper-case keys, while the parameter keys will always be lower-case.

For example:

{"CONTROL": {"calculation": "bands",
"prefix": "al",
"pseudo_dir": "./pseudo",
"outdir": "./out"},

"ELECTRONS": {"diagonalization": "cg"},

"SYSTEM": {"nbnd": 8,
"ecutwfc": 15.0,

"celldm(1l)": 7.5,
"ibrav": 2,
"nat": 1,

"ntyp": 1}

}

* atomic_positions — A dictionary with

334 Chapter 4. Modules provided with aiida

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.5.0

units: the units of the positions (always lower-case) or None

names: list of the atom names (e.g. ' Si’,’S10’,’Si_0")

positions: list of the [x, y, z] positions

fixed_coords: list of [X, y, z] (bools) of the force modifications (Note: True <—> Fixed,
as defined in the BasePwCpInputGenerator._if_pos method)

For example:

{'units': 'bohr',
'names': ['C', '0O'],
'positions': [[0.0, 0.0, 0.0],

[0.0, 0.0, 2.5]]
'fixed_coords': [[False, False, Falsel,
[True, True, True]l}

cell_parameters — A dictionary (if CELL_PARAMETERS is present; else: None)
with

— units: the units of the lattice vectors (always lower-case) or None
— cell: 3x3 list with lattice vectors as rows

For example:

{"units"':
'cell':

'angstrom',
[[16.9, 0.0, 0.01,
[-2.6, 8.0, 0.01,
[-2.6, -3.5, 7.2]11}

k_points — A dictionary containing
— type: the type of kpoints (always lower-case)

— points: an Nx3 list of the kpoints (will not be present if type = ‘gamma’ or type = ‘auto-
matic’)

— weights: a 1xN list of the kpoint weights (will not be present if type = ‘gamma’ or type =
‘automatic’)

— mesh: a 1x3 list of the number of equally-spaced points in each direction of the Brillouin
zone, as in Monkhorst-Pack grids (only present if type = ‘automatic’)

— offset: a 1x3 list of the grid offsets in each direction of the Brillouin zone (only present
if type = ‘automatic’) (Note: The offset value for each direction will be one of 0.0
[no offset] or 0.5 [offset by half a grid step]. This differs from the Quantum Espresso
convention, where an offset value of 1 corresponds to a half-grid-step offset, but adheres
to the current AiiDa convention.

Examples:
{'type': 'crystal',
'points': [[0.125, 0.125, 0.0],
[0.125, 0.375, 0.07,
[0.375, 0.375, 0.011,
'weights': [1.0, 2.0, 1.01}
{'type': 'automatic',

'points': [8, 8, 81,
'offset': [0.0, 0.5, 0.0]}

4.1. Modules

335

AiiDA documentation, Release 0.5.0

{"type': 'gamma'}

* atomic_species — A dictionary with
— names: list of the atom names (e.g. ‘Si’, ‘Si0’, ‘Si_0") (case as-is)
— masses: list of the masses of the atoms in ‘names’

— pseudo_file_names: list of the pseudopotential file names for the atoms in ‘names’ (case

as-is)
Example:
{'names': ['Li', 'O', 'Al', 'Si'],
'masses': [6.941, 15.9994, 26.98154, 28.0855],

['Li.pbe-sl-rrkjus_psl.1.0.0.UPF"',
'O.pbe-nl-rrkjus_psl.1.0.0.UPF"',
'Al.pbe-nl-rrkjus_psl.1.0.0.UPF’,

'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

'pseudo_file_names':

__init__ (pwinput)
Parse inputs’s namelist and cards to create attributes of the info.

Parameters pwinput — Any one of the following
* A string of the (existing) absolute path to the pwinput file.
* A single string containing the pwinput file’s text.
* A list of strings, with the lines of the file as the elements.

* A file object. (It will be opened, if it isn’t already.)

Raises
e IOError —if pwinput is a file and there is a problem reading the file.
* TypeError —if pwinput is a list containing any non-string element(s).
* aiida.common.exceptions.ParsingError — if there are issues parsing the
pwinput.

get_kpointsdata ()
Return a KpointsData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit conversion, ect. and then creates an AiiDa
KpointsData object.

Note: If the calculation uses only the gamma k-point (if self.k_points['type’] == ‘gamma’), it is necessary
to also attach a settings node to the calculation with gamma_only = True.

Returns KpointsData object of the kpoints in the input file

Return type aiida.orm.data.array.kpoints. KpointsData
Raises aiida.common.exceptions.NotImplimentedError if the kpoints are in a format not yet

supported.

get_structuredata ()
Return a StructureData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit conversion, ect. and then creates an AiiDa

StructureData object.

336 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

All of the names corresponding of the Kind objects composing the StructureData object will match those
found in the ATOMIC_SPECIES block, so the pseudopotentials can be linked to the calculation using the
kind.name for each specific type of atom (in the event that you wish to use different pseudo’s for two or
more of the same atom).

Returns StructureData object of the structure in the input file
Return type aiida.orm.data.structure.StructureData
Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_positions ()
Return dict containing info from the ATOMIC_POSITIONS card block in txt.

Note: If the units are unspecified, they will be returned as None.

Parameters txt (str) — A single string containing the QE input text to be parsed.
Returns
A dictionary with
* units: the units of the positions (always lower-case) or None
* names: list of the atom names (e.g. * Si’, " Si0’,’Si_0")
* positions: list of the [X, y, z] positions

* fixed_coords: list of [X, y, z] (bools) of the force modifications (Note: True <—> Fixed, as
defined in the BasePwCpInputGenerator._if_pos method)

For example:

{'units': 'bohr',
'names': ['C', 'O'],
'positions': [[0.0, 0.0, 0.07,
[0.0, 0.0, 2.5]]
'fixed_coords': [[False, False, Falsel],
[True, True, Truell}

Return type dict
Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_species (xt)
Return dict containing info from the ATOMIC_SPECIES card block in txt.
Parameters txt (str) — A single string containing the QE input text to be parsed.
Returns
A dictionary with
* names: list of the atom names (e.g. “Si’, ‘Si0’, ‘Si_0’) (case as-is)
* masses: list of the masses of the atoms in ‘names’

* pseudo_file_names: list of the pseudopotential file names for the atoms in ‘names’ (case
as-is)

Example:

4.1. Modules 337

AiiDA documentation, Release 0.5.0

{'names': ['Li', 'O', 'Al', 'Si'],
'masses': [6.941, 15.9994, 26.98154, 28.0855],
'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',
'O.pbe-nl-rrkjus_psl.1.0.0.UPF"',
'Al.pbe-nl-rrkijus_psl.1.0.0.UPF"',
'Si3 28.0855 Si.pbe-nl-rrkijus_psl.1.0.0.UPF']

Return type dict
Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_cell_ parameters (xt)
Return dict containing info from the CELL_PARAMETERS card block in txt.

Note: This card is only needed if ibrav = 0. Therefore, if the card is not present, the function will return None
and not raise an error.

Note: If the units are unspecified, they will be returned as None. The units interpreted by QE depend on
whether or not one of ‘celldm(1)’ or ‘a’ is set in &SYSTEM.

Parameters txt (str) — A single string containing the QE input text to be parsed.
Returns
A dictionary (if CELL_PARAMETERS is present; else: None) with
* units: the units of the lattice vectors (always lower-case) or None
* cell: 3x3 list with lattice vectors as rows

For example:

{'units': 'angstrom',

'cell': [[1l6.9, 0.0, 0.01,
[-2.6, 8.0, 0.01,
[-2.6, -3.5, 7.211}

Return type dict or None

Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_k_points ()
Return dict containing info from the K_POINTS card block in txt.

Note: If the type of kpoints (where type = x in the card header, “K_POINTS x”) is not present, type will be
returned as ‘tpiba’, the QE default.

Parameters txt (str) — A single string containing the QE input text to be parsed.
Returns
A dictionary containing
* type: the type of kpoints (always lower-case)

* points: an Nx3 list of the kpoints (will not be present if type = ‘gamma’ or type = ‘auto-
matic’)

338 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.5.0

» weights: a 1xN list of the kpoint weights (will not be present if type = ‘gamma’ or type =
‘automatic’)

* mesh: a 1x3 list of the number of equally-spaced points in each direction of the Brillouin
zone, as in Monkhorst-Pack grids (only present if type = ‘automatic’)

* offset: a 1x3 list of the grid offsets in each direction of the Brillouin zone (only present if
type = ‘automatic’) (Note: The offset value for each direction will be one of 0. 0 [no offset]
or 0.5 [offset by half a grid step]. This differs from the Quantum Espresso convention,
where an offset value of 1 corresponds to a half-grid-step offset, but adheres to the current
AiiDa convention.

Examples:
{'type': 'crystal',
'points': [[0.125, 0.125, 0.0],
[0.125, 0.375, 0.01,
[0.375, 0.375, 0.011,
'weights': [1.0, 2.0, 1.01}
{'"type': 'automatic',
'points': [8, 8, 81,
'offset': [0.0, 0.5, 0.0]1}
{"type': 'gamma'}

Return type dict
Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_namelists (#xt)
Parse txt to extract a dictionary of the namelist info.
Parameters txt (str) — A single string containing the QE input text to be parsed.
Returns

A nested dictionary of the namelists and their key-value pairs. The namelists will always be
upper-case keys, while the parameter keys will always be lower-case.

For example:

{"CONTROL": {"calculation": "bands",
"prefix": "al",
"pseudo_dir": "./pseudo",
"outdir": "./out"},

"ELECTRONS": {"diagonalization": "cg"},

"SYSTEM": {"nbnd": 8,
"ecutwfc": 15.0,

"celldm(1)": 7.5,
"ibrav": 2,
"nat": 1,

"ntyp": 1}

}

Return type dict
Raises aiida.common.exceptions.ParsingError if there are issues parsing the input.

aiida.tools.codespecific.quantumespresso.pwinputparser.str2val (valstr)
Return a python value by converting valstr according to f90 syntax.

4.1. Modules 339

AiiDA documentation, Release 0.5.0

Parameters valstr (str) — String representation of the variable to be converted. (e.g. ‘.true.”)
Returns A python variable corresponding to valstr.
Return type bool or float or int or str

Raises ValueError: if a suitable conversion of valstr cannot be found.

340 Chapter 4. Modules provided with aiida

CHAPTER 5

Indices and tables

¢ genindex
* modindex

e search

341

AiiDA documentation, Release 0.5.0

342 Chapter 5. Indices and tables

Python Module Index

aiida.
aiida.
aiida.
.cmdline.commands.data, 259
aiida.
aiida.
aiida.
aiida.
aiida.

aiida

aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.

aiida.

aiida.

aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.

cmdline, 256
cmdline.baseclass, 256
cmdline.commands.daemon, 258

cmdline.verdilib, 257
common, 229

common.
common .
common
common .
common
common .
dijsite.

datastructures, 229
exceptions, 230

.extendeddicts, 231

folders, 233

.pluginloader, 235

utils, 237
db.models, 262

execmanager, 261

orm, 267
orm.
orm.
orm
orm.
311
orm.
311
orm.
314
orm.
orm.
orm
orm.
orm
orm.
orm.
orm.
orm.
orm.
orm.
orm
orm.
orm
orm.

calculation, 304
calculation.inline, 304
.calculation. job, 307
calculation. job.gquantumespresso.pw,

code, 281
computer, 268
.data, 284
data.array, 299
.data.
data.
data
data.
data.
data.
data.
.data.
data
.node, 270
querytool, 317

array.kpoints, 300

.cif, 297
folder, 294
parameter, 298
remote, 299
singlefile, 295
structure, 285
.upf, 295

array.trajectory, 302

aiida.
aiida.

aiida.

aiida.

aiida.

aiida.

aiida.

aiida.

aiida.

aiida.

aiida.
aiida.

orm.workflow, 276

parsers.

314

rarsers

315

rarsers

315

parsers

317

rarsers

317

rarsers.

317

.plugins.quantumespresso.
.plugins.quantumespresso.
.plugins.quantumespresso.

plugins.gquantumespresso.

scheduler.__init__ , 251
scheduler.datastructures, 252
tools.codespecific.quantumespresso.pwinputpa:

334

tools.
tools.

330

dbexporters
dbexporters

aiida.tools.dbexporters

calculation.job.quantumespresso.pwimﬁ%@rant

aiida.tools.dbexporters

aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.
aiida.

aiida.

333
tools
tools

322
tools
325

tools.

326

tools.

325
tools
326

tools.

326

calculation.job.simpleplugins.templafggeplacen
aiida.tools.

.tcod, 327

plugins.quantumespresso

.plugins.quantumespresso.basic_raw_pa:

basic_raw_pa:
basicpw,
constants,

Cp’

.tcod_plugins,

.tcod_plugins.cp,

.tcod_plugins.nwcpymatgen

dbexporters.tcod_plugins.pw,

.dbimporters
.dbimporters
tools.
tools.

dbimporters
dbimporters

.dbimporters

dbimporters

dbimporters

.dbimporters

dbimporters

, 319

.baseclasses, 319

.plugins

.plugins.
.plugins.
.plugins.
.plugins.
.plugins.

.plugins.

.cod, 322

icsd,

mpod,

nninc,

ogmd,

pcod,

tcod,

343

AiiDA documentation, Release 0.5.0

aiida.transport._ _init_ ,240

344 Python Module Index

Index

Symbols

__enter__() (aiida.transport.__init__.Transport method),

240

__exit_ () (aiida.transport.__init__.Transport method),
240

init () (aiida.cmdline.commands.daecmon.Daemon

method), 258
_ init__ () (aiida.cmdline.commands.data.Data method),
259

add_attribute() (aiida.orm.workflow.Workflow method),
182, 276

add_attributes() (aiida.orm.workflow. Workflow method),
183, 276

add_comment() (aiida.orm.node.Node method), 177, 270

add_extra_filter() (aiida.orm.querytool.QueryTool
method), 318

add_from_logrecord() (aiida.djsite.db.models.DbLog
class method), 264

init () (aiida.orm.calculation.job.CalculationResultMana%gil—path() (aiida.orm.data.remote.RemoteData method),

method), 213, 307
__init_ () (aiida.orm.data.structure.Kind method), 191,

285

__init_ () (aiida.orm.data.structure.Site method), 193,
287

__init__ () (aiida.orm.node.AttributeManager method),
177,270

__init__ () (aiida.orm.node.Node method), 177, 270

__init__() (aiida.orm.node.NodelnputManager method),
182,276

__init__() (aiida.orm.node.NodeOutputManager

method), 182, 276

205, 299

add_path() (aiida.orm.data.singlefile.SinglefileData
method), 201, 295

add_path() (aiida.orm.node.Node method), 177, 270

add_path() (aiida.orm.workflow.Workflow method), 183,
276

add_result() (aiida.orm.workflow.Workflow method),
183, 276

add_results() (aiida.orm.workflow.Workflow method),
183, 276

aiida.cmdline (module), 256

aiida.cmdline.baseclass (module), 256

__init__() (aiida.tools.codespeciﬁc.quantumespresso.pwinptﬁi&gfsgﬁpl\l&jﬂ?pmlgands'daemon (module), 258

method), 336

atida.cmdline.commands.data (module), 259

_iter__() (aiida.tools.dbimporters.baseclasses.DbSearchReﬁH?sa‘CIndhne’Verdﬂib (module), 257

method), 321

A

abspath (aiida.common.folders.Folder attribute), 233

accepts_default_mpiprocs_per_machine() (ai-
ida.scheduler.datastructures.JobResource
class method), 254
accepts_default_mpiprocs_per_machine() (ai-

ida.scheduler.datastructures.NodeNumberJobRes
class method), 255
accepts_default_mpiprocs_per_machine() (ai-
ida.scheduler.datastructures.ParEnvJobResource
class method), 255
add_attr_filter() (aiida.orm.querytool.QueryTool
method), 318

aiida.common (module), 229
aiida.common.datastructures (module), 229
aiida.common.exceptions (module), 230
aiida.common.extendeddicts (module), 231
aiida.common.folders (module), 233
aiida.common.pluginloader (module), 235
aiida.common.utils (module), 237
aiida.djsite.db.models (module), 262
aiida.execmanager (module), 261

ource

anida.orm (module), 174, 267
aiida.orm.calculation (module), 210, 304
aiida.orm.calculation.inline (module), 210, 304
aiida.orm.calculation.job (module), 213, 307

aiida.orm.calculation.job.quantumespresso.pw (module),
217,311

345

AiiDA documentation, Release 0.5.0

aiida.orm.calculation.job.quantumespresso.pwimmigrant
(module), 217, 311
aiida.orm.calculation.job.simpleplugins.templatereplacer
(module), 220, 314
aiida.orm.code (module), 188, 281
aiida.orm.computer (module), 175, 268
aiida.orm.data (module), 190, 284
aiida.orm.data.array (module), 205, 299
aiida.orm.data.array.kpoints (module), 206, 300
aiida.orm.data.array.trajectory (module), 208, 302
aiida.orm.data.cif (module), 203, 297
aiida.orm.data.folder (module), 201, 294
aiida.orm.data.parameter (module), 205, 298
aiida.orm.data.remote (module), 205, 299
aiida.orm.data.singlefile (module), 201, 295
aiida.orm.data.structure (module), 191, 285
aiida.orm.data.upf (module), 201, 295
aiida.orm.node (module), 176, 270
aiida.orm.querytool (module), 317
aiida.orm.workflow (module), 182, 276
aiida.parsers.plugins.quantumespresso (module),
314

220,

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp

(module), 220, 315

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw

(module), 221, 315

aiida.parsers.plugins.quantumespresso.basicpw (mod-
ule), 223, 317
aiida.parsers.plugins.quantumespresso.constants (mod-

ule), 223, 317
aiida.parsers.plugins.quantumespresso.cp (module), 223,
317
aiida.scheduler.__init__ (module), 251
aiida.scheduler.datastructures (module), 252
aiida.tools.codespecific.quantumespresso.pwinputparser
(module), 334
aiida.tools.dbexporters.tcod (module), 327
aiida.tools.dbexporters.tcod_plugins (module), 330
aiida.tools.dbexporters.tcod_plugins.cp (module), 332
aiida.tools.dbexporters.tcod_plugins.nwcpymatgen
(module), 332
aiida.tools.dbexporters.tcod_plugins.pw (module), 333
aiida.tools.dbimporters (module), 319
aiida.tools.dbimporters.baseclasses (module), 319
aiida.tools.dbimporters.plugins.cod (module), 322
aiida.tools.dbimporters.plugins.icsd (module), 322
aiida.tools.dbimporters.plugins.mpod (module), 325
aiida.tools.dbimporters.plugins.nninc (module), 326
aiida.tools.dbimporters.plugins.oqmd (module), 325
aiida.tools.dbimporters.plugins.pcod (module), 326
aiida.tools.dbimporters.plugins.tcod (module), 326
aiida.transport.__init__ (module), 240
AiidaException, 230

append_atom() (aiida.orm.data.structure.StructureData
method), 193, 287

append_kind() (aiida.orm.data.structure.StructureData
method), 194, 288

append_list_cmdline_arguments() (ai-
ida.cmdline.commands.data.Listable method),
260

append_site() (aiida.orm.data.structure.StructureData
method), 194, 288

append_to_report() (aiida.orm.workflow. Workflow
method), 183, 276

ArrayData (class in aiida.orm.data.array), 205, 299

arraynames() (aiida.orm.data.array.ArrayData method),
205, 299

ase (aiida.orm.data.cif.CifData attribute), 203, 297

ase_refine_cell() (in module aiida.orm.data.structure),
197, 291

at() (aiida.tools.dbimporters.baseclasses.DbSearchResults
method), 321

at() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults
method), 324

attach_calculation() (aiida.orm.workflow. Workflow
method), 183, 276

attach_workflow() (aiida.orm.workflow. Workflow

method), 183, 277

AttributeDict (class in aiida.common.extendeddicts), 231

AttributeManager (class in aiida.orm.node), 176, 270

attributes (aiida.djsite.db.models.DbNode attribute), 266

attrs() (aiida.orm.node.Node method), 177, 271

AuthenticationError, 230

B

BaseFactory() (in module aiida.common.pluginloader),

235
BaseTcodtranslator (class in ai-
ida.tools.dbexporters.tcod_plugins), 330
BasicpwParser (class in ai-
ida.parsers.plugins.quantumespresso.basicpw),
223,317

C

calc_cell_volume() (in module aiida.orm.data.structure),
198, 291
Calclnfo (class in aiida.common.datastructures), 229
Calculation (class in aiida.orm.calculation), 210, 304
CalculationFactory() (in module aiida.orm), 174, 267
CalculationResultManager (class in ai-
ida.orm.calculation.job), 213, 307
can_run_on() (aiida.orm.code.Code method), 188, 281
cell (aiida.orm.data.array.kpoints.KpointsData attribute),
206, 300
(aiida.orm.data.structure.StructureData attribute),
194, 288

cell

346

Index

AiiDA documentation, Release 0.5.0

cell_angles (aiida.orm.data.structure.StructureData
attribute), 194, 288

cell_lengths (aiida.orm.data.structure.StructureData at-
tribute), 194, 288

cell_volume() (in module ai-

ida.parsers.plugins.quantumespresso.basic_raw_pameveptwe2aiida_structure()

221, 315

chdir() (aiida.transport.__init__.Transport method), 240

chmod() (aiida.transport.__init__.Transport method), 240

chown() (aiida.transport.__init__.Transport method), 240

cif (aiida.tools.dbimporters.baseclasses.CifEntry at-
tribute), 319

cif (aiida.tools.dbimporters.plugins.icsd.IcsdEntry at-
tribute), 324

cif_encode_contents() (in module ai-
ida.tools.dbexporters.tcod), 327

cif_from_ase() (in module aiida.orm.data.cif), 204, 298

CifData (class in aiida.orm.data.cif), 203, 297

CifEntry (class in aiida.tools.dbimporters.baseclasses),
319

CifFileErrorExp, 322

classproperty (class in aiida.common.utils), 237

clear_internal_cache() (aiida.orm.data.array.ArrayData
method), 205, 299

clear_kinds() (aiida.orm.data.structure.StructureData
method), 194, 288

clear_report() (aiida.orm.workflow.Workflow method),
183, 277

clear_sites() (aiida.orm.data.structure.StructureData
method), 194, 288

close() (aiida.transport.__init__.Transport method), 240

CodDblmporter (class in ai-
ida.tools.dbimporters.plugins.cod), 322

Code (class in aiida.orm.code), 188, 281

Codelnfo (class in aiida.common.datastructures), 229

CodEntry (class in aiida.tools.dbimporters.plugins.cod),
322

CodSearchResults (class in ai-
ida.tools.dbimporters.plugins.cod), 322

compare_with() (aiida.orm.data.structure.Kind method),
191, 285

complete() (aiida.cmdline.baseclass. VerdiCommand
method), 256

complete() (aiida.cmdline.verdilib.Install method), 257

Completion (class in aiida.cmdline.verdilib), 257

CompletionCommand (class in aiida.cmdline.verdilib),
257

Computer (class in aiida.orm.computer), 175, 268

ConfigurationError, 230

configure_user() (aiida.cmdline.commands.daemon.Daemorcreate_value() (aiida.djsite.db.models.DbMultiple ValueAttributeBaseClass

method), 258

ContentNotExistent, 230

contents (aiida.tools.dbimporters.baseclasses.DbEntry at-
tribute), 320

conv_to_fortran() (in module aiida.common.utils), 237
convert() (aiida.orm.data.Data method), 190, 284
convert_list_to_matrix() (in module ai-

ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),

221, 315
(in module ai-
ida.parsers.plugins.quantumespresso), 220,
314
convert_qe_time_to_sec() (in module ai-

ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),

221, 315
(aiida.common.extendeddicts. AttributeDict

method), 231

copy() (aiida.orm.computer.Computer method), 175, 269

copy() (aiida.orm.node.Node method), 177, 271

copy() (aiida.transport.__init__.Transport method), 240

copy_from_remote_to_remote() (ai-
ida.transport.__init__.Transport method),
240

copy_from_remote_to_remote() (in
ida.transport.__init__), 245

copyfile() (aiida.transport.__init__.Transport method),

copy()

module ai-

241

copytree() (aiida.transport.__init__.Transport method),
241

correct_cif() (in module ai-
ida.tools.dbimporters.plugins.icsd), 324

CpParser (class in ai-
ida.parsers.plugins.quantumespresso.cp),
223,317

CpTcodtranslator (class in ai-

ida.tools.dbexporters.tcod_plugins.cp), 332
create() (aiida.common.folders.Folder method), 233
create_attrs_dict() (aiida.orm.querytool.QueryTool
method), 318
create_display_name() (in module aiida.common.utils),
237
create_extras_dict()
method), 319
create_file_from_filelike() (aiida.common.folders.Folder
method), 233
create_input_nodes()

(aiida.orm.querytool.QueryTool

(ai-

ida.orm.calculation.job.quantumespresso.pwimmigrant.Pwimmig

method), 217, 311
create_job_resource()
ida.scheduler.__init__.Scheduler
method), 251
create_symlink() (aiida.common.folders.Folder method),
233

(ai-
class

class method), 264
ctime (aiida.orm.node.Node attribute), 177, 271
current_folder (aiida.orm.workflow.Workflow attribute),
183, 277

Index

347

AiiDA documentation, Release 0.5.0

D

Daemon (class in aiida.cmdline.commands.daemon), 258

daemon_logshow() (ai-
ida.cmdline.commands.daemon.Daemon
method), 259

daemon_restart() (aiida.cmdline.commands.daemon.Daemon

method), 259
daemon_start() (aiida.cmdline.commands.daemon.Daemon
method), 259

daemon_status() (aiida.cmdline.commands.daemon.Daemon
defaultkeys() (aiidda.common.extendeddicts.DefaultFieldsAttributeDict

method), 259

daemon_stop() (aiida.cmdline.commands.daemon.Daemon
method), 259

Data (class in aiida.cmdline.commands.data), 259

Data (class in aiida.orm.data), 190, 284

DataFactory() (in module aiida.orm), 174, 268

DbAttribute (class in aiida.djsite.db.models), 262

DbAttributeBaseClass (class in aiida.djsite.db.models),
262

DbAuthlInfo (class in aiida.djsite.db.models), 263

DbCalcState (class in aiida.djsite.db.models), 263

DbComment (class in aiida.djsite.db.models), 263

DbComputer (class in aiida.djsite.db.models), 263

DbContentError, 230

DbEntry (class in aiida.tools.dbimporters.baseclasses),
320

DbExtra (class in aiida.djsite.db.models), 263

DbGroup (class in aiida.djsite.db.models), 264

DblImporter (class in aiida.tools.dbimporters.baseclasses),
320

DbImporterFactory() (in module aiida.tools.dbimporters),
319

DbLink (class in aiida.djsite.db.models), 264

DbLock (class in aiida.djsite.db.models), 264

DbLog (class in aiida.djsite.db.models), 264

DbMultipleValueAttributeBaseClass (class
ida.djsite.db.models), 264

dbnode (aiida.orm.node.Node attribute), 177, 271

DbNode (class in aiida.djsite.db.models), 266

DbPath (class in aiida.djsite.db.models), 266

DbSearchResults (class in
ida.tools.dbimporters.baseclasses), 321

DbSearchResults.DbSearchResultsIterator (class in ai-
ida.tools.dbimporters.baseclasses), 321

DbSetting (class in aiida.djsite.db.models), 266

DbUser (class in aiida.djsite.db.models), 267

DbWorkflow (class in aiida.djsite.db.models), 267

DbWorkflowData (class in aiida.djsite.db.models), 267

dbworkflowinstance (aiida.orm.workflow.Workflow at-
tribute), 183, 277

in

ai-

decode_textfield_base64() (in module ai-
ida.tools.dbexporters.tcod), 327
decode_textfield_gzip_base64() (in module ai-
ida.tools.dbexporters.tcod), 327
decode_textfield_ncr() (in module ai-
ida.tools.dbexporters.tcod), 327
decode_textfield_quoted_printable() (in module ai-
ida.tools.dbexporters.tcod), 328
DefaultFieldsAttributeDict (class in ai-

ida.common.extendeddicts), 231

method), 232
del_extra() (aiida.orm.node.Node method), 178, 271
del_file() (aiida.orm.data.singlefile.SinglefileData
method), 201, 295

del_value() (aiida.djsite.db.models.DbMultiple ValueAttributeBaseClass

class method), 264

del_value_for_node()
ida.djsite.db.models.DbAttributeBaseClass
class method), 262

delete_array() (aiida.orm.data.array.ArrayData method),
206, 299

delete_code() (in module aiida.orm.code), 190, 283

delete_computer() (in module aiida.orm.computer), 176,
270

deposit() (aiida.cmdline.commands.data.Depositable
method), 259

deposit() (in module aiida.tools.dbexporters.tcod), 328

Depositable (class in aiida.cmdline.commands.data), 259

(ai-

deposition_cmdline_parameters() (in module ai-
ida.tools.dbexporters.tcod), 328

description (aiida.orm.node.Node attribute), 178, 271

description (aiida.orm.workflow.Workflow attribute),
183, 277

deserialize_attributes() (in module ai-

ida.djsite.db.models), 267
dict (aiida.orm.data.parameter.ParameterData attribute),
205, 298

E

encode_textfield_base64() (in module ai-
ida.tools.dbexporters.tcod), 328
encode_textfield_gzip_base64() (in module ai-
ida.tools.dbexporters.tcod), 328
encode_textfield_ncr() (in module ai-
ida.tools.dbexporters.tcod), 328
encode_textfield_quoted_printable() (in module ai-

ida.tools.dbexporters.tcod), 329
erase() (aiida.common.folders.Folder method), 233
escape_for_bash() (in module aiida.common.utils), 237

DbWorkflowStep (class in aiida.djsite.db.models), 267 exec_command_wait() . (ai-

decode_textfield() (in module ai- ida.transport.__init__.Transport method),
ida.tools.dbexporters.tcod), 327 241

348 Index

AiiDA documentation, Release 0.5.0

exec_from_cmdline() (in module aiida.cmdline.verdilib),
258

existing_plugins() (in module ai-
ida.common.pluginloader), 236

exists() (aiidda.common.folders.Folder method), 233

exit() (aiida.orm.workflow.Workflow method), 183, 277

expand() (aiida.djsite.db.models.DbPath method), 266

export() (aiida.cmdline.commands.data.Exportable
method), 260

export() (aiida.orm.data.Data method), 190, 284

export_cif() (in module aiida.tools.dbexporters.tcod), 329

export_cifnode() (in module ai-
ida.tools.dbexporters.tcod), 329

export_shard_uuid() (in module aiida.common.utils), 237

export_values() (in module aiida.tools.dbexporters.tcod),
329

Exportable (class in aiida.cmdline.commands.data), 259

extend_with_cmdline_parameters() (in module ai-
ida.tools.dbexporters.tcod), 329

get() (aiida.orm.computer.Computer class method), 175,
269

get() (aiida.transport.__init__.Transport method), 241

get_abs_path() (aiida.common.folders.Folder method),
233

get_abs_path() (aiida.orm.node.Node method), 178, 271

get_abs_path() (aiida.orm.workflow.Workflow method),
184,277

get_aiida_class()
method), 266

get_aiida_class() (aiida.djsite.db.models.DbWorkflow
method), 267

(aiida.djsite.db.models.DbNode

get_aiida_structure() (ai-
ida.tools.dbimporters.baseclasses.CifEntry
method), 319

get_aiida_structure() (ai-

ida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 324
get_all_calcs() (aiida.orm.workflow.Workflow method),

extrakeys() (aiida.common.extendeddicts.DefaultFields AttributeDict 184, 277

method), 232
extras (aiida.djsite.db.models.DbNode attribute), 266
extras() (aiida.orm.node.Node method), 178, 271

F

FailedError, 230
FeatureDisabled, 230
FeatureNotAvailable, 230

fetch_all() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 321

FileAttribute (class in aiida.transport.__init__), 240

filename (aiida.orm.data.singlefile.SinglefileData at-
tribute), 201, 295

FixedFieldsAttributeDict (class in ai-
ida.common.extendeddicts), 232

folder (aiida.orm.node.Node attribute), 178, 271

Folder (class in aiida.common.folders), 233

folder_limit (aiida.common.folders.Folder attribute), 233

FolderData (class in aiida.orm.data.folder), 201, 294

from_md5() (aiida.orm.data.cif.CifData class method),
203, 297

from_md5() (aiida.orm.data.upf.UpfData class method),
201, 295

from_type_to_pluginclassname()
ida.orm.node), 182, 276

full_text_info (aiida.orm.code.Code attribute), 188, 282

full_text_info (aiida.orm.computer.Computer attribute),
175,269

(in module ai-

G

generate_md5()
203, 297

get() (aiida.orm.code.Code class method), 188, 282

(aiida.orm.data.cif.CifData method),

get_all_values_for_node() (ai-
ida.djsite.db.models.DbAttributeBaseClass
class method), 262

get_append_text() (aiida.orm.calculation.job.JobCalculation
method), 213, 307

get_append_text() (aiida.orm.code.Code method), 188,
282

get_array() (aiida.orm.data.array.ArrayData method),

206, 300

get_ase() (aiida.orm.data.cif.CifData method), 203, 297

get_ase() (aiida.orm.data.structure.Site method), 193, 287

get_ase() (aiida.orm.data.structure.StructureData
method), 194, 288

get_ase_structure() (ai-
ida.tools.dbimporters.baseclasses.CifEntry
method), 320

get_ase_structure() (ai-

ida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 324

get_atom_site_residual_force_Cartesian_x() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_atom_site_residual_force_Cartesian_x() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_atom_site_residual_force_Cartesian_y() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_atom_site_residual_force_Cartesian_y() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_atom_site_residual_force_Cartesian_z() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

Index

349

AiiDA documentation, Release 0.5.0

get_atom_site_residual_force_Cartesian_z() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_atom_type_basisset() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_atom_type_basisset() (ai-

get_BZ_integration_grid_X() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 333

get_BZ_integration_grid_Y() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 330

get_BZ_integration_grid_Y() (ai-

ida.tools.dbexporters.tcod_plugins.nwcpymatgen.Nwcpymaigdert®obxddizarspatcers.tcod_plugins.pw.PwTcodtranslator

class method), 332

get_atom_type_symbol() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_atom_type_symbol() (ai-

class method), 333
get_BZ_integration_grid_Z() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 330

get_BZ_integration_grid_Z() (ai-

ida.tools.dbexporters.tcod_plugins.nwcpymatgen.Nwcpymaigdart®obxddizargpatters.tcod_plugins.pw.PwTcodtranslator

class method), 332

get_atom_type_valence_configuration() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_atom_type_valence_configuration() (ai-

class method), 333
get_cell_volume() (aiida.orm.data.structure.StructureData
method), 194, 288
get_cells() (aiida.orm.data.array.trajectory.TrajectoryData
method), 208, 302

ida.tools.dbexporters.tcod_plugins.nwcpymatgen. Nev cpymmdelandirdoslstdbimporters.baseclasses. CifEntry

class method), 332
get_attr() (aiida.orm.node.Node method), 178, 272
get_attribute() (aiida.orm.workflow.Workflow method),
184, 277
get_attribute()
method), 241
get_attributes() (aiida.orm.querytool.QueryTool method),

(aiida.transport.__init__.Transport

319
get_attributes() (aiida.orm.workflow.Workflow method),
184,277

get_attrs() (aiida.orm.node.Node method), 178, 272
get_authinfo() (in module aiida.execmanager), 261

get_BZ_integration_grid_shift_X() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_BZ_integration_grid_shift_X() (ai-

method), 320

get_cif_node() (aiida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 324

get_class_string() (in module aiida.common.utils), 237

get_class_typestring() (in module ai-
ida.common.pluginloader), 236

get_code() (aiida.orm.calculation.Calculation method),
210, 304

get_column_names() (ai-
ida.cmdline.commands.data.Listable method),
260

get_command_name() (ai-
ida.cmdline.baseclass. VerdiCommand class
method), 256

get_command_suggestion() (in module ai-

ida.cmdline.verdilib), 258

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtragdatoomments() (aiida.orm.node.Node method), 178, 272

class method), 333

get_BZ_integration_grid_shift_Y() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_BZ_integration_grid_shift_Y() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_BZ_integration_grid_shift_Z() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_BZ_integration_grid_shift_Z() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_BZ_integration_grid_X() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 330

get_computation_wallclock_time() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_computation_wallclock_time() (ai-

ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator

class method), 332

get_computation_wallclock_time() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_computer() (aiida.orm.node.Node method), 179, 272

get_content_list() (aiida.common.folders.Folder method),

234

get_corrected_cif() (ai-

ida.tools.dbimporters.plugins.icsd.IcsdEntry

method), 324

get_custom_scheduler_commands()
ida.orm.calculation.job.JobCalculation

(ai-

350

Index

AiiDA documentation, Release 0.5.0

method), 213, 307

get_daemon_pid() (aiida.cmdline.commands.daemon.Daemon

method), 259

get_dbauthinfo() (aiida.orm.computer.Computer
method), 175, 269

get_dbcomputer() (aiida.djsite.db.models.DbComputer
class method), 263

get_default_fields() (ai-

ida.common.extendeddicts.DefaultFieldsAttributeDict

class method), 232

get_default_mpiprocs_per_machine() (ai-
ida.orm.computer.Computer method), 175,
269

get_deposit_plugins() (ai-
ida.cmdline.commands.data.Depositable
method), 259

get_detailed_jobinfo() (ai-
ida.scheduler.__init__.Scheduler method),
251

get_dict() (aiida.orm.data.parameter.ParameterData

method), 205, 299

get_environment_variables() (ai-
ida.orm.calculation.job.JobCalculation
method), 213, 307

get_ewald_energy() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_ewald_energy() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_exchange_correlation_energy() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_exchange_correlation_energy() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333
get_execname() (aiida.orm.code.Code method), 188, 282
get_export_plugins() (ai-
ida.cmdline.commands.data.Exportable
method), 260
get_extra() (aiida.orm.node.Node method), 179, 272
get_extras() (aiida.orm.node.Node method), 179, 272
get_extremas_from_positions() (in module ai-
ida.common.utils), 237

get_fermi_energy() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_fermi_energy() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_file_abs_path() (ai-
ida.orm.data.singlefile.SinglefileData method),
201, 295

get_file_content() (aiida.orm.data.folder.FolderData

method), 201, 294

get_folder_list() (aiida.orm.node.Node method), 179, 272

get_folder_list() (aiida.orm.workflow. Workflow method),
184,277

get_formula() (aiida.orm.data.structure.StructureData
method), 195, 288

get_formula() (in module aiida.orm.data.structure), 198,

2901

get_formula_from_symbol_list() (in
ida.orm.data.structure), 198, 292

get_formula_group() (in module ai-
ida.orm.data.structure), 199, 292

get_formulae() (aiida.orm.data.cif.CifData method), 203,
297

get_from_string() (aiida.orm.code.Code class method),
188, 282

get_full_command_name()
ida.cmdline.baseclass. VerdiCommand
method), 256

get_full_command_name() (ai-
ida.cmdline.baseclass. VerdiCommandWithSubcommands
method), 256

get_function_name()

ida.orm.calculation.inline.InlineCalculation

method), 210, 304

get_hartree_energy() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_hartree_energy() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

module ai-

(ai-

(ai-

get_import_plugins() (ai-
ida.cmdline.commands.data.Importable
method), 260

get_import_sys_environment() (ai-

ida.orm.calculation.job.JobCalculation
method), 213, 307

get_input_plugin_name() (aiida.orm.code.Code method),
189, 282

get_inputs() (aiida.orm.node.Node method), 179, 272

get_inputs_dict() (aiida.orm.node.Node method), 179,
273
get_integration_Methfessel_Paxton_order() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator

class method), 331

get_integration_Methfessel_Paxton_order() (ai-

ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

class method), 333

get_integration_smearing_method() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 331

get_integration_smearing_method() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator

Index

351

AiiDA documentation, Release 0.5.0

class method), 333 method), 223, 317
get_integration_smearing_method_other() (ai- get_listparams() (in module aiida.cmdline.verdilib), 258
ida.tools.dbexporters.tcod_plugins.BaseTcodtransggbmmax_memory_kb() (ai-
class method), 331 ida.orm.calculation.job.JobCalculation
get_integration_smearing_method_other() (ai- method), 213, 307
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtragdatorax_wallclock_seconds() (ai-
class method), 333 ida.orm.calculation.job.JobCalculation
get_job_id() (aiida.orm.calculation.job.JobCalculation method), 213, 307
method), 213, 307 get_mode() (aiida.transport.__init__.Transport method),
get_kind() (aiida.orm.data.structure.StructureData 242
method), 195, 289 get_mpirun_command() (aiida.orm.computer.Computer
get_kind_names() (aiida.orm.data.structure.StructureData method), 175, 269
method), 195, 289 get_mpirun_extra_params() (ai-
get_kinetic_energy_cutoff_charge_density() (ai- ida.orm.calculation.job.JobCalculation
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator method), 213, 307
class method), 331 get_new_uuid() (in module aiida.common.utils), 237
get_kinetic_energy_cutoff_charge_density() (ai- get_number_of_electrons() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 334 class method), 331
get_kinetic_energy_cutoff EEX() (ai- get_number_of_electrons() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
class method), 331 class method), 332
get_kinetic_energy_cutoff_EEX() (ai- get_number_of_electrons() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 333 class method), 334
get_kinetic_energy_cutoff_wavefunctions() (ai- get_object_from_string() (in module aiida.common.utils),
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator 237
class method), 331 get_one_electron_energy() (ai-
get_kinetic_energy_cutoff_wavefunctions() (ai- ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator ~ class method), 331
class method), 334 get_one_electron_energy() (ai-
get_kpoints() (aiida.orm.data.array.kpoints.KpointsData ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
method), 206, 300 class method), 334
get_kpoints_mesh() (ai- get_or_create() (aiida.orm.data.cif.CifData class method),
ida.orm.data.array.kpoints.KpointsData 203, 297
method), 206, 300 get_or_create() (aiida.orm.data.upf.UpfData class
get_kpointsdata() (aiida.tools.codespecific.quantumespresso.pwinputpastrdiylaputEild
method), 336 get_outputs() (aiida.orm.node.Node method), 179, 273
get_linkname() (aiida.orm.calculation.Calculation get_outputs_dict() (aiida.orm.node.Node method), 179,
method), 210, 304 273
get_linkname_out_kpoints() (ai- get_parameter() (aiida.orm.workflow.Workflow method),
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParsed 84, 278
method), 223, 317 get_parameters() (aiida.orm.workflow. Workflow
get_linkname_outarray() (ai- method), 184, 278
ida.parsers.plugins.quantumespresso.basicpw.BasigptwParsed_cif() (aiida.tools.dbimporters.baseclasses.CifEntry
method), 223, 317 method), 320
get_linkname_outstructure() (ai- get_parser_name() (aiida.orm.calculation.job.JobCalculation
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParsemethod), 214, 308
method), 223, 317 get_parser_settings_key() (ai-
get_linkname_outtrajectory() (ai- ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParsemethod), 223, 317
method), 223, 317 get_parserclass() (aiida.orm.calculation.job.JobCalculation
get_linkname_trajectory() (ai- method), 214, 308

ida.parsers.plugins.quantumespresso.cp.CpParser

352 Index

AiiDA documentation, Release 0.5.0

get_positions() (aiida.orm.data.array.trajectory.TrajectoryDaget_

method), 208, 302

get_prepend_text() (aiida.orm.calculation.job.JobCalculatiorget_.

method), 214, 308

get_prepend_text() (aiida.orm.code.Code method), 189, get_

282
get_priority() (aiida.orm.calculation.job.JobCalculation
method), 214, 308 get_.
get_pseudos_from_structure() (in module ai-
ida.orm.data.upf), 202, 296 get_

get_pymatgen() (aiida.orm.data.structure.StructureData
method), 196, 289

get_pymatgen_molecule() (ai- get_
ida.orm.data.structure.StructureData method),
196, 289

get_pymatgen_structure() (ai- get_
ida.orm.data.structure.StructureData method),
196, 289

get_pymatgen_version() (in module ai- get_

ida.orm.data.structure), 199, 293

short_doc() (aiida.scheduler.__init__.Scheduler class
method), 252

short_doc() (aiida.transport.__init__.Transport class
method), 242

show_plugins() (ai-
ida.cmdline.commands.data.Visualizable
method), 261

simple_name() (aiida.djsite.db.models.DbNode
method), 266

site_kindnames() (ai-
ida.orm.data.structure.StructureData method),
196, 290

software_executable_path() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 331

software_package() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 331

software_package() (ai-
ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator

get_query_dict() (aiida.djsite.db.models.DbMultiple Value AttributeBasd@dasmethod), 332

class method), 265 get_

get_queue_name() (aiida.orm.calculation.job.JobCalculation
method), 214, 308

get_raw() (aiida.orm.data.structure.Kind method), 192, get_

285
get_raw() (aiida.orm.data.structure.Site method), 193,

287 get_

get_raw_cif() (aiida.tools.dbimporters.baseclasses.CifEntry
method), 320

get_report() (aiida.orm.workflow.Workflow method), get_

184, 278
get_repository_folder() (in module aiida.common.utils),

237 get_

get_resources() (aiida.orm.calculation.job.JobCalculation
method), 214, 308

get_result() (aiida.orm.workflow.Workflow method), 184, get_.

278
get_results() (aiida.orm.workflow.Workflow method),
184,278 get_
get_retrieved_node() (ai-
ida.orm.calculation.job.JobCalculation get_
method), 214, 308
get_scheduler_error() (ai- get_
ida.orm.calculation.job.JobCalculation
method), 214, 308 get_
get_scheduler_output() (ai-
ida.orm.calculation.job.JobCalculation get_

method), 214, 308

get_scheduler_state() (ai- get_

ida.orm.calculation.job.JobCalculation

method), 214, 308 get_

get_shape() (aiida.orm.data.array.ArrayData method),
206, 300

software_package() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenT
class method), 332

software_package() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 334

software_package_compilation_timestamp() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 332

software_package_compilation_timestamp() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen. NwcpymatgenT
class method), 332

software_package_version() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 332

software_package_version() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenT
class method), 332

spacegroup_numbers() (aiida.orm.data.cif.CifData
method), 203, 297

state() (aiida.orm.calculation.job.JobCalculation
method), 214, 308

state() (aiida.orm.workflow.Workflow method), 184,
278

step() (aiida.orm.workflow.Workflow method), 184,
278

step_calculations() (aiida.orm.workflow. Workflow
method), 185, 278

step_data() (aiida.orm.data.array.trajectory. TrajectoryData
method), 208, 302

step_index() (aiida.orm.data.array.trajectory. TrajectoryData
method), 208, 302

Index

353

AiiDA documentation, Release 0.5.0

get_step_workflows() (aiida.orm.workflow. Workflow
method), 185, 278

get_steps() (aiida.orm.data.array.trajectory. TrajectoryData
method), 208, 302

get_steps() (aiida.orm.workflow.Workflow method), 185,
278

get_structuredata() (aiida.tools.codespecific.quantumespresso.pwinputplrsehBaddigputttdstructures.NodeNumberJobResource

method), 336

get_subclass_from_dbnode() (ai-
ida.orm.workflow.Workflow class method),
185,278

get_subclass_from_pk() (aiida.orm.node.Node class

method), 180, 273

get_subclass_from_pk() (aiida.orm.workflow. Workflow
class method), 185, 278

get_subclass_from_uuid() (aiida.orm.node.Node class
method), 180, 273

get_subclass_from_uuid() (aiida.orm.workflow. Workflow
class method), 185, 278

get_subfolder() (aiida.common.folders.Folder method),
234

get_submit_script() (aiida.scheduler.__init__.Scheduler
method), 252

get_suggestion() (in module aiida.common.utils), 238

get_supported_keywords() (ai-
ida.tools.dbimporters.baseclasses.DbImporter
method), 320

get_supported_keywords() (ai-

ida.tools.dbimporters.plugins.cod.CodDbImporterget_valid_auth_params()

method), 322

get_supported_keywords() (ai-

ida.tools.dbimporters.plugins.icsd.IcsdDbImporteget_valid_fields() (aiida.common.extendeddicts.FixedFieldsAttributeDict

method), 323

get_supported_keywords() (ai-

ida.tools.dbimporters.plugins.mpod.MpodDbImporter
get_valid_keys() (aiida.scheduler.datastructures.NodeNumberJobResource

method), 325

get_supported_keywords() (ai-

get_topdir() (aiida.common.folders.RepositoryFolder
method), 235

get_tot_num_mpiprocs() (ai-
ida.scheduler.datastructures.JobResource
method), 254

get_tot_num_mpiprocs() (ai-

method), 255

get_tot_num_mpiprocs() (ai-
ida.scheduler.datastructures.ParEnvJobResource
method), 256

get_total_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslato

class method), 332

get_total_energy() (aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtransla

class method), 334

get_transport() (aiida.djsite.db.models.DbAuthInfo
method), 263

get_unique_filename() (in module aiida.common.utils),
238

get_upf_family_names()
method), 202, 296

(aiida.orm.data.upf.UpfData

get_upf_group() (aiida.orm.data.upf.UpfData class
method), 202, 296
get_upf_groups() (aiida.orm.data.upf.UpfData class

method), 202, 296

get_upf_node() (aiida.tools.dbimporters.baseclasses.UpfEntry

method), 322
get_user() (aiida.orm.node.Node method), 180, 273
(ai-
ida.transport.__init__.Transport class method),
242

class method), 232

get_valid_keys() (aiida.scheduler.datastructures.JobResource

class method), 254

class method), 255

ida.tools.dbimporters.plugins.nninc.NnincDbImpagétr valid_pbc() (in module aiida.orm.data.structure),

method), 326

get_supported_keywords() (ai-

ida.tools.dbimporters.plugins.ogqmd.OgmdDbImporter

method), 325

get_symbols() (aiida.orm.data.array.trajectory.TrajectoryData

method), 209, 302

get_symbols_set() (aiida.orm.data.structure.StructureData
method), 196, 290

get_symbols_string() (aiida.orm.data.structure.Kind
method), 192, 285

get_symbols_string() (in module
ida.orm.data.structure), 199, 293

get_temp_folder() (aiida.orm.workflow. Workflow
method), 185, 279

get_times() (aiida.orm.data.array.trajectory. TrajectoryData
method), 209, 303

ai-

199, 293
get_valid_transports() (aiida.transport.__init__.Transport
class method), 242
get_value_for_node()
ida.djsite.db.models.DbAttributeBaseClass
class method), 262

(ai-

get_velocities() (aiida.orm.data.array.trajectory. TrajectoryData

method), 209, 303
get_withmpi() (aiida.orm.calculation.job.JobCalculation
method), 215, 309
get_workflow_info() (in module aiida.orm.workflow),
187, 281
(aiida.transport.__init__.Transport method),
242
getfile() (aiida.transport.__init__.Transport method), 242

getcwd()

354

Index

AiiDA documentation, Release 0.5.0

getJobs() (aiida.scheduler.__init__.Scheduler method),
251
gettree() (aiida.transport.__init__.Transport method), 242

IcsdSearchResults (class in ai-
ida.tools.dbimporters.plugins.icsd), 324
iglob() (aiida.transport.__init__.Transport method), 242

getvalue() (aiida.djsite.db.models.DbMultiple Value AttributeBapefihbsie (class in aiida.cmdline.commands.data), 260

method), 265
glob() (aiida.transport.__init__.Transport method), 242

gotocomputer_command() (ai-
ida.transport.__init__.Transport method),
242

group_symbols() (in module aiida.orm.data.structure),
199, 293

grouper() (in module aiida.common.utils), 238
gunzip_string() (in module aiida.common.utils), 238
gzip_string() (in module aiida.common.utils), 238

H

has_ase() (in module aiida.orm.data.structure), 200, 293

has_attached_hydrogens() (aiida.orm.data.cif.CifData
method), 203, 297

has_children (aiida.orm.node.Node attribute), 180, 273

has_failed() (aiida.orm.calculation.job.JobCalculation
method), 215, 309

has_failed() (aiida.orm.workflow.Workflow method),
185, 279

has_finished_ok() (aiida.orm.calculation.job.JobCalculation

method), 215, 309

has_finished_ok() (aiida.orm.workflow. Workflow
method), 185, 279

has_key() (aiida.djsite.db.models.DbAttributeBaseClass
class method), 262

has_parents (aiida.orm.node.Node attribute), 180, 274

has_partial_occupancies() (aiida.orm.data.cif.CifData
method), 204, 297

has_pycifrw() (in module aiida.orm.data.cif), 204, 298

has_pymatgen() (in module aiida.orm.data.structure),
200, 293

has_pyspglib() (in module aiida.orm.data.structure), 200,
293

has_step() (aiida.orm.workflow.Workflow method), 185,
279

has_vacancies() (aiida.orm.data.structure.Kind method),
192, 286

has_vacancies() (aiida.orm.data.structure.StructureData
method), 196, 290

has_vacancies() (in module aiida.orm.data.structure),
200, 293

Help (class in aiida.cmdline.verdilib), 257

IcsdDbImporter (class in ai-
ida.tools.dbimporters.plugins.icsd), 322

IcsdEntry (class in aiida.tools.dbimporters.plugins.icsd),
323

importfile() (aiida.orm.data.Data method), 190, 284

importstring() (aiida.orm.data.Data method), 190, 284

info() (aiida.orm.workflow. Workflow method), 185, 279

InlineCalculation (class in aiida.orm.calculation.inline),
210, 304

inp (aiida.orm.node.Node attribute), 180, 274

InputValidationError, 230

insert_path() (aiida.common.folders.Folder method), 234

Install (class in aiida.cmdline.verdilib), 257

InternalError, 230

InvalidOperation, 230

is_alloy() (aiida.orm.data.structure.Kind method), 192,
286

is_alloy() (aiida.orm.data.structure.StructureData

method), 196, 290

is_ase_atoms() (in module aiida.orm.data.structure), 200,
293

is_daemon_user() (in module ai-
ida.cmdline.commands.daemon), 259

is_empty() (aiida.orm.data.remote.RemoteData method),
205, 299

is_local() (aiida.orm.code.Code method), 189, 282

is_new() (aiida.orm.workflow.Workflow method),
279

is_running() (aiida.orm.workflow.Workflow method),
185, 279

is_subworkflow() (aiida.djsite.db.models.DbWorkflow
method), 267

is_subworkflow() (aiida.orm.workflow. Workflow
method), 185, 279

is_user_configured() (aiida.orm.computer.Computer
method), 175, 269

is_user_enabled() (aiida.orm.computer.Computer
method), 176, 269

is_valid_symbol() (in module aiida.orm.data.structure),
200, 294

isdir() (aiida.common.folders.Folder method), 234

isdir() (aiida.transport.__init__.Transport method), 243

isfile() (aiida.common.folders.Folder method), 234

isfile() (aiida.transport.__init__.Transport method), 243

iterarrays() (aiida.orm.data.array.ArrayData method),
206, 300

iterattrs() (aiida.orm.node.Node method), 180, 274

iterextras() (aiida.orm.node.Node method), 180, 274

J

JobCalculation (class in aiida.orm.calculation.job), 213,
307

Joblnfo (class in aiida.scheduler.datastructures), 252

JobResource (class in aiida.scheduler.datastructures), 253

185,

Index

355

AiiDA documentation, Release 0.5.0

JobTemplate (class in aiida.scheduler.datastructures), 254

K

keys() (aiida.orm.data.parameter.ParameterData method),
205, 299

kill() (aiida.orm.calculation.job.JobCalculation method),
215, 309

kill() (aiida.orm.workflow.Workflow method), 185, 279

kill() (aiida.scheduler.__init__.Scheduler method), 252

kill_all() (in module aiida.orm.workflow), 187, 281

kill_daemon() (aiida.cmdline.commands.daemon.Daemon
method), 259

kill_from_pk() (in module aiida.orm.workflow), 187, 281

kill_from_uuid() (in module aiida.orm.workflow), 188,
281

kill_step_calculations() (aiida.orm.workflow. Workflow
method), 186, 279

Kind (class in aiida.orm.data.structure), 191, 285

kind_name (aiida.orm.data.structure.Site attribute), 193,
287

kinds (aiida.orm.data.structure.StructureData attribute),
196, 290

KpointsData (class in aiida.orm.data.array.kpoints), 206,
300

L

label (aiida.orm.node.Node attribute), 180, 274

label (aiida.orm.workflow. Workflow attribute), 186, 279

labels (aiida.orm.data.array.kpoints.KpointsData at-
tribute), 207, 301

LicensingException, 231

limit_pks() (aiida.orm.querytool.QueryTool method), 319

list() (aiida.cmdline.commands.data.Listable method),
260

list_all_node_elements()
ida.djsite.db.models.DbAttributeBaseClass
class method), 262

list_for_plugin() (aiida.orm.code.Code class method),
189, 282

list_names() (aiida.orm.computer.Computer
method), 176, 269

Listable (class in aiida.cmdline.commands.data), 260

listdir() (aiida.transport.__init__.Transport method), 243

ListParams (class in aiida.cmdline.verdilib), 257

load_node() (in module aiida.orm), 174, 268

load_plugin() (in module aiida.common.pluginloader),
236

load_workflow() (in module aiida.orm), 175, 268

LockPresent, 231

logger (aiida.orm.calculation.Calculation attribute), 210,
304

logger (aiida.orm.node.Node attribute), 180, 274

logger (aiida.orm.workflow.Workflow attribute), 186, 279

logger (aiida.scheduler.__init__.Scheduler attribute), 252

(ai-

class

logger (aiida.transport.__init__.Transport attribute), 243
logging (aiida.orm.computer.Computer attribute), 176,
269

long_field_length() (ai-

ida.djsite.db.models.DbMultiple Value AttributeBaseClass

method), 265

M

Machinelnfo (class in aiida.scheduler.datastructures), 255

make_inline() (in module aiida.orm.calculation.inline),
210, 305

makedirs() (aiida.transport.__init__.Transport method),
243

mass (aiida.orm.data.structure.Kind attribute), 192, 286

md5_file() (in module aiida.common.utils), 238

MissingPluginError, 231

mkdir() (aiida.transport.__init__.Transport method), 243

mode_dir (aiida.common.folders.Folder attribute), 234

mode_file (aiida.common.folders.Folder attribute), 234

ModificationNotAllowed, 231

MpodDblmporter (class in ai-
ida.tools.dbimporters.plugins.mpod), 325

MpodEntry (class in ai-
ida.tools.dbimporters.plugins.mpod), 325

MpodSearchResults (class in ai-

ida.tools.dbimporters.plugins.mpod), 325
mtime (aiida.orm.node.Node attribute), 181, 274
MultipleObjectsError, 231

N

name (aiida.orm.data.structure.Kind attribute), 192, 286
new_calc() (aiida.orm.code.Code method), 189, 283
next() (aiida.orm.workflow. Workflow method), 186, 279

next() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 322

next() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults

method), 324

NnincDbImporter (class in ai-
ida.tools.dbimporters.plugins.nninc), 326

NnincEntry (class in ai-
ida.tools.dbimporters.plugins.nninc), 327

NnincSearchResults (class in ai-

ida.tools.dbimporters.plugins.nninc), 327
Node (class in aiida.orm.node), 177, 270
NodelnputManager (class in aiida.orm.node), 182, 276
NodeNumberJobResource (class in ai-
ida.scheduler.datastructures), 255
NodeOutputManager (class in aiida.orm.node), 182, 276
NoResultsWebExp, 324
normalize() (aiida.transport.__init__.Transport method),
243
NotExistent, 231
numsites (aiida.orm.data.array.trajectory.TrajectoryData
attribute), 209, 303

356

Index

AiiDA documentation, Release 0.5.0

numsteps (aiida.orm.data.array.trajectory. TrajectoryData parse_pw_text_output() (in module ai-
attribute), 209, 303 ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
NwcpymatgenTcodtranslator (class in ai- 221,316
ida.tools.dbexporters.tcod_plugins.nwcpymatgen)parse_pw_xml_output() (in module ai-
332 ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
222,316
O parse_QE_errors() (in module ai-
open() (aiida.common.folders.Folder method), 235 ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
open() (aiida.transport.__init__.Transport method), 244 221,315
optional_inline() (in module aiida.orm.calculation.inline), —parse_raw_output() (in module ai-
212, 306 ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
OgmdDbImporter (class in ai- 222,316
ida.tools.dbimporters.plugins.ogmd), 325 parse_upf() (in module aiida.orm.data.upf), 202, 296
OgmdEntry (class in ai- parse_with_retrieved() (ai-
ida.tools.dbimporters.plugins.ogmd), 325 ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
OgmdSearchResults (class in ai- method), 223, 317
ida.tools.dbimporters.plugins.ogmd), 325 parse_with_retrieved() (ai-
out (aiida.orm.node.Node attribute), 181, 274 ida.parsers.plugins.quantumespresso.cp.CpParser
method), 223, 317
P ParsingError, 231
ParameterData (class in aiida.orm.data.parameter), 205, Path_exists() (aiida.transport.__init__.Transport method),
208 244
ParEnvJobResource (class in ai- pbc (aiida.orm.data.array.kpoints.KpointsData attribute),
ida.scheduler.datastructures), 255 207, 301
parse_atomic_positions() (in module ai- pbc (aiida.orm.data.structure.StructureData attribute),
ida.tools.codespecific.quantumespresso.pwinputparser), 196, 290
337 PcodDbImporter (class in ai-
parse_atomic_species() (in module ai- ida.tools.dbimporters.plugins.pcod), 326 .
ida.tools.Codespeciﬁc.quantumespresso.pwinputpa}ﬁ@ﬂgmr)’ (class m at-
337 ida.tools.dbimporters.plugins.pcod), 326
parse_cell_parameters() (in module ai- P codSearc.hResults . (class . in ai-
ida.tools.codespecific.quantumespresso.pwinputparser), 1da.tools.dbimporters.plugins.pcod), 326
338 pk (aiida.orm.computer.Computer attribute), 176, 269
parse_cp_text_output() (in module ai- Pk (aiida.orm.node.Node attribute), 181, 274
ida.parsers.plugins.quantumespresso.basic_raw_pRisdpiigsyorm.workflow. Workflow attribute), 186, 280
220, 315 PluginInternalError, 231
parse_cp_traj_stanzas() (in module ai- Pposition (aiida.orm.data.structure.Site attribute), 193, 287
ida.parsers.plugins.quantumespresso.basic_raw_pRF§hatgpyor_retrieval_and_parsing() (ai-
221, 315 ida.orm.calculation.job.quantumespresso.pwimmigrant. Pwimmig
parse_cp_xml_counter_output() (in module ai- method?, 219, 313
ida.parsers.plugins.quantumespresso.basic_raw_p&ii@filefopnfigurationError, 231
221,315 ProfileParsingException, 257
parse_cp_xml_output() (in module ai- put() (aiida.transport.__init__.Transport method), 244
ida.parsers.plugins.quantumespresso.basic_raw_pR4gHe()aiida.transport. _init__.Transport method), 244
221, 315 puttree() (aiida.transport.__init__.Transport method), 244
parse_formula() (in module aiida.orm.data.cif), 204, 298 ~ PwCalculation (class in ai-
parse_k_points() (in module ai- ida.orm.calculation.job.quantumespresso.pw),
ida.tools.codespecific.quantumespresso.pwinputparser), 217, 311
338 PwimmigrantCalculation (class in ai-
parse_namelists() (in module ai- ida.orm.calculation.job.quantumespresso.pwimmigrant),
ida.tools.codespecific.quantumespresso.pwinputparser), 217,311
339 PwInputFile (class in ai-
parse_profile() (in module aiida.cmdline.verdilib), 258 ida.tools.codespecific.quantumespresso.pwinputparser),
334

Index 357

AiiDA documentation, Release 0.5.0

PwTcodtranslator (class in ai- remove_path() (aiida.common.folders.Folder method),
ida.tools.dbexporters.tcod_plugins.pw), 333 235
pycifrw_from_cif() (in module aiida.orm.data.cif), 204, remove_path() (aiida.orm.node.Node method), 181, 274
298 remove_path() (aiida.orm.workflow.Workflow method),
186, 280
Q rename() (aiida.transport.__init__.Transport method),
query() (aiida.cmdline.commands.data.Listable method), 244
260 replace_with_folder() (aiida.common.folders.Folder
query() (aiida.orm.node.Node class method), 181, 274 method), 235
query() (aiida.orm.workflow.Workflow class method), replace_with_folder() (aiida.orm.data.folder.FolderData
186, 280 method), 201, 295
query() (aiida.tools.dbimporters.baseclasses.DbImporter repo_folder (aiida.orm.workflow.Workflow attribute),
method), 320 186, 280
query() (aiida.tools.dbimporters.plugins.cod. CodDbImporteRepositoryFolder (class in aiida.common.folders), 235
method), 322 res (aiida.orm.calculation.job.JobCalculation attribute),
query() (aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter 215,309
method), 323 reset_cell() (aiida.orm.data.structure.StructureData
query() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter method), 197, 290
method), 325 reset_mass() (aiida.orm.data.structure.Kind method),
query() (aiida.tools.dbimporters.plugins.nninc.NnincDbImporter 192, 286
method), 326 reset_sites_positions() (ai-
query() (aiida.tools.dbimporters.plugins.ogmd.OgmdDbImporter ida.orm.data.structure.StructureData method),
method), 325 197, 290
query() (aiida.tools.dbimporters.plugins.pcod.PcodDbImportetrieve_computed_for_authinfo() (in module ai-
method), 326 ida.execmanager), 261
query() (aiida.tools.dbimporters.plugins.tcod. TcodDbImporteatrieve_jobs() (in module aiida.execmanager), 261
method), 326 rmdir() (aiida.transport.__init__.Transport method), 244
query_db_version() (ai- rmtree() (aiida.transport.__init__.Transport method), 244
ida.tools.dbimporters.plugins.icsd.IcsdSearchResufgn (class in aiida.cmdline.verdilib), 258
method), 324 run() (aiida.cmdline.baseclass.VerdiCommand method),
query_get() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter 256
method), 325 run() (aiida.cmdline.verdilib.CompletionCommand
query_get() (aiida.tools.dbimporters.plugins.nninc. NnincDbImporter method), 257
method), 327 run_query() (aiida.orm.querytool.QueryTool method),
query_get() (aiida.tools.dbimporters.plugins.oqmd.OgmdDbImporter 319
method), 325 Runserver (class in aiida.cmdline.verdilib), 258
query_group() (aiida.cmdline.commands.data.Listable
method), 260 S
query_page() (aiida.tools.dbimporters.plugins.icsd.IcsdSeargdRedbdiFolder (class in aiida.common.folders), 235
method), 324 Scheduler (class in aiida.scheduler.__init__), 251
query_past_days() (aiida.cmdline.commands.data.Listable SchedulerFactory() (in module aiida.scheduler.__init_),
method), 260 252
query_sql() (aiida.tools.dbimporters.plugins.cod.CodDblmpgstgion (aiida.common.folders.RepositoryFolder at-
method), 322 tribute), 235
query_sql() (aiida.tools.dbimporters.plugins.pcod.PcodDblmgpgit¢siida.orm.node. Node method), 181, 274
method), 326 set_append_text() (aiida.orm.calculation.job.JobCalculation
QueryTool (class in aiida.orm.querytool), 317 method), 215, 309

set_append_text() (aiida.orm.code.Code method), 189,

R 283

RemoteData (class in aiida.orm.data.remote), 205, 299 set_array() (aiida.orm.data.array.ArrayData method),

RemoteOperationError, 231 206, 300

remove() (aiida.transport.__init__.Transport method), set_ase() (aiida.orm.data.structure.StructureData
244 method), 197, 291

358 Index

AiiDA documentation, Release 0.5.0

(ai-
192,

set_automatic_kind_name()
ida.orm.data.structure.Kind method),
286

set_cell() (aiida.orm.data.array.kpoints.KpointsData
method), 207, 301

set_cell_from_structure()
ida.orm.data.array.kpoints.KpointsData
method), 207, 301

set_class() (aiida.orm.querytool.QueryTool method), 319

set_computer() (aiida.orm.node.Node method), 181, 275

(ai-

set_custom_scheduler_commands() (ai-
ida.orm.calculation.job.JobCalculation
method), 215, 309

set_default_mpiprocs_per_machine() (ai-
ida.orm.computer.Computer method), 176,
269

set_dict() (aiida.orm.data.parameter.ParameterData

method), 205, 299
set_environment_variables()
ida.orm.calculation.job.JobCalculation
method), 215, 309
set_extra() (aiida.orm.node.Node method), 181, 275
set_extras() (aiida.orm.node.Node method), 182, 275
set_file() (aiida.orm.data.cif.CifData method), 204, 297
set_file() (aiida.orm.data.singlefile.SinglefileData
method), 201, 295
set_file() (aiida.orm.data.upf.UpfData method), 202, 296
set_files() (aiida.orm.code.Code method), 189, 283

(ai-

set_group() (aiida.orm.querytool.QueryTool method),
319
set_import_sys_environment() (ai-

ida.orm.calculation.job.JobCalculation
method), 216, 310

set_input_file_name() (ai-

set_mpirun_extra_params() (ai-
ida.orm.calculation.job.JobCalculation
method), 216, 310

set_output_file_name() (ai-

ida.orm.calculation.job.quantumespresso.pwimmigrant.Pwimmig
method), 219, 313
set_output_subfolder() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.Pwimmig
method), 219, 313
set_params() (aiida.orm.workflow.Workflow method),
186, 280
set_parser_name() (aiida.orm.calculation.job.JobCalculation
method), 216, 310
set_prefix() (aiida.orm.calculation.job.quantumespresso.pwimmigrant. Pwin
method), 219, 313
set_prepend_text() (aiida.orm.calculation.job.JobCalculation
method), 216, 310
set_prepend_text() (aiida.orm.code.Code method), 190,
283
set_priority() (aiida.orm.calculation.job.JobCalculation
method), 216, 310
set_pymatgen() (aiida.orm.data.structure.StructureData
method), 197, 291
set_pymatgen_molecule() (ai-
ida.orm.data.structure.StructureData method),
197, 291
set_pymatgen_structure() (ai-
ida.orm.data.structure.StructureData method),
197, 291
set_queue_name() (aiida.orm.calculation.job.JobCalculation
method), 216, 310
set_remote_computer_exec()
method), 190, 283
set_remote_workdir()

(aiida.orm.code.Code

(ai-

ida.orm.calculation.job.quantumespresso.pwimmigrant. Pwindaignmealdclatitongob.quantumespresso.pwimmigrant. Pwimmig

method), 219, 313

set_input_plugin_name() (aiida.orm.code.Code method),
189, 283

set_kpoints() (aiida.orm.data.array.kpoints.KpointsData
method), 207, 301

set_kpoints_mesh()
ida.orm.data.array.kpoints.KpointsData
method), 208, 301

set_local_executable() (aiida.orm.code.Code method),
189, 283

(ai-

set_max_memory_kb() (ai-
ida.orm.calculation.job.JobCalculation
method), 216, 310

set_max_wallclock_seconds() (ai-

ida.orm.calculation.job.JobCalculation
method), 216, 310

set_mpirun_command() (aiida.orm.computer.Computer
method), 176, 269

method), 220, 314

set_resources() (aiida.orm.calculation.job.JobCalculation
method), 216, 310

set_source() (aiida.orm.data.Data method), 190, 284

set_state() (aiida.orm.workflow.Workflow method), 186,
280

set_structurelist() (aiida.orm.data.array.trajectory.TrajectoryData
method), 209, 303

set_symbols_and_weights()
ida.orm.data.structure.Kind method),
286

set_trajectory() (aiida.orm.data.array.trajectory. TrajectoryData
method), 209, 303

set_transport() (aiida.scheduler.__init__.Scheduler
method), 252

set_value() (aiida.djsite.db.models.DbMultiple Value AttributeBaseClass
class method), 265

set_value_for_node()
ida.djsite.db.models.DbAttributeBaseClass

(ai-
192,

(ai-

Index

359

AiiDA documentation, Release 0.5.0

class method), 262
set_withmpi() (aiida.orm.calculation.job.JobCalculation
method), 216, 310

setup_db() (aiida.tools.dbimporters.baseclasses.DbImporter

method), 321

setup_db() (aiida.tools.dbimporters.plugins.cod.CodDbImporter

method), 322

setup_db() (aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter

method), 323

submit_jobs_with_authinfo() (in module ai-
ida.execmanager), 261
submit_test() (aiida.orm.calculation.job.JobCalculation
method), 217, 311
subspecifier_pk (aiida.djsite.db.models. DbMultiple Value AttributeBaseClas:
attribute), 265
subspecifiers_dict (aiida.djsite.db.models.DbMultiple Value AttributeBaseCl:
attribute), 266

symbol (aiida.orm.data.structure.Kind attribute), 193, 286

setup_db() (aiida.tools.dbimporters.plugins.mpod.MpodDblrypobiels (aiida.orm.data.structure.Kind attribute), 193,

method), 325

286

setup_db() (aiida.tools.dbimporters.plugins.nninc.NnincDbIsypoliek() (aiida.transport.__init__.Transport method),

method), 327

setup_db() (aiida.tools.dbimporters.plugins.ogmd.OgmdDblsypesferfract_from_ortho()

method), 325

shal_file() (in module aiida.common.utils), 238

Shell (class in aiida.cmdline.verdilib), 258

show() (aiida.cmdline.commands.data. Visualizable
method), 261

SinglefileData (class in aiida.orm.data.singlefile), 201,
295

Site (class in aiida.orm.data.structure), 193, 286

sites (aiida.orm.data.structure.StructureData attribute),
197, 291

sleep() (aiida.orm.workflow.Workflow method), 186, 280

sort_states() (in module aiida.common.datastructures),
230

source (aiida.orm.data.Data attribute), 190, 284

step() (aiida.orm.workflow.Workflow class method), 186,
280

244

(in module ai-
ida.orm.data.structure), 200, 294

symop_ortho_from_fract() (in module ai-
ida.orm.data.structure), 200, 294

symop_string_from_symop_matrix_tr() (in module ai-
ida.orm.data.cif), 204, 298

T

TcodDbImporter (class in ai-
ida.tools.dbimporters.plugins.tcod), 326
TcodEntry (class in aiida.tools.dbimporters.plugins.tcod),

326
TcodSearchResults (class in ai-
ida.tools.dbimporters.plugins.tcod), 326
TemplatereplacerCalculation (class in ai-
ida.orm.calculation.job.simpleplugins.templatereplacer),

220, 314

step_to_structure() (aiida.orm.data.array.trajectory. Trajectoryi¥gtetoryData (class in aiida.orm.data.array.trajectory),

method), 210, 304
(aiida.orm.calculation.job.JobCalculation

method), 216, 310

store() (aiida.orm.computer.Computer method), 176, 269

store() (aiida.orm.data.cif.CifData method), 204, 298

store() (aiida.orm.data.upf.UpfData method), 202, 296

store() (aiida.orm.node.Node method), 182, 275

store() (aiida.orm.workflow. Workflow method), 187, 280

store_all() (aiida.orm.node.Node method), 182, 275

str2val() (in module ai-

store()

208, 302

translate_calculation_specific_values() (in module ai-
ida.tools.dbexporters.tcod), 330

transport (aiida.scheduler.__init__.Scheduler attribute),
252

Transport (class in aiida.transport.__init__), 240

TransportFactory() (in module aiida.transport.__init_),
245

TransportInternalError, 245

ida.tools.codespecific.quantumespresso.pwinputpdgder),

339
str_timedelta() (in module aiida.common.utils), 239
StructureData (class in aiida.orm.data.structure), 193, 287
subfolder (aiida.common.folders.RepositoryFolder
attribute), 235
(aiida.orm.calculation.job.JobCalculation
method), 216, 310
submit_calc() (in module aiida.execmanager), 261
submit_from_script() (aiida.scheduler.__init__.Scheduler
method), 252
submit_jobs() (in module aiida.execmanager), 261

submit()

UniquenessError, 231

update_dict() (aiida.orm.data.parameter.ParameterData
method), 205, 299

update_environment() (in module aiida.cmdline.verdilib),
258

update_jobs() (in module aiida.execmanager), 261

update_running_calcs_status() (in module ai-
ida.execmanager), 262

UpfData (class in aiida.orm.data.upf), 201, 295

UpfEntry (class in aiida.tools.dbimporters.baseclasses),
322

360

Index

AiiDA documentation, Release 0.5.0

upload_upf_family() (in module aiida.orm.data.upf), 202,
296

uuid (aiida.common.folders.RepositoryFolder attribute),
235

uuid (aiida.orm.computer.Computer attribute), 176, 270

uuid (aiida.orm.node.Node attribute), 182, 275

uuid (aiida.orm.workflow. Workflow attribute), 187, 280

V

validate() (aiida.common.extendeddicts.DefaultFields AttributeDict
method), 232

validate() (aiida.orm.computer.Computer method), 176,
270

validate_key() (aiida.djsite.db.models.DbMultiple ValueAttributeBaseClass
class method), 266

validate_list_of_string_tuples() (in module ai-
ida.common.utils), 239

validate_symbols_tuple() (in module ai-
ida.orm.data.structure), 200, 294
validate_weights_tuple() (in module ai-

ida.orm.data.structure), 200, 294
ValidationError, 231
values (aiida.orm.data.cif.CifData attribute), 204, 298
VerdiCommand (class in aiida.cmdline.baseclass), 256
VerdiCommandWithSubcommands (class in ai-
ida.cmdline.baseclass), 256
Visualizable (class in aiida.cmdline.commands.data), 261

W

weights (aiida.orm.data.structure.Kind attribute), 193,
286

whoami() (aiida.transport.__init__.Transport method),
245

Workflow (class in aiida.orm.workflow), 182, 276

WorkflowFactory() (in module aiida.orm), 174, 268

WorkflowInputValidationError, 231

WorkflowKillError, 187, 280

WorkflowUnkillable, 187, 281

X

xyz_parser_iterator() (in module aiida.common.utils),
239

Index

361

	User's guide
	User's guide

	Other guide resources
	Other guide resources

	Developer's guide
	Developer's guide

	Modules provided with aiida
	Modules

	Indices and tables
	Python Module Index

