
AiiDA documentation
Release 0.7.0

The AiiDA team.

August 10, 2016

Contents

1 User’s guide 3
1.1 User’s guide . 3

1.1.1 Databases for AiiDA . 3
Supported databases . 3
Setup instructions . 4

1.1.2 AiiDA Backup . 7
How to backup the databases . 7
How to move the physical location of a database . 9
How to set up an incremental backup for the repository . 10

1.1.3 Installation and Deployment of AiiDA . 12
Supported architecture . 12
Installing python . 12
Installation of the core dependencies . 12
Downloading the code . 13
Python dependencies . 13
AiiDA configuration . 15
Optional dependencies . 19
Further comments and troubleshooting . 19
Updating AiiDA from a previous version . 20

1.1.4 Setup of computers and codes . 22
Remote computer requirements . 22
Computer setup and configuration . 24
Code setup and configuration . 27

1.1.5 Plug-ins for AiiDA . 29
Available plugins . 30

1.1.6 Scripting with AiiDA . 55
verdi shell . 56
Writing python scripts for AiiDA . 56

1.1.7 StructureData tutorial . 57
General comments . 57
Tutorial . 57
Internals: Kinds and Sites . 59
Conversion to/from ASE . 60
Conversion to/from pymatgen . 61

1.1.8 Quantum Espresso PWscf user-tutorial . 61
Your classic pw.x input file . 62
Quantum Espresso Pw Walkthrough . 62
Code . 63

i

Structure . 63
Parameters . 64
Other inputs . 67
Calculation . 68
Pseudopotentials . 69
Labels and comments . 69
Execute . 70
Script: source code . 70
Compact script . 71
Exception tolerant code . 72
Advanced features . 72

1.1.9 Importing previously run Quantum ESPRESSO pw.x calculations: PwImmigrant 72
Quantum Espresso PWscf immigration user-tutorial . 72

1.1.10 Quantum Espresso Phonon user-tutorial . 76
Walkthrough . 77
Code . 77
Parameter . 77
Calculation . 78
Parent calculation . 78
Execution . 79
Script to execute . 79
Exception tolerant code . 80

1.1.11 Quantum Espresso Car-Parrinello user-tutorial . 80
Walkthrough . 81
Exception tolerant code . 82

1.1.12 Wannier90 user-tutorial . 82
Calculation Setup . 83
Input Script . 83
Additional Exercises . 85
Exception tolerant code . 85

1.1.13 Quantum Espresso Projwfc user-tutorial . 85
Script to execute . 86

1.1.14 Getting parsed calculation results . 86
The CalculationResultManager . 86

1.1.15 Pseudopotential families tutorial . 88
What is a pseudopotential family . 88
How to create a pseudopotential family . 88
Get the list of existing families . 89

1.1.16 Manually loading pseudopotentials . 89
1.1.17 The verdi commands . 90

verdi calculation . 91
verdi code . 91
verdi comment . 91
verdi completioncommand . 92
verdi computer . 92
verdi daemon . 92
verdi data . 92
verdi devel . 93
verdi export . 93
verdi group . 93
verdi import . 94
verdi install . 94
verdi node . 94
verdi profile . 94

ii

verdi run . 94
verdi runserver . 94
verdi shell . 94
verdi user . 95
verdi workflow . 95

1.1.18 AiiDA schedulers . 95
Supported schedulers . 95
Job resources . 96

1.1.19 Calculations . 99
1.1.20 Check the state of calculations . 99

The verdi calculation command . 99
Directly in python . 100
The verdi calculation gotocomputer command 100

1.1.21 Set calculation properties . 101
1.1.22 Comments . 102
1.1.23 Extracting data from the Database . 102

Finding input and output nodes . 102
1.1.24 Querying in AiiDA . 103

Directly querying in Django . 103
Directly querying in SQLAlchemy . 103
Using the querytool . 103
The transitive closure table . 105
Using the QueryBuilder . 106

1.1.25 AiiDA workflows . 118
How it works . 119
The AiiDA daemon . 119
A workflow demo . 119
Running a workflow . 122
A more sophisticated workflow . 124
Chaining workflows . 129

1.1.26 Import structures from external databases . 132
Available plugins . 132

1.1.27 Export data to external databases . 136
Supported databases . 136

1.1.28 Run scripts and open an interactive shell with AiiDA . 137
How to run a script . 137
verdi shell . 138

2 Other guide resources 139
2.1 Other guide resources . 139

2.1.1 AiiDA cookbook (useful code snippets) . 139
Deletion of nodes . 139

2.1.2 Troubleshooting and tricks . 140
Some tricks . 140
Connection problems . 142
Increasing the debug level . 143
Tips to ease the life of the hard drive (for large databases) 143

2.1.3 Using AiiDA in multi-user mode . 144
2.1.4 Deploying AiiDA using Apache . 145
2.1.5 AiiDA Website . 147

3 Developer’s guide 149
3.1 Developer’s guide . 149

3.1.1 Developer’s Guide For AiiDA . 149

iii

Python style . 149
Version number . 149
Inline calculations . 149
Database schema . 150
Commits and GIT usage . 150
Tests . 151
Virtual environment . 153
Deprecated features, renaming, and adding new methods . 154

3.1.2 AiiDA internals . 154
Node . 154
DbNode . 160
Folders . 160

3.1.3 Developer calculation plugin tutorial - Integer summation 161
Overview . 161
Code . 161
Input plugin . 162
Setup of the code . 166
Output plugin: the parser . 167
Submission script . 169
Conclusion . 171

3.1.4 Developer data plugin tutorial - Float summation . 171
Introducing a new data type . 171
Exercise: Modifying the calculation plugin . 172

3.1.5 Developer code plugin tutorial - Quantum Espresso . 174
InputPlugin . 174
OutputPlugin . 179

3.1.6 Parser warnings policy . 182
Warnings . 182
Parser_warnings . 182

3.1.7 Automated parser tests . 183
Test folders . 183
Creation of a test from an existing calculation . 183
Running tests . 184

3.1.8 Workflow’s Guide For AiiDA . 185
Creating new workflows . 185

3.1.9 Developer Workflow tutorial . 185
Creating new workflows . 185
Running a workflow . 190
Exercise . 192

3.1.10 Verdi command line plugins . 192
Framework for verdi data . 192
Adding a verdi command . 194

3.1.11 Exporting structures to TCOD . 196
3.1.12 GIT cheatsheet . 197

Interesting online resources . 197
Set the push default behavior to push only the current branch 197
View commits that would be pushed . 197
Switch to another branch . 197
Associate a local and remote branch . 198
Branch renaming . 198
Create a new (lightweight) tag . 198
Create a new branch from a given tag . 199
Disallow a branch deletion, or committing to a branch, on BitBucket 199
Merge from a different repository . 199

iv

3.1.13 Sphinx cheatsheet . 200
Main Titles and Subtitles . 200
Formatting . 200
Links, Code Display, Cross References . 201
Table of Contents Docs and Code . 202
How To Format Docstrings . 254
Changing The Docs . 254

3.1.14 Properties . 258

4 Modules provided with aiida 259
4.1 Modules . 259

4.1.1 aiida.common documentation . 259
Calculation datastructures . 259
Exceptions . 260
Extended dictionaries . 261
Folders . 263
Plugin loaders . 266
Utilities . 267

4.1.2 aiida.transport documentation . 271
Generic transport class . 271
Developing a plugin . 277

4.1.3 aiida.scheduler documentation . 282
Generic scheduler class . 282
Scheduler datastructures . 284

4.1.4 aiida.cmdline documentation . 287
Baseclass . 287
Verdi lib . 288
Daemon . 289
Data . 290

4.1.5 aiida.execmanager documentation . 292
Execution Manager . 292

4.1.6 aiida.backends.djsite documentation . 293
Database schema . 293

4.1.7 QueryTool documentation . 299
4.1.8 QueryBuilder documentation . 299
4.1.9 DbImporter documentation . 304

Generic database importer class . 304
Structural databases . 306
Other databases . 310

4.1.10 DbExporter documentation . 311
TCOD database exporter . 311
TCOD parameter translator documentation . 314

4.1.11 aiida.tools documentation . 318
Tools . 318

5 Indices and tables 325

Python Module Index 327

v

vi

AiiDA documentation, Release 0.7.0

Fig. 1: Automated Interactive Infrastructure and Database for Computational Science

AiiDA is a sophisticated framework designed from scratch to be a flexible and scalable infrastructure for computational
science. Being able to store the full data provenance of each simulation, and based on a tailored database solution built
for efficient data mining implementations, AiiDA gives the user the ability to interact seamlessly with any number
of HPC machines and codes thanks to its flexible plugin interface, together with a powerful workflow engine for the
automation of simulations.

The software is available at http://www.aiida.net.

If you use AiiDA for your research, please cite the following work:

Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola Marzari, and Boris Kozinsky, AiiDA: auto-
mated interactive infrastructure and database for computational science, Comp. Mat. Sci 111, 218-230
(2016); http://dx.doi.org/10.1016/j.commatsci.2015.09.013; http://www.aiida.net.

This is the documentation of the AiiDA framework. For the first setup, configuration and usage, refer to the user’s
guide below.

If, instead, you plan to add new plugins, or you simply want to understand AiiDA internals, refer to the developer’s
guide.

Contents 1

http://www.aiida.net
http://dx.doi.org/10.1016/j.commatsci.2015.09.013
http://www.aiida.net

AiiDA documentation, Release 0.7.0

2 Contents

CHAPTER 1

User’s guide

1.1 User’s guide

1.1.1 Databases for AiiDA

AiiDA needs a database backend to store the nodes, node attributes and other information, allowing the end user to
perform very fast queries of the results.

Before installing AiiDA, you have to choose (and possibly configure) a suitable supported backend.

Supported databases

Note: For those who do not want to read all this section, the short answer if you want to choose a database is SQLite
if you just want to try out AiiDA without spending too much time in configuration (but SQLite is not suitable for
production runs), while PostgreSQL for regular production use of AiiDA.

For those who are interested in the details, there are three supported database backends:

• SQLite The SQLite backend is the fastest to configure: in fact, it does not really use a “real” database, but stores
everything in a file. This is great if you never configured a database before and you just want to give AiiDA a
try. However, keep in mind that it has many big shortcomings for a real AiiDA usage!

In fact, since everything is stored on a single file, each access (especially when writing or doing a transaction)
to the database locks it: this means that a second thread wanting to access the database has to wait that the lock
is released. We set up a timeout of about 60 seconds for each thread to retry to connect to the database, but after
that time you will get an exception, with the risk of storing corrupted data in the AiiDA repository.

Therefore, it is OK to use SQLite for testing, but as soon as you want to use AiiDA in production, with more
than one calculation submitted at each given time, please switch to a real database backend, like PostgreSQL.

Note: note, however, that typically SQLite is pretty fast for queries, once the database is loaded into memory,
so it could be an interesting solution if you do not want to launch new calculations, but only to import the results
and then query them (in a single-user approach).

• PostgreSQL This is the database backend that the we, the AiiDA developers, suggest to use, because it is the
one with most features.

3

http://www.sqlite.org/
http://www.postgresql.org/

AiiDA documentation, Release 0.7.0

• MySQL This is another possible backend that you could use. However, we suggest that you use PostgreSQL
instead of MySQL, due to some MySQL limitations (unless you have very strong reasons to prefer MySQL over
PostgreSQL). In particular, some of the limitations of MySQL are:

– Only a precision of 1 second is possible for time objects, while PostgreSQL supports microsecond preci-
sion. This can be relevant for a proper sorting of calculations launched almost simultaneously.

– Indexed text columns can have an hardcoded maximum length. This can give issues with attributes, if
you have very long key names or nested dictionaries/lists. These cannot be natively stored and therefore
you either end up storing a JSON (therefore partially losing query capability) or you can even incur in
problems.

Setup instructions

For any database, you may need to install a specific python package using pip; this typically also requires to have the
development libraries installed (the .h C header files). Refer to the installation documentation for more details.

SQLite

To use SQLite as backend, please install:

sudo apt-get install libsqlite3-dev

SQLite requires almost no configuration. In the verdi install phase, just type sqlite when the Database
engine is required, and then provide an absolute path for the AiiDA Database location field, that will be
the file that will store the full database (if no file exists yet in that position, a fresh AiiDA database will be created).

Note: Do not forget to backup your database (instructions here).

PostgreSQL

Note: We assume here that you already installed PostgreSQL on your computer and that you know the password for
the postgres user (there are many tutorials online that explain how to do it, depending on your operating system
and distribution). To install PostgreSQL under Ubuntu, you can do:

sudo apt-get install postgresql
sudo apt-get install postgresql-server-dev-all
sudo apt-get install postgresql-client

On Mac OS X, you can download binary packages to install PostgreSQL from the official website.

To properly configure a new database for AiiDA with PostgreSQL, you need to create a new aiida user and a new
aiidadb table.

To create the new aiida user and the aiidadb database, first become the UNIX postgres user, typing as root:

su - postgres

(or equivalently type sudo su - postgres, depending on your distribution).

Then type the following command to enter in the PostgreSQL shell in the modality to create users:

4 Chapter 1. User’s guide

http://www.mysql.com/

AiiDA documentation, Release 0.7.0

psql template1

To create a new user for postgres (you can call it simply aiida, as in the example below), type in the psql shell:

CREATE USER aiida WITH PASSWORD 'the_aiida_password';

where of course you have to change the_aiida_password with a valid password.

Note: Remember, however, that since AiiDA needs to connect to this database, you will need to store this password in
clear text in your home folder for each user that wants to have direct access to the database, therefore choose a strong
password, but different from any that you already use!

Note: Did you just copy and paste the line above, therefore setting the password to the_aiida_password? Then,
let’s change it! Choose a good password this time, and then type the following command (this time replacing the string
new_aiida_password with the password you chose!):

ALTER USER aiida PASSWORD 'new_aiida_password';

Then create a new aiidadb database for AiiDA, and give ownership to user aiida created above:

CREATE DATABASE aiidadb OWNER aiida;

and grant all privileges on this DB to the previously-created aiida user:

GRANT ALL PRIVILEGES ON DATABASE aiidadb to aiida;

Finally, type \q to quit the template1 shell, and exit to exit the PostgreSQL shell.

To test if this worked, type this on a bash terminal (as a normal user):

psql -h localhost -d aiidadb -U aiida -W

and type the password you inserted before, when prompted. If everything worked, you should get no error and the
psql shell. Type \q to exit.

If you use the names suggested above, in the verdi install phase you should use the following parameters:

Database engine: postgresql
PostgreSQL host: localhost
PostgreSQL port: 5432
AiiDA Database name: aiidadb
AiiDA Database user: aiida
AiiDA Database password: the_aiida_password

Note: Do not forget to backup your database (instructions here).

Note: If you want to move the physical location of the data files on your hard drive AFTER it has been created and
filled, look at the instructions here.

Note: Due to the presence of a bug, PostgreSQL could refuse to restart after a crash. If this happens you should
follow the instructions written here.

1.1. User’s guide 5

https://wiki.postgresql.org/wiki/May_2015_Fsync_Permissions_Bug/

AiiDA documentation, Release 0.7.0

MySQL

To use properly configure a new database for AiiDA with MySQL, you need to create a new aiida user and a new
aiidadb table.

We assume here that you already installed MySQL on your computer and that you know your MySQL root password
(there are many tutorials online that explain how to do it, depending on your operating system and distribution). To
install mysql-client, you can do:

sudo apt-get install libmysqlclient-dev

After MySQL is installed, connect to it as the MySQL root account to create a new account. This can be done typing
in the shell:

mysql -h localhost mysql -u root -p

(we are assuming that you installed the database on localhost, even if this is not strictly required - if this is not
the case, change localhost with the proper database host, but note that also some of the commands reported below
need to be adapted) and then type the MySQL root password when prompted.

In the MySQL shell, type the following command to create a new user:

CREATE USER 'aiida'@'localhost' IDENTIFIED BY 'the_aiida_password';

where of course you have to change the_aiida_password with a valid password.

Note: Remember, however, that since AiiDA needs to connect to this database, you will need to store this password in
clear text in your home folder for each user that wants to have direct access to the database, therefore choose a strong
password, but different from any that you already use!

Then, still in the MySQL shell, create a new database named aiida using the command:

CREATE DATABASE aiidadb;

and give all privileges to the aiida user on this database:

GRANT ALL PRIVILEGES on aiidadb.* to aiida@localhost;

Note: ‘’(only for developers)” If you are a developer and want to run the tests using the MySQL database (to do so,
you also have to set the tests.use_sqlite AiiDA property to False using the verdi devel setproperty
tests.use_sqlite False command), you also have to create a test_aiidadb database. In this case, run
also the two following commands:

CREATE DATABASE test_aiidadb;
GRANT ALL PRIVILEGES on test_aiidadb.* to aiida@localhost;

If you use the names suggested above, in the verdi install phase you should use the following parameters:

Database engine: mysql
mySQL host: localhost
mySQL port: 3306
AiiDA Database name: aiidadb
AiiDA Database user: aiida
AiiDA Database password: the_aiida_passwd

6 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Note: Do not forget to backup your database (instructions here).

1.1.2 AiiDA Backup

In this page you will find useful information on how to backup your database, how to move it to a different location
and how to backup your repository.

How to backup the databases

It is strongly advised to backup the content of your database daily. Below are instructions to set this up for the SQLite,
PostgreSQL and MySQL databases, under Ubuntu (tested with version 12.04).

SQLite backup

Note: Perform the following operation after having set up AiiDA. Only then the ~/.aiida folder (and the files
within) will be created.

Simply make sure your database folder (typically /home/USERNAME/.aiida/ containing the file aiida.db and the
repository directory) is properly backed up by your backup software (under Ubuntu, Backup -> check the “Fold-
ers” tab).

PostgreSQL backup

Note: Perform the following operation after having set up AiiDA. Only then the ~/.aiida folder (and the files
within) will be created.

The database files are not put in the .aiida folder but in the system directories which typically are not backed up.
Moreover, the database is spread over lots of files that, if backed up as they are at a given time, cannot be re-used to
restore the database.

So you need to periodically (typically once a day) dump the database contents in a file that will be backed up. This
can be done by the following bash script backup_postgresql.sh:

#!/bin/bash
AIIDAUSER=aiida
AIIDADB=aiidadb
AIIDAPORT=5432
STORE THE PASSWORD, IN THE PROPER FORMAT, IN THE ~/.pgpass file
see http://www.postgresql.org/docs/current/static/libpq-pgpass.html
AIIDALOCALTMPDUMPFILE=~/.aiida/${AIIDADB}-backup.psql.gz

if [-e ${AIIDALOCALTMPDUMPFILE}]
then

mv ${AIIDALOCALTMPDUMPFILE} ${AIIDALOCALTMPDUMPFILE}~
fi

1.1. User’s guide 7

AiiDA documentation, Release 0.7.0

NOTE: password stored in ~/.pgpass, where pg_dump will read it automatically
pg_dump -h localhost -p $AIIDAPORT -U $AIIDAUSER $AIIDADB | gzip > $AIIDALOCALTMPDUMPFILE || rm $AIIDALOCALTMPDUMPFILE

Before launching the script you need to create the file ~/.pgpass to avoid having to enter your database password
each time you use the script. It should look like (.pgpass):

localhost:5432:aiidadb:aiida:YOUR_DATABASE_PASSWORD

where YOUR_DATABASE_PASSWORD is the password you set up for the database.

Note: Do not forget to put this file in ~/ and to name it .pgpass. Remember also to give it the right permissions
(read and write): chmod u=rw .pgpass.

To dump the database in a file automatically everyday, you can add the following script
backup-aiidadb-USERNAME in /etc/cron.daily/, which will launch the previous script once per
day:

#!/bin/bash
su USERNAME -c "/home/USERNAME/.aiida/backup_postgresql.sh"

where all instances of USERNAME are replaced by your actual user name. The su USERNAME makes the dumped file
be owned by you rather than by root. Remember to give the script the right permissions:

sudo chmod +x /etc/cron.daily/backup-aiidadb-USERNAME

Finally make sure your database folder (/home/USERNAME/.aiida/) containing this dump file and the
repository directory, is properly backed up by your backup software (under Ubuntu, Backup -> check the “Fold-
ers” tab).

Note: If your database is very large (more than a few hundreds of thousands of nodes and workflows), a standard
backup of your repository folder will be very slow (up to days), thus slowing down your computer dramatically. To
fix this problem you can set up an incremental backup of your repository by following the instructions here.

MySQL backup

Todo

Back-up instructions for the MySQL database.

We do not have explicit instructions on how to back-up MySQL yet, but you can find plenty of information on Google.

How to retrieve the database from a backup

PostgreSQL backup

In order to retrieve the database from a backup, you have first to create a empty database following the instructions
described above in “Setup instructions: PostgreSQL” except the verdi install phase. Once that you have created
your empty database with the same names of the backuped one, type the following command:

8 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

psql -h localhost -U aiida -d aiidadb -f aiidadb-backup.psql

How to move the physical location of a database

It might happen that you need to move the physical location of the database files on your hard-drive (for instance, due
to the lack of space in the partition where it is located). Below we explain how to do it.

PostgreSQL move

First, make sure you have a backup of the full database (see instructions here), and that the AiiDA daemon is not
running. Then, become the UNIX postgres user, typing as root:

su - postgres

(or, equivalently, type sudo su - postgres, depending on your distribution).

Stop the postgres database daemon:

service postgresql stop

Then enter the postgres shell:

psql

and look for the current location of the data directory:

SHOW data_directory;

Typically you should get something like /var/lib/postgresql/9.1/main.

Note: If you are experiencing memory problems and cannot enter the postgres shell, you can look directly
into the file /etc/postgresql/9.1/main/postgresql.conf and check out the line defining the variable
data_directory.

Then exit the shell with \q, go to this directory and copy all the files to the new directory:

cp -a SOURCE_DIRECTORY DESTINATION_DIRECTORY

where SOURCE_DIRECTORY is the directory you got from the SHOW data_directory; command, and
DESTINATION_DIRECTORY is the new directory for the database files.

Make sure the permissions, owner and group are the same in the old and new directory (including all levels above the
DESTINATION_DIRECTORY). The owner and group should be both postgres, at the notable exception of some
symbolic links in server.crt and server.key.

Note: If the permissions of these links need to be changed, use the -h option of chown to avoid changing the
permissions of the destination of the links. In case you have changed the permission of the links destination by
mistake, they should typically be (beware that this might depend on your actual distribution!):

-rw-r--r-- 1 root root 989 Mar 1 2012 /etc/ssl/certs/ssl-cert-snakeoil.pem
-rw-r----- 1 root ssl-cert 1704 Mar 1 2012 /etc/ssl/private/ssl-cert-snakeoil.key

Then you can change the postgres configuration file, that should typically be located here:

1.1. User’s guide 9

AiiDA documentation, Release 0.7.0

/etc/postgresql/9.1/main/postgresql.conf

Make a backup version of this file, then look for the line defining data_directory and replace it with the new
data directory path:

data_directory = 'NEW_DATA_DIRECTORY'

Then start again the database daemon:

service postgresql start

You can check that the data directory has indeed changed:

psql
SHOW data_directory;
\q

Before removing definitely the previous location of the database files, first rename it and test AiiDA with the new
database location (e.g. do simple queries like verdi code list or create a node and store it). If everything went
fine, you can delete the old database location.

How to set up an incremental backup for the repository

Apart from the database backup, you should also backup the AiiDA repository. For small repositories, this can be
easily done by a simple directory copy or, even better, with the use of the rsync command which can copy only
the differences. However, both of the aforementioned approaches are not efficient in big repositories where even a
partial recursive directory listing may take significant time, especially for filesystems where accessing a directory has
a constant (and significant) latency time. Therefore, we provide scripts for making efficient backups of the AiiDA
repository.

Before running the backup script, you will have to configure it. There-
fore you should execute the backup_setup.py which is located under
MY_AIIDA_FOLDER/aiida/common/additions/backup_script. For example:

verdi -p PROFILENAME run MY_AIIDA_FOLDER/aiida/common/additions/backup_script/backup_setup.py

where PROFILENAME is the name of the profile you want to use (if you don’t specify the -p option, the default
profile will be used). This will ask a set of questions. More precisely, it will initially ask for:

• The backup folder. This is the destination of the backup configuration file. By default a folder named backup
in your .aiida directory is proposed to be created.

• The destination folder of the backup. This is the destination folder of the files to be
backed up. By default it is a folder inside the aforementioned backup folder (e.g.
/home/aiida_user/.aiida/backup/backup_dest).

Note: You should backup the repository on a different disk than the one in which you have the AiiDA repository! If
you just use the same disk, you don’t have any security against the most common data loss cause: disk failure. The
best option is to use a destination folder mounted over ssh. For this you need to install sshfs (under ubuntu: sudo
apt-get install sshfs).

E.g. Imagine that you run your calculations on server_1 and you would like to take regular repository backups to
server_2. Then, you could mount a server_2 directory via sshfs on server_1 using the following command on server_1:

sshfs -o idmap=user -o rw backup_user@server_2:/home/backup_user/backup_destination_dir/
/home/aiida_user/remote_backup_dir/

10 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

You should put this line into the actions performed at start-up (under gnome you can access them by typing
gnome-session-properties in a terminal), so that the remote directory is mounted automatically after a reboot
(but do not put it in your .bashrc file otherwise each time you open a new terminal, your computer will complain
that the mount point is not empty...).

A template backup configuration file (backup_info.json.tmpl) will be copied in the backup folder. You can
set the backup variables by yourself after renaming the template file to backup_info.json, or you can answer the
questions asked by the script, and then backup_info.json will be created based on you answers.

The main script backs up the AiiDA repository that is referenced by the current AiiDA database. The script will
start from the oldest_object_backedup date or the date of the oldest node/workflow object found and it
will periodically backup (in periods of periodicity days) until the ending date of the backup specified by
end_date_of_backup or days_to_backup

The backup parameters to be set in the backup_info.json are:

• periodicity (in days): The backup runs periodically for a number of days defined in the periodicity variable.
The purpose of this variable is to limit the backup to run only on a few number of days and therefore to limit the
number of files that are backed up at every round. e.g. "periodicity": 2 Example: if you have files in
the AiiDA repositories created in the past 30 days, and periodicity is 15, the first run will backup the files of the
first 15 days; a second run of the script will backup the next 15 days, completing the backup (if it is run within
the same day). Further runs will only backup newer files, if they are created.

• oldest_object_backedup (timestamp or null): This is the timestamp of the oldest object that was backed
up. If you are not aware of this value or if it is the first time that you start a backup up for this repository,
then set this value to null. Then the script will search the creation date of the oldest workflow or node
object in the database and it will start the backup from that date. E.g. "oldest_object_backedup":
"2015-07-20 11:13:08.145804+02:00"

• end_date_of_backup: If set, the backup script will backup files that have a modification date until the
value specified by this variable. If not set, the ending of the backup will be set by the following variable
(days_to_backup) which specifies how many days to backup from the start of the backup. If none of
these variables are set (end_date_of_backup and days_to_backup), then the end date of backup
is set to the current date. E.g. "end_date_of_backup": null or "end_date_of_backup":
"2015-07-20 11:13:08.145804+02:00"

• days_to_backup: If set, you specify how many days you will backup from the starting date of your backup.
If it set to null and also end_date_of_backup is set to null, then the end date of the backup is set to the
current date. You can not set days_to_backup & end_date_of_backup at the same time (it will lead
to an error). E.g. "days_to_backup": null or "days_to_backup": 5

• backup_length_threshold (in hours): The backup script runs in rounds and on every round it backs-
up a number of days that are controlled primarily by periodicity and also by end_date_of_backup
/ days_to_backup, for the last backup round. The backup_length_threshold specifies the lowest
acceptable round length. This is important for the end of the backup.

• backup_dir: The destination directory of the backup. e.g. "backup_dir":
"/home/aiida_user/.aiida/backup/backup_dest"

To start the backup, run the start_backup.py script. Run as often as needed to complete a full backup, and then
run it periodically (e.g. calling it from a cron script, for instance every day) to backup new changes.

Note: You can set up a cron job using the following command:

sudo crontab -u aiida_user -e

It will open an editor where you can add a line of the form:

1.1. User’s guide 11

AiiDA documentation, Release 0.7.0

00 03 * * * /home/aiida_user/.aiida/backup/start_backup.py 2>&1 | mail -s "Incremental backup of the repository" aiida_user_email@domain.net

or (if you need to backup a different profile than the default one):

00 03 * * * verdi -p PROFILENAME run /home/aiida_user/.aiida/backup/start_backup.py 2>&1 | mail -s "Incremental backup of the repository" aiida_user_email@domain.net

This will launch the backup of the database every day at 3 AM, and send the output (or any error message) to the email
address of the user (provided the mail command – from mailutils – is configured appropriately).

Finally, do not forget to exclude the repository folder from the normal backup of your home directory!

1.1.3 Installation and Deployment of AiiDA

If you are updating from a previous version and you don’t want to reinstall everything from scratch, read the instruc-
tions here.

Supported architecture

AiiDA has a few strict requirements, in its current version: first, it will run only on Unix-like systems - it is tested (and
developed) in Mac OS X and Linux (Ubuntu), but other Unix flavours should work as well.

Moreover, on the clusters (computational resources) side, it expects to find a Unix system, and the default shell is
required to be bash.

Installing python

AiiDA requires python 2.7.x (only CPython has been tested). It is probable that you already have a version of python
installed on your computer. To check, open a terminal and type:

python -V

that will print something like this:

Python 2.7.3

If you don’t have python installed, or your version is outdated, please install a suitable version of python (either refer
to the manual of your Linux distribution, or for instance you can download the ActiveState Python from ActiveState.
Choose the appropriate distribution corresponding to your architecture, and with version 2.7.x.x).

Installation of the core dependencies

Database

As a first thing, choose and setup the database that you want to use.

Other core dependencies

Before continuing, you still need to install a few more programs. Some of them are mandatory, while others are
optional (but often strongly suggested), also depending for instance on the type of database that you plan to use.

12 Chapter 1. User’s guide

http://www.activestate.com/activepython/downloads

AiiDA documentation, Release 0.7.0

Here is a list of packages/programs that you need to install (for each of them, there may be a specific/easier way to
install them in your distribution, as for instance apt-get in Debian/Ubuntu -see below for the specific names of
packages to install- or yum in RedHat/Fedora).

• git (required to download the code)

• python-pip (required to automatically download and install further python packages required by AiiDA)

• ipython (optional, but strongly recommended for interactive usage)

• python 2.7 development files (these may be needed; refer to your distribution to know how to locate and install
them)

• To support SQLite:

– SQLite3 development files (required later to compile the library, when configuring the python sqlite mod-
ule; see below for the Ubuntu module required to install these files)

• To support PostgreSQL:

– PostgreSQL development files (required later to compile the library, when configuring the python psy-
copg2 module; see below for the Ubuntu module required to install these files)

For Ubuntu, you can install the above packages using (tested on Ubuntu 12.04, names may change in different re-
leases):

sudo apt-get install git python-pip ipython python2.7-dev

Note: For the latter line, please use the same version (in the example above is 9.1) of the postgresql server
that you installed (in this case, to install the server of the same version, use the sudo apt-get install
postgresql-9.1 command).

If you want to use postgreSQL, use a version greater than 9.1 (the greatest that your distribution supports).

For Mac OS X, you may either already have some of the dependencies above (e.g., git), or you can download binary
packages to install (e.g., for PostgreSQL you can download and install the binary package from the official website).

Downloading the code

Download the code using git in a directory of your choice (~/git/aiida in this tutorial), using the following
command:

git clone https://USERNAME@bitbucket.org/aiida_team/aiida_core.git

(or use git@bitbucket.org:aiida_team/aiida_core.git if you are downloading through SSH; note
that this requires your ssh key to be added on the Bitbucket account.)

Python dependencies

Python dependencies are managed using pip, that you have installed in the previous steps.

As a first step, check that pip is at its most recent version.

One possible way of doing this is to update pip with itself, with a command similar to the following:

sudo pip install -U pip

Then, install the python dependencies is as simple as this:

1.1. User’s guide 13

http://git-scm.com/
https://pypi.python.org/pypi/pip
http://ipython.org/
http://www.sqlite.org/
http://www.postgresql.org/

AiiDA documentation, Release 0.7.0

cd ~/git/aiida # or the folder where you downloaded AiiDA
pip install --user -U -r requirements.txt

(this will download and install requirements that are listed in the requirements.txt file; the --user option
allows to install the packages as a normal user, without the need of using sudo or becoming root). Check that every
package is installed correctly.

There are some additional dependencies need to be installed if you are using PostgreSQL or MySql as backend
database. No additional dependency is required for SQLite.

For PostgreSQL:

pip install --user psycopg2==2.6

For MySQL:

pip install --user MySQL-python==1.2.5

Note: This step should work seamlessly, but there are a number of reasons for which problems may occur. Often
googling for the error message helps in finding a solution. Some common pitfalls are described in the notes below.

Note: if the pip install command gives you this kind of error message:

OSError: [Errno 13] Permission denied: '/usr/local/bin/easy_install'

then try again as root:

sudo pip install -U -r requirements.txt

If everything went smoothly, congratulations! Now the code is installed! However, we need still a few steps to properly
configure AiiDA for your user.

Note: if the pip install command gives you an error that resembles the one shown below, you might need to
downgrade to an older version of pip:

Cannot fetch index base URL https://pypi.python.org/simple/

To downgrade pip, use the following command:

sudo easy_install pip==1.2.1

Note: Several users reported the need to install also libqp-dev:

apt-get install libqp-dev

But under Ubuntu 12.04 this is not needed.

Note: If the installation fails while installing the packages related to the database, you may have not installed or set
up the database libraries as described in the section Other core dependencies.

14 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

In particular, on Mac OS X, if you installed the binary package of PostgreSQL, it is possible that the PATH environment
variable is not set correctly, and you get a “Error: pg_config executable not found.” error. In this case, discover where
the binary is located, then add a line to your ~/.bashrc file similar to the following:

export PATH=/the/path/to/the/pg_config/file:${PATH}

and then open a new bash shell. Some possible paths can be found at this Stackoverflow link and a non-exhaustive list
of possible paths is the following (version number may change):

• /Applications/Postgres93.app/Contents/MacOS/bin

• /Applications/Postgres.app/Contents/Versions/9.3/bin

• /Library/PostgreSQL/9.3/bin/pg_config

Similarly, if the package installs but then errors occur during the first of AiiDA (with Symbol not found errors
or similar), you may need to point to the path where the dynamical libraries are. A way to do it is to add a line similar
to the following to the ~/.bashrc and then open a new shell:

export DYLD_FALLBACK_LIBRARY_PATH=/Library/PostgreSQL/9.3/lib:$DYLD_FALLBACK_LIBRARY_PATH

(you should of course adapt the path to the PostgreSQL libraries).

AiiDA configuration

Path configuration

The main interface to AiiDA is through its command-line tool, called verdi. For it to work, it must be on the system
path, and moreover the AiiDA python code must be found on the python path.

To do this, add the following to your ~/.bashrc file (create it if not already present):

export PYTHONPATH=~/git/aiida:${PYTHONPATH}
export PATH=~/git/aiida/bin:${PATH}

and then source the .bashrc file with the command source ~/.bashrc, or login in a new window.

Note: replace ~/git/aiida with the path where you installed AiiDA. Note also that in the PYTHONPATH you
simply have to specify the AiiDA path, while in PATH you also have to append the /bin subfolder!

Note: if you installed the modules with the --user parameter during the pip install step, you will need to
add one more directory to your PATH variable in the ~/.bashrc file. For Linux systems, the path to add is usually
~/.local/bin:

export PATH=~/git/aiida/bin:~/.local/bin:${PATH}

For Mac OS X systems, the path to add is usually ~/Library/Python/2.7/bin:

export PATH=~/git/aiida/bin:~/Library/Python/2.7/bin:${PATH}

To verify if this is the correct path to add, navigate to this location and you should find the executable supervisord
in the directory.

To verify if the path setup is OK:

1.1. User’s guide 15

http://stackoverflow.com/questions/21079820/how-to-find-pg-config-pathlink

AiiDA documentation, Release 0.7.0

• type verdi on your terminal, and check if the program starts (it should provide a list of valid commands). If it
doesn’t, check if you correctly set up the PATH environmente variable above.

• go in your home folder or in another folder different from the AiiDA folder, run python or ipython and try
to import a module, e.g. typing:

import aiida

If the setup is ok, you shouldn’t get any error. If you do get an ImportError instead, check if you correctly
set up the PYTHONPATH environment variable in the steps above.

Bash completion verdi fully supports bash completion (i.e., the possibility to press the TAB of your keyboard to
get a list of sensible commands to type. We strongly suggest to enable bash completion by adding also the following
line to your .bashrc, after the previous lines:

eval "$(verdi completioncommand)"

If you feel that the bash loading time is becoming too slow, you can instead run the:

verdi completioncommand

on a shell, and copy-paste the output directly inside your .bashrc file, instead of the eval "$(verdi
completioncommand)" line.

Remember, after any modification to the .bashrc file, to source it, or to open a new shell window.

Note: remember to check that your .bashrc is sourced also from your .profile or .bash_profile script.
E.g., if not already present, you can add to your ~/.bash_profile the following lines:

if [-f ~/.bashrc]
then

. ~/.bashrc
fi

AiiDA first setup

Run the following command:

verdi install

to configure AiiDA. The command will guide you through a process to configure the database, the repository location,
and it will finally (automatically) run a django migrate command, if needed, that creates the required tables in the
database and installs the database triggers.

The first thing that will be asked to you is the timezone, extremely important to get correct dates and times for your
calculations.

AiiDA will do its best to try and understand the local timezone (if properly configured on your machine), and will
suggest a set of sensible values. Choose the timezone that fits best to you (that is, the nearest city in your timezone -
for Lausanne, for instance, we choose Europe/Zurich) and type it at the prompt.

If the automatic zone detection did not work for you, type instead another valid string. A list of valid strings can be
found at http://en.wikipedia.org/wiki/List_of_tz_database_time_zones but for the definitive list of timezones supported
by your system, open a python shell and type:

16 Chapter 1. User’s guide

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

AiiDA documentation, Release 0.7.0

import pytz
print pytz.all_timezones

as AiiDA will not accept a timezone string that is not in the above list.

As a second parameter to input during the verdi install phase, the “Default user email” is asked.

We suggest here to use your institution email, that will be used to associate the calculations to you.

Note: In AiiDA, the user email is used as username, and also as unique identifier when importing/exporting data from
AiiDA.

Note: Even if you choose an email different from the default one (aiida@localhost), a user with email
aiida@localhost will be set up, with its password set to None (disabling access via this user via API or Web
interface).

The existence of a default user is internally useful for multi-user setups, where only one user runs the daemon, even if
many users can simultaneously access the DB. See the page on setting up AiiDA in multi-user mode for more details
(only for advanced users).

Note: The password, in the current version of AiiDA, is not used (it will be used only in the REST API and in the
web interface). If you leave the field empty, no password will be set and no access will be granted to the user via the
REST API and the web interface.

Then, the following prompts will help you configure the database. Typical settings are:

Insert your timezone: Europe/Zurich
Default user email: richard.wagner@leipzig.de
Database engine: sqlite3
AiiDA Database location: /home/wagner/.aiida/aiida.db
AiiDA repository directory: /home/wagner/.aiida/repository/
[...]
Configuring a new user with email 'richard.wagner@leipzig.de'
First name: Richard
Last name: Wagner
Institution: BRUHL, LEIPZIG
The user has no password, do you want to set one? [y/N] y
Insert the new password:
Insert the new password (again):

Note: When the “Database engine” is asked, use ‘sqlite3’ only if you want to try out AiiDA without setting up a
database.

However, keep in mind that for serious use, SQLite has serious limitations!! For instance, when many calculations
are managed at the same time, the database file is locked by SQLite to avoid corruption, but this can lead to timeouts
that do not allow to AiiDA to properly store the calculations in the DB.

Therefore, for production use of AiiDA, we strongly suggest to setup a “real” database as PostgreSQL or MySQL.
Then, in the “Database engine” field, type either ‘postgres’ or ‘mysql’ according to the database you chose to use. See
here for the documentation to setup such databases (including info on how to proceed with verdi install in this
case).

1.1. User’s guide 17

AiiDA documentation, Release 0.7.0

At the end, AiiDA will also ask to configure your user, if you set up a user different from aiida@localhost.

If something fails, there is a high chance that you may have misconfigured the database. Double-check your settings
before reporting an error.

Note: The repository will contain the same number of folders as the number of nodes plus the number of workflows.
For very large databases, some operations on the repository folder, such as rsync or scanning its content, might be very
slow, and if they are performed reguarly this will slow down the computer due to an intensive use of the hard drive.
Check out our tips in the troubeshooting section in case this happens.

Start the daemon

If you configured your user account with your personal email (or if in general there are more than just one user) you
will not be able to start the daemon with the command verdi daemon start before its configuration.

If you are working in a single-user mode, and you are sure that nobody else is going to run the daemon,
you can configure your user as the (only) one who can run the daemon.

To configure the deamon, run:

verdi daemon configureuser

and (after having read and understood the warning text that appears) insert the email that you used above during the
verdi install phase.

To try AiiDA and start the daemon, run:

verdi daemon start

If everything was done correctly, the daemon should start. You can inquire the daemon status using:

verdi daemon status

and, if the daemon is running, you should see something like:

* aiida-daemon[0] RUNNING pid 12076, uptime 0:39:05

* aiida-daemon-beat[0] RUNNING pid 12075, uptime 0:39:05

To stop the daemon, use:

verdi daemon stop

A log of the warning/error messages of the daemon can be found in in ~/.aiida/daemon/log/, and can also
be seen using the verdi daemon logshow command. The daemon is a fundamental component of AiiDA, and
it is in charge of submitting new calculations, checking their status on the cluster, retrieving and parsing the results of
finished calculations, and managing the workflow steps.

Congratulations, your setup is complete!

Before going on, however, you will need to setup at least one computer (i.e., on computational resource as a cluster or
a supercomputer, on which you want to run your calculations) and one code. The documentation for these steps can
be found here.

18 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Optional dependencies

CIF manipulation

For the manipulation of Crystallographic Information Framework (CIF) files, following dependencies are required to
be installed:

• PyCifRW

• pymatgen

• pyspglib

• jmol

• Atomic Simulation Environment (ASE)

• cod-tools

First four can be installed from the default repositories:

sudo pip install pycifrw==3.6.2.1
sudo pip install pymatgen==3.0.13
sudo pip install pyspglib
sudo apt-get install jmol

ASE has to be installed from source:

curl https://wiki.fysik.dtu.dk/ase-files/python-ase-3.8.1.3440.tar.gz > python-ase-3.8.1.3440.tar.gz
tar -zxvf python-ase-3.8.1.3440.tar.gz
cd python-ase-3.8.1.3440
setup.py build
setup.py install
export PYTHONPATH=$(pwd):$PYTHONPATH

For the setting up of cod-tools please refer to installation of cod-tools.

Further comments and troubleshooting

• For some reasons, on some machines (notably often on Mac OS X) there is no default locale defined, and when
you run verdi install for the first time it fails (see also this issue of django). To solve the problem, first
remove the sqlite database that was created.

Then, run in your terminal (or maybe even better, add to your .bashrc, but then remember to open a new shell
window!):

export LANG="en_US.UTF-8"
export LC_ALL="en_US.UTF-8"

and then run verdi install again.

• [Only for developers] The developer tests of the SSH transport plugin are performed connecting to localhost.
The tests will fail if a passwordless ssh connection is not set up. Therefore, if you want to run the tests:

– make sure to have a ssh server. On Ubuntu, for instance, you can install it using:

sudo apt-get install openssh-server

– Configure a ssh key for your user on your machine, and then add your public key to the authorized keys of
localhsot. The easiest way to achieve this is to run:

1.1. User’s guide 19

http://www.iucr.org/resources/cif
https://pypi.python.org/pypi/PyCifRW/3.6.2
http://pymatgen.org
http://spglib.sourceforge.net/pyspglibForASE/
http://jmol.sourceforge.net
https://wiki.fysik.dtu.dk/ase/
https://code.djangoproject.com/ticket/16017

AiiDA documentation, Release 0.7.0

ssh-copy-id localhost

(it will ask your password, because it is connecting via ssh to localhost to install your public key inside
~/.ssh/authorized_keys).

Updating AiiDA from a previous version

Note: A few important points regarding the updates:

• If you encounter any problems and/or inconsistencies, delete any .pyc files that may have remained from the
previous version. E.g. If you are in your AiiDA folder you can type find . -name "*.pyc" -type f
-delete.

• The requirements file may have changed. Please be sure that you have installed all the needed requirements.
This can be done by executing: pip install --user -U -r requirements.txt.

Updating from 0.6.0 Django to 0.7.0 Django

In version 0.7 we have changed the Django database schema and we also have updated the AiiDA configuration files.

• Stop your daemon (using verdi daemon stop).

• Store your aiida source folder somewhere in case you did some modifications to some files.

• Replace the aiida folder with the new one (either from the tar.gz or, if you are using git, by doing a git pull).
If you use the same folder name, you will not need to update the PATH and PYTHONPATH variables.

• Run a verdi command, e.g., verdi calculation list. This should raise an exception, and
in the exception message you will see the command to run to update the schema version of the DB
(v.0.7.0 is using a newer version of the schema). The command will look like python manage.py
--aiida-profile=default migrate, but please read the message for the correct command to run.

• If you run verdi calculation list again now, it should work without error messages.

• To update the AiiDA configuration files, you should execute the migration script (python
_your_aiida_folder_/aiida/common/additions/migration_06dj_to_07dj.py).

• You can now restart your daemon and work as usual.

Updating from 0.6.0 Django to 0.7.0 SQLAlchemy

The SQLAlchemy backend is in beta mode for version 0.7.0. Therefore some of the verdi commands may not work as
expected or at all (these are very few). If you would like to test the new backend with your existing AiiDA database,
you should convert it to the new JSON format. We provide a transition script that will update your config files and
change your database to the new schema.

Note: Please note that the transition script expects that you are already at version 0.6.0. Therefore if you use a
previous version of AiiDA please update first to 0.6.0.

• Stop your daemon (using verdi daemon stop).

• Store your aiida source folder somewhere in case you did some modifications to some files.

20 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

• Replace the aiida folder with the new one (either from the tar.gz or, if you are using git, by doing a git pull).
If you use the same folder name, you will not need to update the PATH and PYTHONPATH variables.

• Go to you AiiDA folder and run ipython. Then execute from
aiida.backends.sqlalchemy.transition_06dj_to_07sqla import transition and
transition(profile="your_profile",group_size=10000) by replacing your_profile
with the name of the profile that you would like to transition.

• You can now exit ipython, restart your daemon and work as usual.

Updating from 0.5.0 to 0.6.0

This migration will update your AiiDA configuration files making them compatible with AiiDA version 0.6.0.

Note: We performed a lot of changes to introduce in one of our following releases a second object-relational mapper
(we will refer to it as back-end) for the management of the used DBMSs and more specifically of PostgreSQL.

Even if most of the needed restructuring & code addition has been finished, a bit of more work is needed before we
make the new back-end available.

Note: A few important points regarding the upgrade:

• Please try to checkout the latest version from the corresponding development branch. Problems encountered are
resolved and fixes are pushed to the branch.

• You can not directly import data (verdi import) that you have exported (verdi export) with a pre-
vious version of AiiDA. Please use this script to convert it to the new schema. (Usage: python
convert_exportfile_version.py input_file output_file).

To perform the update:

• Stop your daemon (using verdi daemon stop).

• Backup your configuration files that are in .aiida directory.

• Replace the aiida folder with the new one (e.g. by doing a git pull). If you use the same folder name, you
will not need to update the PATH and PYTHONPATH variables.

• Execute the migration script (python _your_aiida_folder_/aiida/common/additions/migration.py).

• Start again you daemon (using verdi daemon start).

Updating from 0.4.1 to 0.5.0

• Stop your daemon (using verdi daemon stop)

• Store your aiida source folder somewhere in case you did some modifications to some files

• Replace the aiida folder with the new one (either from the tar.gz or, if you are using git, by doing a git pull).
If you use the same folder name, you will not need to update the PATH and PYTHONPATH variables

• Run a verdi command, e.g., verdi calculation list. This should raise an exception, and
in the exception message you will see the command to run to update the schema version of the DB
(v.0.5.0 is using a newer version of the schema). The command will look like python manage.py
--aiida-profile=default migrate, but please read the message for the correct command to run.

• If you run verdi calculation list again now, it should work without error messages.

1.1. User’s guide 21

AiiDA documentation, Release 0.7.0

• You can now restart your daemon and work as usual.

Note: If you modified or added files, you need to put them back in place. Note that if you were working on a plugin,
the plugin interface changed: you need to change the CalcInfo returning also a CodeInfo, as specified here and also
accept a Code object among the inputs (also described in the same page).

1.1.4 Setup of computers and codes

Before being able to run the first calculation, you need to setup at least one computer and one code, as described below.

Remote computer requirements

A computer in AiiDA denotes any computational resource (with a batch job scheduler) on which you will run your
calculations. Computers typically are clusters or supercomputers.

Requirements for a computer are:

• It must run a Unix-like operating system

• The default shell must be bash

• It should have a batch scheduler installed (see here for a list of supported batch schedulers)

• It must be accessible from the machine that runs AiiDA using one of the available transports (see below).

The first step is to choose the transport to connect to the computer. Typically, you will want to use the SSH transport,
apart from a few special cases where SSH connection is not possible (e.g., because you cannot setup a password-less
connection to the computer). In this case, you can install AiiDA directly on the remote cluster, and use the local
transport (in this way, commands to submit the jobs are simply executed on the AiiDA machine, and files are simply
copied on the disk instead of opening an SFTP connection).

If you plan to use the local transport, you can skip to the next section.

If you plan to use the SSH transport, you have to configure a password-less login from your user to the cluster. To
do so type first (only if you do not already have some keys in your local ~/.ssh directory - i.e. files like
id_rsa.pub):

ssh-keygen -t rsa

Then copy your keys to the remote computer (in ~/.ssh/authorized_keys) with:

ssh-copy-id YOURUSERNAME@YOURCLUSTERADDRESS

replacing YOURUSERNAME and YOURCLUSTERADDRESS by respectively your username and cluster address. Fi-
nally add the following lines to ~/.ssh/config (leaving an empty line before and after):

Host YOURCLUSTERADDRESS
User YOURUSERNAME
HostKeyAlgorithms ssh-rsa
IdentityFile YOURRSAKEY

replacing YOURRSAKEY by the path to the rsa private key you want to use (it should look like ~/.ssh/id_rsa).

Note: In principle you don’t have to put the IdentityFile line if you have only one rsa key in your ~/.ssh
folder.

22 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Before proceeding to setup the computer, be sure that you are able to connect to your cluster using:

ssh YOURCLUSTERADDRESS

without the need to type a password. Moreover, make also sure you can connect via sftp (needed to copy files). The
following command:

sftp YOURCLUSTERADDRESS

should show you a prompt without errors (possibly with a message saying Connected to
YOURCLUSTERADDRESS).

Warning: Due to a current limitation of the current ssh transport module, we do not support ECDSA, but only
RSA or DSA keys. In the present guide we’ve shown RSA only for simplicity. The first time you connect to the
cluster, you should see something like this:

The authenticity of host 'YOURCLUSTERADDRESS (IP)' can't be established.
RSA key fingerprint is xx:xx:xx:xx:xx.
Are you sure you want to continue connecting (yes/no)?

Make sure you see RSA written. If you already installed the keys in the past, and you don’t know which keys you
are using, you could remove the cluster YOURCLUSTERADDRESS from the file ~/.ssh/known-hosts (backup it
first!) and try to ssh again. If you are not using a RSA or DSA key, you may see later on a submitted calculation
going in the state SUBMISSIONFAILED.

Note: If the ssh command works, but the sftp command does not (e.g. it just prints Connection closed),
a possible reason can be that there is a line in your ~/.bashrc that either produces an output, or an error. Re-
move/comment it until no output or error is produced: this should make sftp working again.

Finally, try also:

ssh YOURCLUSTERADDRESS QUEUE_VISUALIZATION_COMMAND

replacing QUEUE_VISUALIZATION_COMMAND by the scheduler command that prints on screen the status of the
queue on the cluster (i.e. qstat for PBSpro scheduler, squeue for SLURM, etc.). It should print a snapshot of the
queue status, without any errors.

Note: If there are errors with the previous command, then edit your ~/.bashrc file in the remote computer and add a
line at the beginning that adds the path to the scheduler commands, typically (here for PBSpro):

export PATH=$PATH:/opt/pbs/default/bin

Or, alternatively, find the path to the executables (like using which qsub)

Note: If you need your remote .bashrc to be sourced before you execute the code (for instance to change the PATH),
make sure the .bashrc file does not contain lines like:

[-z "$PS1"] && return

or:

case $- in

i) ;;

*) return;;
esac

1.1. User’s guide 23

AiiDA documentation, Release 0.7.0

in the beginning (these would prevent the bashrc to be executed when you ssh to the remote computer). You can check
that e.g. the PATH variable is correctly set upon ssh, by typing (in your local computer):

ssh YOURCLUSTERADDRESS 'echo $PATH'

Note: If you need to ssh to a computer A first, from which you can then connect to computer B you wanted to connect
to, you can use the proxy_command feature of ssh, that we also support in AiiDA. For more information, see Using
the proxy_command option with ssh.

Computer setup and configuration

The configuration of computers happens in two steps.

Note: The commands use some readline extensions to provide default answers, that require an advanced terminal.
Therefore, run the commands from a standard terminal, and not from embedded terminals as the ones included in text
editors, unless you know what you are doing. For instance, the terminal embedded in emacs is known to give
problems.

1. Setup of the computer, using the:

verdi computer setup

command. This command allows to create a new computer instance in the DB.

Tip: The code will ask you a few pieces of information. At every prompt, you can type the ? character and
press <enter> to get a more detailed explanation of what is being asked.

Tip: You can press <CTRL>+C at any moment to abort the setup process. Nothing will be stored in the DB.

Note: For multiline inputs (like the prepend text and the append text, see below) you have to press <CTRL>+D
to complete the input, even if you do not want any text.

Here is a list of what is asked, together with an explanation.

• Computer name: the (user-friendly) name of the new computer instance which is about to be created in
the DB (the name is used for instance when you have to pick up a computer to launch a calculation on
it). Names must be unique. This command should be thought as a AiiDA-wise configuration of computer,
independent of the AiiDA user that will actually use it.

• Fully-qualified hostname: the fully-qualified hostname of the computer to which you want to connect
(i.e., with all the dots: bellatrix.epfl.ch, and not just bellatrix). Type localhost for the
local transport.

• Description: A human-readable description of this computer; this is useful if you have a lot of computers
and you want to add some text to distinguish them (e.g.: “cluster of computers at EPFL, installed in 2012,
2 GB of RAM per CPU”)

24 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

• Enabled: either True or False; if False, the computer is disabled and calculations associated with it will
not be submitted. This allows to disable temporarily a computer if it is giving problems or it is down for
maintenance, without the need to delete it from the DB.

• Transport type: The name of the transport to be used. A list of valid transport types can be obtained
typing ?

• Scheduler type: The name of the plugin to be used to manage the job scheduler on the computer. A list
of valid scheduler plugins can be obtained typing ?. See here for a documentation of scheduler plugins in
AiiDA.

• AiiDA work directory: The absolute path of the directory on the remote computer where AiiDA will
run the calculations (often, it is the scratch of the computer). You can (should) use the {username}
replacement, that will be replaced by your username on the remote computer automatically: this allows
the same computer to be used by different users, without the need to setup a different computer for each
one. Example:

/scratch/{username}/aiida_work/

• mpirun command: The mpirun command needed on the cluster to run parallel MPI programs. You can
(should) use the {tot_num_mpiprocs} replacement, that will be replaced by the total number of cpus,
or the other scheduler-dependent fields (see the scheduler docs for more information). Some examples:

mpirun -np {tot_num_mpiprocs}
aprun -n {tot_num_mpiprocs}
poe

• Text to prepend to each command execution: This is a multiline string, whose content will be prepended
inside the submission script before the real execution of the job. It is your responsibility to write proper
bash code! This is intended for computer-dependent code, like for instance loading a module that should
always be loaded on that specific computer. Remember to end the input by pressing <CTRL>+D. A practi-
cal example:

export NEWVAR=1
source some/file

A not-to-do example:

#PBS -l nodes=4:ppn=12

(it’s the plugin that will do this!)

• Text to append to each command execution: This is a multiline string, whose content will be appended
inside the submission script after the real execution of the job. It is your responsibility to write proper bash
code! This is intended for computer-dependent code. Remember to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID in the database (pk, i.e. the principal
key, and uuid).

2. Configuration of the computer, using the:

verdi computer configure COMPUTERNAME

command. This will allow to access more detailed configurations, that are often user-dependent and also depend
on the specific transport (for instance, if the transport is SSH, it will ask for username, port, ...).

The command will try to provide automatically default answers, mainly reading the existing ssh configuration
in ~/.ssh/config, and in most cases one simply need to press enter a few times.

1.1. User’s guide 25

AiiDA documentation, Release 0.7.0

Note: At the moment, the in-line help (i.e., just typing ? to get some help) is not yet supported in verdi
configure, but only in verdi setup.

For local transport, you need to run the command, even if nothing will be asked to you. For ssh transport,
the following will be asked:

• username: your username on the remote machine

• port: the port to connect to (the default SSH port is 22)

• look_for_keys: automatically look for the private key in ~/.ssh. Default: True.

• key_filename: the absolute path to your private SSH key. You can leave it empty to use the default SSH
key, if you set look_for_keys to True.

• timeout: A timeout in seconds if there is no response (e.g., the machine is down. You can leave it empty
to use the default value.

• allow_agent: If True, it will try to use an SSH agent.

• proxy_command: Leave empty if you do not need a proxy command (i.e., if you can directly connect to
the machine). If you instead need to connect to an intermediate computer first, you need to provide here
the command for the proxy: see documentation here for how to use this option, and in particular the notes
here for the format of this field.

• compress: True to compress the traffic (recommended)

• load_system_host_keys: True to load the known hosts keys from the default SSH location (recommended)

• key_policy: What is the policy in case the host is not known. It is a string among the following:

– RejectPolicy (default, recommended): reject the connection if the host is not known.

– WarningPolicy (not recommended): issue a warning if the host is not known.

– AutoAddPolicy (not recommended): automatically add the host key at the first connection to the
host.

After these two steps have been completed, your computer is ready to go!

Note: To check if you set up the computer correctly, execute:

verdi computer test COMPUTERNAME

that will run a few tests (file copy, file retrieval, check of the jobs in the scheduler queue) to verify that everything
works as expected.

Note: If you are not sure if your computer is already set up, use the command:

verdi computer list

to get a list of existing computers, and:

verdi computer show COMPUTERNAME

to get detailed information on the specific computer named COMPUTERNAME. You have also the:

verdi computer rename OLDCOMPUTERNAME NEWCOMPUTERNAME

and:

26 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

verdi computer delete COMPUTERNAME

commands, whose meaning should be self-explanatory.

Note: You can delete computers only if no entry in the database is using them (as for instance Calculations, or
RemoteData objects). Otherwise, you will get an error message.

Note: It is possible to disable a computer.

Doing so will prevent AiiDA from connecting to the given computer to check the state of calculations or to submit
new calculations. This is particularly useful if, for instance, the computer is under maintenance but you still want to
use AiiDA with other computers, or submit the calculations in the AiiDA database anyway.

When the computer comes back online, you can re-enable it; at this point pending calculations in the TOSUBMIT state
will be submitted, and calculations WITHSCHEDULER will be checked and possibly retrieved.

The relevant commands are:

verdi computer enable COMPUTERNAME
verdi computer disable COMPUTERNAME

Note that the above commands will disable the computer for all AiiDA users. If instead, for some reason, you want to
disable the computer only for a given user, you can use the following command:

verdi computer disable COMPUTERNAME --only-for-user USER_EMAIL

(and the corresponding verdi computer enable command to re-enable it).

Code setup and configuration

Once you have at least one computer configured, you can configure the codes.

In AiiDA, for full reproducibility of each calculation, we store each code in the database, and attach to each calculation
a given code. This has the further advantage to make very easy to query for all calculations that were run with a given
code (for instance because I am looking for phonon calculations, or because I discovered that a specific version had a
bug and I want to rerun the calculations).

In AiiDA, we distinguish two types of codes: remote codes and local codes, where the distinction between the two is
described here below.

Remote codes

With remote codes we denote codes that are installed/compiled on the remote computer. Indeed, this is very often the
case for codes installed in supercomputers for high-performance computing applications, because the code is typically
installed and optimized on the supercomputer.

In AiiDA, a remote code is identified by two mandatory pieces of information:

• A computer on which the code is (that must be a previously configured computer);

• The absolute path of the code executable on the remote computer.

1.1. User’s guide 27

AiiDA documentation, Release 0.7.0

Local codes

With local codes we denote codes for which the code is not already present on the remote machine, and must be copied
for every submission. This is the case if you have for instance a small, machine-independent Python script that you
did not copy previously in all your clusters.

In AiiDA, a local code can be set up by specifying:

• A folder, containing all files to be copied over at every submission

• The name of executable file among the files inside the folder specified above

Setting up a code

The:

verdi code

command allows to manage codes in AiiDA.

To setup a new code, you execute:

verdi code setup

and you will be guided through a process to setup your code.

Tip: The code will ask you a few pieces of information. At every prompt, you can type the ? character and press
<enter> to get a more detailed explanation of what is being asked.

You will be asked for:

• label: A label to refer to this code. Note: this label is not enforced to be unique. However, if you try to keep
it unique, at least within the same computer, you can use it later to refer and use to your code. Otherwise, you
need to remember its ID or UUID.

• description: A human-readable description of this code (for instance “Quantum Espresso v.5.0.2 with 5.0.3
patches, pw.x code, compiled with openmpi”)

• default input plugin: A string that identifies the default input plugin to be used to generate new calculations to
use with this code. This string has to be a valid string recognized by the CalculationFactory function. To
get the list of all available Calculation plugin strings, use the verdi calculation plugins command.
Note: if you do not want to specify a default input plugin, you can write the string “None”, but this is strongly
discouraged, because then you will not be able to use the .new_calc method of the Code object.

• local: either True (for local codes) or False (for remote codes). For the meaning of the distinction, see above.
Depending on your choice, you will be asked for:

– LOCAL CODES:

* Folder with the code: The folder on your local computer in which there are the files to be stored in
the AiiDA repository, and that will then be copied over to the remote computers for every submitted
calculation. This must be an absolute path on your computer.

* Relative path of the executable: The relative path of the executable file inside the folder entered in
the previous step.

– REMOTE CODES:

* Remote computer name: The computer name as on which the code resides, as configured and stored
in the AiiDA database

28 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

* Remote absolute path: The (full) absolute path of the code executable on the remote machine

For any type of code, you will also be asked for:

• Text to prepend to each command execution: This is a multiline string, whose content will be prepended
inside the submission script before the real execution of the job. It is your responsibility to write proper
bash code! This is intended for code-dependent code, like for instance loading the modules that are
required for that specific executable to run. Example:

module load intelmpi

Remember to end the input by pressing <CTRL>+D.

• Text to append to each command execution: This is a multiline string, whose content will be appended inside
the submission script after the real execution of the job. It is your responsibility to write proper bash code!
This is intended for code-dependent code. Remember to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID of the code in the database (the pk, i.e. the principal
key, and the uuid).

Note: Codes are a subclass of the Node class, and as such you can attach any set of attributes to the code. These can
be extremely useful for querying: for instance, you can attach the version of the code as an attribute, or the code family
(for instance: “pw.x code of Quantum Espresso”) to later query for all runs done with a pw.x code and version more
recent than 5.0.0, for instance. However, in the present AiiDA version you cannot add attributes from the command
line using verdi, but you have to do it using Python code.

Note: You can change the label of a code by using the following command:

verdi code rename "ID"

(Without the quotation marks!) “ID” can either be the numeric ID (PK) of the code (preferentially), or possibly its
label (or label@computername), if this string uniquely identifies a code.

You can also list all available codes (and their relative IDs) with:

verdi code list

The verdi code list accepts some flags to filter only codes on a given computer, only codes using a specific
plugin, etc.; use the -h command line option to see the documentation of all possible options.

You can then get the information of a specific code with:

verdi code show "ID"

Finally, to delete a code use:

verdi code delete "ID"

(only if it wasn’t used by any calculation, otherwise an exception is raised)

And now, you are ready to launch your calculations! You may want to follow to the examples of how you can submit
a single calculation, as for instance the specific tutorial for Quantum Espresso.

1.1.5 Plug-ins for AiiDA

AiiDA plug-ins are input generators and output parsers, enabling the integration of codes into AiiDA calculations and
workflows.

1.1. User’s guide 29

mailto:label@computername

AiiDA documentation, Release 0.7.0

Available plugins

Quantum Espresso

Description Quantum Espresso is a suite of open-source codes for electronic-structure calculations from first prin-
ciples, based on density-functional theory, plane waves, and pseudopotentials, freely available online. Documentation
of the code and its internal details can be found in the distributed software, and in the online forum (and its search
engine).

The plugins of quantumespresso in AiiDA are not meant to completely automatize the calculation of the electronic
properties. It is still required an underlying knowledge of how quantum espresso is working, which flags it requires,
etc. A total automatization, if desired, has to be implemented at the level of a workflow.

Currently supported codes are:

• PW: Ground state properties, total energy, ionic relaxation, molecular dynamics, forces, etc...

• CP: Car-Parrinello molecular dynamics

• PH: Phonons from density functional perturbation theory

• Q2R: Fourier transform the dynamical matrices in the real space

• Matdyn: Fourier transform the dynamical matrices in the real space

• NEB: Energy barriers and reaction pathways using the Nudged Elastic Band (NEB) method

Moreover, support for further codes can be implemented adapting the namelist plugin.

Plugins

PW

Description Use the plugin to support inputs of Quantum Espresso pw.x executable.

Supported codes

• tested from pw.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

Inputs

• pseudo, class UpfData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

• kpoints, class KpointsData Reciprocal space points on which to build the wavefunctions. Can either be a
mesh or a list of points with/without weights

• parameters, class ParameterData Input parameters of pw.x, as a nested dictionary, mapping the input of
QE. Example:

{"CONTROL":{"calculation":"scf"},
"ELECTRONS":{"ecutwfc":30.,"ecutrho":100.},
}

30 Chapter 1. User’s guide

http://www.quantum-espresso.org/
http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=18
http://www.quantum-espresso.org/forum/
https://www.google.com/cse/home?cx=000217952118062629757:xew9tb5yarq
https://www.google.com/cse/home?cx=000217952118062629757:xew9tb5yarq

AiiDA documentation, Release 0.7.0

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

• structure, class StructureData

• settings, class ParameterData (optional) An optional dictionary that activates non-default operations. For a
list of possible values to pass, see the section on the advanced features.

• parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous QE cal-
culation is copied in the scratch of the new calculation.

• vdw_table, class SinglefileData (optional) If specified, it should be a file for the van der Waals kernel
table. The file is copied in the pseudo subfolder, without changing its name, and without any check, so it is your
responsibility to select the correct file that you want to use.

Outputs
Note: The output_parameters has more parsed values in the EPFL version and output_bands is parsed only in the
EPFL version.

There are several output nodes that can be created by the plugin, according to the calculation details. All output nodes
can be accessed with the calculation.out method.

• output_parameters ParameterData (accessed by calculation.res) Contains the scalar properties. Ex-
ample: energy (in eV), total_force (modulus of the sum of forces in eV/Angstrom), warnings (possible error
messages generated in the run).

• output_array ArrayData Produced in case of calculations which do not change the structure, otherwise, an
output_trajectory is produced. Contains vectorial properties, too big to be put in the dictionary. Exam-
ple: forces (eV/Angstrom), stresses, ionic positions. Quantities are parsed at every step of the ionic-relaxation /
molecular-dynamics run.

• output_trajectory ArrayData Produced in case of calculations which change the structure, otherwise an
output_array is produced. Contains vectorial properties, too big to be put in the dictionary. Example:
forces (eV/Angstrom), stresses, ionic positions. Quantities are parsed at every step of the ionic-relaxation /
molecular-dynamics run.

• output_band (non spin polarized calculations)) or output_band1 + output_band2 (spin polarized calculations)
BandsData Present only if parsing is activated with the ‘ALDO_BANDS‘ setting. Contains the list of elec-
tronic energies for every kpoint. If calculation is a molecular dynamics or a relaxation run, bands refer only to
the last ionic configuration.

• output_structure StructureData Present only if the calculation is moving the ions. Cell and ionic positions
refer to the last configuration.

1.1. User’s guide 31

AiiDA documentation, Release 0.7.0

• output_kpoints KpointsData Present only if the calculation changes the cell shape. Kpoints refer to the last
structure.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Additional advanced features In this section we describe how to use some advanced functionality in the Quantum
ESPRESSO pw.x plugin (note that most of them apply also to the cp.x plugin).

While the input link with name ‘parameters’ is used for the content of the namelists, additional parameters can be
specified in the ‘settings’ input, also of type ParameterData.

Below we summarise some of the options that you can specify, and their effect. In each case, after having defined the
content of settings_dict, you can use it as input of a calculation calc by doing:

calc.use_settings(ParameterData(dict=settings_dict))

Parsing band energies During each scf or nscf run, QE stores the band energies at the k-points of interest in .xml
files in the output directory. If you want to retrieve and parse them, you can set:

settings_dict = {
'also_bands': True

}

Fixing some atom coordinates If you want to ask QE to keep some coordinates of some atoms fixed (called
if_pos in the QE documentation, and typically specified with 0 or 1 values after the atomic coordinates), you
can specify the following list of lists:

settings_dict = {
'fixed_coords': [

[True,False,False],
[True,True,True],
[False,False,False],
[False,False,False],
[False,False,False],
],

}

the list of lists (of booleans) must be of length N times 3, where N is the number of sites (i.e., atoms) in the input
structure. False means that the coordinate is free to move, True blocks that coordinate.

Passing an explicit list of kpoints on a grid Some codes (e.g., Wannier90) require that a QE calculation is run with
an explicit grid of points (i.e., all points in a grid, even if they are equivalent by symmetry). Instead of generating it
manually, you can pass a usual KpointsData specifying a mesh, and then pass the following variable:

settings_dict = {
'force_kpoints_list': True,

}

Gamma-only calculation If you are using only the Gamma point (a grid of 1x1x1 without offset), you may want to
use the following flag to tell QE to use the gamma-only routines (typically twice faster):

32 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

settings_dict = {
'gamma_only': False,

}

Initialization only Sometimes you want to run QE but stop it immediately after the initialisation part (e.g. to parse
the number of symmetries detected, the number of G vectors, of k-points, ...) In this case, by specifying:

settings_dict = {
'only_initialization': True,

}

a file named aiida.EXIT (where aiida is the prefix) will be also generated, asking QE to exit cleanly after the
initialisation.

Different set of namelists The QE plugin will automatically figure out which namelists should be specified (and in
which order) depending con CONTROL.calculation (e.g. for SCF only CONTROL, SYSTEM, ELECTRONS, but
also IONS for RELAX, ...). If you want to override the automatic list, you can specify the list of namelists you want
to produce as follows:

settings_dict = {
'namelists': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS', 'CELL', 'OTHERNL'],

}

Adding command-line options If you want to add command-line options to the executable (particularly relevant
e.g. to tune the parallelization level), you can pass each option as a string in a list, as follows:

settings_dict = {
'cmdline': ['-nk', '4'],

}

Using symlinks for the restarts During a restart, the output directory of QE (stored by default in the subfolder
./out) containing charge density, wavefunctions, ...is copied over. This is done in order to make sure one can
perform multiple restarts of the same calculation without affecting it (QE often changes/replaces the content of that
folder).

However, for big calculations this may take time at each restart, or fill the scratch directory of your computing cluster.
If you prefer to use symlinks, pass:

settings_dict = {
'parent_folder_symlink': True,

}

Note: Use this flag ONLY IF YOU KNOW WHAT YOU ARE DOING. In particular, if you run a NSCF with this
flag after a SCF calculation, the scratch directory of the SCF will change and you may have problems restarting other
calculations from the SCF.

Retrieving more files If you know that your calculation is producing additional files that you want to retrieve (and
preserve in the AiiDA repository in the long term), you can add those files as a list as follows (here in the case of a file
named testfile.txt):

1.1. User’s guide 33

AiiDA documentation, Release 0.7.0

settings_dict = {
'additional_retrieve_list': ['testfile.txt'],

}

CP

Description Use the plugin to support inputs of Quantum Espresso cp.x executable. Note that most of the options
are the same of the pw.x plugin, so refer to that page for more details.

Supported codes

• tested from cp.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

Inputs

• pseudo, class UpfData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

• parameters, class ParameterData Input parameters of cp.x, as a nested dictionary, mapping the input of
QE. Example:

{"ELECTRONS":{"ecutwfc":"30","ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

• structure, class StructureData The initial ionic configuration of the CP molecular dynamics.

• settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Check
the section Advanced features (on the PW plugin documentation page) to know which flags can be passed.

• parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous QE cal-
culation is copied in the scratch of the new calculation.

34 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

• output_parameters ParameterData (accessed by calculation.res) Contains the scalar properties. Ex-
ample: energies (in eV) of the last configuration, wall_time, warnings (possible error messages generated in the
run).

• output_trajectory_array TrajectoryData Contains vectorial properties, too big to be put in the dictionary,
like energies, positions, velocities, cells, at every saved step.

• output_structure StructureData Structure of the last step.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

PH
Note: The PH plugin referenced below is available in the EPFL version.

Description Plugin for the Quantum Espresso ph.x executable.

Supported codes

• tested from ph.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

Inputs

• parent_calculation, can either be a PW calculation to get the ground state on which to compute the phonons,
or a PH calculation in case of restarts.

Note: There are no direct links between calculations. The use_parent_calculation will set a link to the Remote-
Folder attached to that calculation. Alternatively, the method use_parent_folder can be used to set this link
directly.

• qpoints, class KpointsData Reciprocal space points on which to build the dynamical matrices. Can either
be a mesh or a list of points. Note: up to QE 5.1 only either an explicit list of 1 qpoint (1 point only) can be
provided, or a mesh (containing gamma).

• parameters, class ParameterData Input parameters of ph.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUTPH":{"ethr-ph":1e-16},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'INPUTPH', 'outdir': scratch directory
'INPUTPH', 'prefix': file prefix
'INPUTPH', 'iverbosity': file prefix
'INPUTPH', 'fildyn': file prefix
'INPUTPH', 'ldisp': logic displacement
'INPUTPH', 'nq1': q-mesh on b1

1.1. User’s guide 35

AiiDA documentation, Release 0.7.0

'INPUTPH', 'nq2': q-mesh on b2
'INPUTPH', 'nq3': q-mesh on b3
'INPUTPH', 'qplot': flag for list of qpoints

• settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

– ‘PARENT_CALC_OUT_SUBFOLDER’: string. The subfolder of the parent scratch to be copied in the
new scratch.

– ‘PREPARE_FOR_D3’: boolean. If True, more files are created in preparation of the calculation of a D3
calculation.

– ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

– ‘PARENT_FOLDER_SYMLINK’: boolean # If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

– ‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file. Example:
[”-npool”,”4”] will produce ph.x -npool 4 < aiida.in

– ‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Extra files to be retrieved. By default, dynamical
matrices, text output and main xml files are retrieved.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

• output_parameters ParameterData (accessed by calculation.res) Contains small properties. Ex-
ample: dielectric constant, warnings (possible error messages generated in the run). Furthermore, vari-
ous dynamical_matrix_* keys are created, each is a dictionary containing the keys q_point and
frequencies.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Matdyn
Note: The Matdyn plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of Quantum Espresso matdyn.x executable.

Supported codes

• tested from matdyn.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work
most of the times).

Inputs

• parameters, class ParameterData Input parameters of pw.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUT":{"ars":"simple"},
}

36 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'INPUT', 'flfrq': file with frequencies in output
'INPUT', 'flvec': file with eigenvecors
'INPUT', 'fldos': file with dos
'INPUT', 'q_in_cryst_coord': for qpoints
'INPUT', 'flfrc': input force constants

• parent_calculation, pass the parent q2r calculation of its FolderData as the parent_folder to pass the input
force constants.

• kpoints, class KpointsData Points on which to compute the interpolated frequencies. Must contain a list of
kpoints.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

• output_parameters ParameterData (accessed by calculation.res) Contains warnings

• output_phonon_bands BandsData Phonon frequencies as a function of qpoints.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Q2R
Note: The Q2R plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of Quantum Espresso q2r.x executable.

Supported codes

• tested from q2r.x v5.0 onwards. Back compatibility is not guaranteed (although versions 4.3x might work most
of the times).

Inputs

• parameters, class ParameterData Input parameters of q2r.x, as a nested dictionary, mapping the input of
QE. Example:

{"INPUT":{"zasr":"simple"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'INPUT', 'fildyn': name of input dynamical matrices
'INPUT', 'flfrc': name of output force constants

1.1. User’s guide 37

AiiDA documentation, Release 0.7.0

• parent_calculation. Use the parent PH calculation, to take the dynamical matrices and convert them in real
space. Alternatively, use the parent_folder to point explicitely to the retrieved FolderData of the parent PH
calculation.

Outputs

• force_constants SinglefileData A file containing the force constants in real space.

Errors

NEB
Note: The NEB plugin referenced below is available in the EPFL version.

Description Plugin for the Quantum Espresso neb.x executable.

Supported codes

• tested from neb.x v5.2 onwards.

Inputs

• pseudo, class UpfData One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family method, if a
family of pseudopotentials has been installed..

• kpoints, class KpointsData Reciprocal space points on which to build the wavefunctions. Can either be a
mesh or a list of points with/without weights

• neb_parameters, class ParameterData Input parameters of neb.x, as a nested dictionary, mapping the input
of QE. Example:

{"PATH":{"num_of_images":6, "string_method": "neb", "nstep_path": 50},
}

See the QE documentation for the full list of variables and their meaning.

• pw_parameters, class ParameterData Nested dictionary containing the input parameters in PW format
common to all images. Example:

{"CONTROL":{"calculation":"scf"},
"ELECTRONS":{"ecutwfc":"30","ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning. Note: some keywords don’t have to
be specified or Calculation will enter the SUBMISSIONFAILED state, and are already taken care of by AiiDA
(are related with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species

38 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

• first_structure, class StructureData Structure of the first image.

• last_structure, class StructureData Structure of the last image.

• settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

– ‘CLIMBING_IMAGES’: list of integers. Specify the indices of the climbing images. Read only if the
climbing image scheme is set to manual in neb_parameters.

– ‘FIXED_COORDS’: a list Nx3 booleans, with N the number of atoms. If True, the atomic position is
fixed.

– ‘GAMMA_ONLY’: boolean. If True and the kpoint mesh is gamma, activate a speed up of the calculation.

– ‘NAMELISTS’: list of strings. Specify all the list of Namelists to be printed in the input file.

– ‘PARENT_FOLDER_SYMLINK’: boolean. If True, create a symlnk to the scratch of the parent folder,
otherwise the folder is copied (default: False)

– ‘CMDLINE’: list of strings. parameters to be put after the executable in addition to -input_images 2.
Example: [”-npool”,”4”] will produce neb.x -input_images 2 -npool 4 > aiida.out

– ‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Specify additional files to be retrieved. By default,
the following files are already retrieved: * NEB output file * PATH output file containing the information
on structures and gradients of each image at last iteration * The calculated and interpolated energy profile
as a function of the reaction coordinate (.dat and .int files) * The PW output and xml file for each image

– ‘ALL_ITERATIONS’: boolean. If true the energies and forces for each image at each intermediate
iteration are also parsed and stored in the output node iteration_array (default: False)

• parent_folder, class RemoteData (optional) If specified, the scratch folder coming from a previous NEB
calculation is copied in the scratch of the new calculation.

Outputs There are several output nodes that can be created by the plugin, according to the calculation details. All
output nodes can be accessed with the calculation.out method.

• output_parameters ParameterData (accessed by calculation.res) Contains the data obtained by pars-
ing the NEB output file. Information on the last iteration are only reported. The parsed PW outputs of each image
are also reported as a subdictionaries.

• mep_array ArrayData Contains the parsed data on the calculated and interpolated Minimim Energy Path
(MEP), i.e. the energy profile as a function of the reaction coordinate.

• output_trajectory ArrayData Contains the structure of the images at the last iteration of the NEB calculation,
too big to be put in the dictionary.

• iteration_array ArrayData , and other quantities at intermediate iterations.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

1.1. User’s guide 39

AiiDA documentation, Release 0.7.0

cod-tools

Description cod-tools (more info here) is an open-source collection of command line scripts for handling of Crys-
tallographic Information Framework (CIF) files. The package is developed by the team of Crystallography Open
Database (COD) developers. Detailed information for the usage of each individual script from the package can be
obtained by invoking commands with --help and --usage command line options. For example:

cif_filter --help
cif_filter --usage

• cif_cod_check Parse a CIF file, check if certain data values match COD requirements and IUCr data validation
criteria (Version: 2000.06.09, ftp://ftp.iucr.ac.uk/pub/dvntests or ftp://ftp.iucr.org/pub/dvntests)

• cif_cod_deposit Deposit CIFs into COD database using CGI deposition interface.

• cif_cod_numbers Find COD numbers for the .cif files in given directories of file lists.

• cif_correct_tags Correct misspelled tags in a CIF file.

• cif_filter Parse a CIF file and print out essential data values in the CIF format, the COD CIF style.

This script has also many capabilities – it can restore spacegroup symbols from symmetry operators (con-
sulting pre-defined tables), parse and tidy-up _chemical_formula_sum, compute cell volume, ex-
clude unknown or “empty” tags, and add specified bibliography data.

• cif_fix_values Correct temperature values which have units specified or convert between Celsius degrees and
Kelvins. Changes ‘room/ambiante temperature’ to the appropriate numeric value. Fixes other undefined
values (no, not measured, etc.) to ‘?’ symbol. Determine a report about changes made into standart I/O
streams.

Fixes enumeration values in CIF file against CIF dictionaries.

• cif_mark_disorder Marks disorder in CIF files judging by distance and occupancy.

• cif_molecule Restores molecules from a CIF file.

• cif_select Read CIFs and print out selected tags with their values.

• cif_split Split CIF files into separate files with one data_ section each.

This script parses given CIF files to separate the datablocks, so is capable of splitting non-correctly for-
matted and nested CIF files.

• cif_split_primitive Split CIF files into separate files with one data_ section each.

This is a very naive and primitive version of the splitter, which expects each data_... section to start on a
new line. It may fail on some CIF files that do not follow such convention. For splitting of any correctly
formatted CIF files, one must do full CIF parsing using CIF grammar and tokenisation of the file.

Installation Currently cod-tools package is distributed via source code only. To prepare the package for usage (as
of source revision 2930) one has to follow these steps:

• Retrieve the source from the Subversion repository:

svn co svn://www.crystallography.net/cod-tools/trunk cod-tools

• Install the dependencies:

bash -e cod-tools/dependencies/Ubuntu-12.04/install.sh

40 Chapter 1. User’s guide

http://wiki.crystallography.net/cod-tools
http://www.iucr.org/resources/cif
http://www.crystallography.net
http://www.crystallography.net
ftp://ftp.iucr.ac.uk/pub/dvntests
ftp://ftp.iucr.org/pub/dvntests
https://subversion.apache.org

AiiDA documentation, Release 0.7.0

Note: the dependency installer is written for Ubuntu 12.04, but works fine on some older or newer Ubuntu as
well as Debian distributions.

• Build and test:

make -C cod-tools

• Prepare the environment: Described below are two methods of setting the environment for cod-tools as of
source revision 3393:

– Using Bash:

CODTOOLS_SRC=~/src/cod-tools

export PATH=${CODTOOLS_SRC}/scripts:${PATH}
export PERL5LIB=${CODTOOLS_SRC}/src/lib/perl5:${PERL5LIB}

These commands can be pasted to ~/.bashrc file, which is sourced automatically by the AiiDA
before each calculation.

Note: Be sure to restart the AiiDA daemon after modifying the ~/.bashrc.

– Using modulefile:

#%Module1.0###
module-whatis loads the cod-tools environment

set CODTOOLS_SRC ~/src/cod-tools
prepend-path PATH ${CODTOOLS_SRC}/scripts
prepend-path PERL5LIB ${CODTOOLS_SRC}/src/lib/perl5

Examples

• Fix a syntactically incorrect structure:

Some simple common CIF syntax errors can be fixed automatically using cif_filter with --fix-syntax
option. In example, such structure:

data_broken
_publ_section_title "Runaway quote
loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
C 0 0 0

can be fixed (provided it’s stored in test.cif):

cif_filter --fix test.cif

Obtained structure:

1.1. User’s guide 41

http://linux.die.net/man/4/modulefile

AiiDA documentation, Release 0.7.0

data_broken
_publ_section_title 'Runaway quote'
loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
C 0 0 0

A warning message tells what was done:

cif_filter: test.cif(2) data_broken: warning, double-quoted string is missing a closing quote -- fixed

where:

– cif_filter is the name of the used script;

– test.cif is the name of the CIF file;

– 2 is the number of a line in the file;

– data_broken is the CIF datablock name;

– warning is the level of severity;

– rest is the message text.

• Fetch a structure from Web, filter and fix it, restore the crystal contents and calculate summary formulae per
each compound in a crystal:

curl --silent http://www.crystallography.net/cod/2231955.cif \
| cif_filter \
| cif_fix_values \
| cif_molecule \
| cif_cell_contents --use-attached-hydrogens

Obtained result:

C9 H14 N
C10 H6 O6 S2
H2 O

As well as a warning message:

cif_molecule: - data_2231955: WARNING, multiplicity ratios are given instead of multiplicities for 39 atoms -- taking calculated values.

• Fetch a structure from Web and mark alternative atoms sharing same site:

curl --silent http://www.crystallography.net/2018107.cif \
| cif_mark_disorder \
| cif_select --cif --tag _atom_site_label

Obtained result:

data_2018107
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_u_iso_or_equiv

42 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

_atom_site_adp_type
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_disorder_assembly
_atom_site_disorder_group
Pb Pb1 0.5000 0.0000 0.2500 0.0213(13) Uani d S 1 4 . .
Mo Mo2 0.0000 0.0000 0.0000 0.022(4) Uani d S 1 4 . .
Pb Pb3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.881(8) 4 A 1
Mo Mo3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.119(8) 4 A 2
Mo Mo1 0.0000 0.5000 0.2500 0.018(3) Uani d S 1 4 . .
O O1 0.2344(13) -0.1372(14) 0.0806(6) 0.0302(17) Uani d . 1 1 . .
O O2 0.2338(14) 0.3648(14) 0.1697(6) 0.0307(17) Uani d . 1 1 . .

As well as output messages:

cif_mark_disorder: - data_2018107: NOTE, atoms 'Mo3', 'Pb3' were marked as alternatives.
cif_mark_disorder: - data_2018107: NOTE, 1 site(s) were marked as disorder assemblies.

Note: atoms Mo3 and Pb3 share the same site, as can be found out by checking their coordi-
nates. Moreover, sum of their occupancies are close to 1. In the original CIF file these sites have both
_atom_site_disorder_assembly and _atom_site_disorder_group set to ‘.‘.

Plugins

codtools.ciffilter

Description This plugin is designed for filter-like codes from the cod-tools package, but can be adapted to any com-
mand line utilities, accepting CIF file as standard input and producing CIF file as standard output and messages/errors
in the standard output (if any), without modifications.

Supported codes

• cif_adjust_journal_name_volume

• cif_CODify

• cif_correct_tags

• cif_create_AMCSD_pressure_temp_tags

• cif_estimate_spacegroup

• cif_eval_numbers

• cif_fillcell

• cif_filter

• cif_fix_values

• cif_hkl_check

• cif_mark_disorder

• cif_molecule

1.1. User’s guide 43

AiiDA documentation, Release 0.7.0

• cif_p1

• cif_reformat_AMCSD_author_names

• cif_reformat_pubmed_author_names

• cif_reformat_uppercase_author_names

• cif_select 1

• cif_set_value

• cif_symop_apply

Inputs

• CifData A CIF file.

• ParameterData (optional) Contains the command line parameters, specified in key-value fashion. Leading
dashes (single or double) must be stripped from the keys. Values can be arrays with multiple items. Keys
without values should point to boolean True value. In example:

calc = Code.get_from_string('cif_filter').new_calc()
calc.use_parameters(ParameterData(dict={

's' : True,
'exclude-empty-tags' : True,
'dont-reformat-spacegroup': True,
'add-cif-header' : ['standard.txt', 'user.txt'],
'bibliography' : 'bibliography.cif',

}))

is equivallent to command line:

cif_filter \
-s \
--exclude-empty-tags \
--dont-reformat-spacegroup \
--add-cif-header standard.txt \
--add-cif-header user.txt \
--bibliography bibliography.cif

Note: it should be kept in mind that no escaping of Shell metacharacters are performed by the plugin.
AiiDA encloses each command line argument with single quotes and that’s being relied on.

Outputs

• CifData A CIF file.

• ParameterData (optional) Contains lines of output messages and/or errors. For example:

print load_node(1, parent_class=ParameterData).get_dict()

would print:

{u'output_messages': [u'cif_cod_check: test.cif data_4000000: _publ_section_title is undefined']}

Errors Run-time errors are returned line-by-line in the ParameterData object.
1 Only with the --output-cif command line option.

44 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

codtools.cifcellcontents

Description This plugin is used for chemical formula calculations from the CIF files, as being done by
cif_cell_contents code from the cod-tools package.

Supported codes

• cif_cell_contents

Inputs

• CifData A CIF file.

• ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Outputs

• ParameterData Contains formulae in (CIF datablock name,‘formula‘) pairs. For example:

print load_node(1, parent_class=ParameterData).get_dict()

would print:

{u'formulae': {
u'4000001': u'C24 H17 F5 Fe',
u'4000002': u'C24 H17 F5 Fe',
u'4000003': u'C24 H17 F5 Fe',
u'4000004': u'C22 H8 F10 Fe'

}})

Note: data_ is not prepended to the CIF datablock name – the CIF file, used for the example above,
contains CIF datablocks data_4000001, data_4000002, data_4000003 and data_4000004.

• ParameterData Contains lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifcodcheck

Description This plugin is specific for cif_cod_check script.

Supported codes

• cif_cod_check

1.1. User’s guide 45

AiiDA documentation, Release 0.7.0

Inputs

• CifData A CIF file.

• ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Outputs

• ParameterData Contains lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifcoddeposit

Description This plugin is specific for cif_cod_deposit script.

Supported codes

• cif_cod_deposit

Inputs

• CifData A CIF file.

• ParameterData Contains deposition information, such as user name, password and deposition type:

– username: depositor’s user name to access the *COD deposition interface;

– password: depositor’s password to access the *COD deposition interface;

– deposition-type: determines a type of the deposited CIF file, which can be one of the following:

* published: CIF file is already published in a scientific paper;

* prepublication: CIF file is a prepublication material and should not be revealed to the public
until the publication of a scientific paper. In this case, a hold_period also has to be specified;

* personal: CIF file is personal communication.

– url: URL of *COD deposition API (optional, default URL is http://test.crystallography.net/cgi-bin/cif-
deposit.pl);

– journal: name of the journal, where the CIF is/will be published;

– user_email: depositor’s e-mail address;

– author_name: name of the CIF file author;

– author_email: e-mail of the CIF file author;

– hold_period: a period (in number months) for the structure to be kept on-hold (only for
deposition_type == ’prepublication’).

46 Chapter 1. User’s guide

http://test.crystallography.net/cgi-bin/cif-deposit.pl
http://test.crystallography.net/cgi-bin/cif-deposit.pl

AiiDA documentation, Release 0.7.0

Outputs

• ParameterData Contains the result of deposition:

– output_messages: lines of output messages and/or errors. For more information refer to outputs for
codtools.ciffilter plugin.

– status: a string, one of the following:

* SUCCESS: a deposition is successful, newly assigned *COD number(s) is/are present in
output_messages field;

* DUPLICATE: submitted data is already in the *COD database thus is not deposited once more;

* UNCHANGED: the redeposition of the data is unnecessary, as nothing was changed in the contents of
file to be replaced;

* INPUTERROR: an error, related to the input, has occurred, detailed reason may be present in
output_messages field;

* SERVERERROR: an internal server error has occurred, detailed reason may be present in
output_messages field;

* UNKNOWN: the result of the deposition is unknown.

Errors Run-time errors are returned line-by-line in the output_messages field of ParameterData object.

codtools.cifcodnumbers

Description This plugin is specific for cif_cod_numbers script.

Supported codes

• cif_cod_numbers

Inputs

• CifData A CIF file.

• ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information refer to inputs for codtools.ciffilter plugin.

Outputs

• ParameterData Contains two subdictionaries: duplicates and errors. In duplicates correspon-
dence between the database and supplied file(s) is described. Example:

{
"duplicates": [
{
"codid": "4000099",
"count": 1,
"formula": "C50_H44_N2_Ni_O4"

}
],
"errors": []

}

1.1. User’s guide 47

AiiDA documentation, Release 0.7.0

Here codid is numeric ID of a hit in the database, count is total number of hits for the particular
datablock and formula is the summary formula of the described datablock.

Errors Run-time errors are returned line-by-line in the ParameterData object.

codtools.cifsplitprimitive

Description This plugin is used by cif_split and cif_split_primitive codes from the cod-tools pack-
age.

Supported codes

• cif_split 1

• cif_split_primitive

Inputs

• CifData A CIF file.

• ParameterData (optional) Contains the command line parameters, specified in key-value fashion. For more
information, refer to inputs for codtools.ciffilter plugin.

Outputs

• List of CifData One or more CIF files.

• ParameterData (optional) Contains lines of output messages and/or errors.

Errors Run-time errors are returned line-by-line in the ParameterData object.

ASE

Note: The ASE plugin referenced below is available in the EPFL version.

Description ASE (Atomic Simulation Environment) is a set of tools and Python modules for setting up, manipulat-
ing, running, visualizing and analyzing atomistic simulations. The ASE code is freely available under the GNU LGPL
license (the ASE installation guide and the source can be found here).

Besides the manipulation of structures (Atoms objects), one can attach calculators to a structure and run it to
compute, as an example, energies or forces. Multiple calculators are currently supported by ASE, like GPAW, Vasp,
Abinit and many others.

In AiiDA, we have developed a plugin which currently supports the use of ASE calculators for total energy calculations
and structure optimizations.

Plugins
1 Incompatible with --output-prefixed and --output-tar command line options.

48 Chapter 1. User’s guide

http://wiki.fysik.dtu.dk/ase/

AiiDA documentation, Release 0.7.0

ASE
Note: The ASE plugin referenced below is available in the EPFL version.

Description Use the plugin to support inputs of ASE structure optimizations and of total energy calculations. Re-
quires the installation of ASE on the computer where AiiDA is running.

Supported codes

• tested on ASE v3.8.1 and on GPAW v0.10.0. ASE back compatibility is not guaranteed. Calculators different
from GPAW should work, if they follow the interface description of ASE calculators, but have not been tested.
Usage requires the installation of both ASE and of the software used by the calculator.

Inputs

• kpoints, class KpointsData (optional) Reciprocal space points on which to build the wavefunctions. Only
kpoints meshes are currently supported.

• parameters, class ParameterData Input parameters that defines the calculations to be performed, and their
parameters. See the ASE documentation for more details.

• structure, class StructureData

• settings, class ParameterData (optional) An optional dictionary that activates non-default operations. Pos-
sible values are:

– ‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file. Example:
[”-npool”,”4”] will produce gpaw -npool 4 < aiida_input

– ‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Specify additional files to be retrieved. By default,
the output file and the xml file are already retrieved.

Outputs Actual output production depends on the input provided.

• output_parameters ParameterData (accessed by calculation.res) Contains the scalar properties. Ex-
ample: energy (in eV) or warnings (possible error messages generated in the run).

• output_array ArrayData Stores vectorial quantities (lists, tuples, arrays), if requested in output. Example:
forces, stresses, positions. Units are those produced by the calculator.

• output_structure StructureData Present only if the structure is optimized.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi calculation
logshow command). Moreover, they are stored in the ParameterData under the key warnings, and are accessible
with Calculation.res.warnings.

Examples The following example briefly describe the usage of GPAW within AiiDA, assuming that both ASE and
GPAW have been installed on the remote machine. Note that ASE calculators, at times, require the definition of
environment variables. Take your time to find them and make sure that they are loaded by the submission script of
AiiDA (use the prepend text fields of a Code, for example).

First of all install the AiiDA Code as usual, noting that, if you plan to use the serial version of GPAW (applies to all
other calculators) the remote absolute path of the code has to point to the python executable (i.e. the output of which
python on the remote machine, typically it might be /usr/bin/python). If the parallel version of GPAW is
used, set instead the path to gpaw-python.

1.1. User’s guide 49

AiiDA documentation, Release 0.7.0

To understand the plugin, it is probably easier to try to run one test, to see the python script which is produced and
executed on the remote machine. We describe in the following some example script, which can be called through
the verdi run command (example: verdi run test_script.py). You should see a folder submit_test
created in the location from which you run the command. Here there is the input script that is going to be executed in
the remote machine, with the syntax of the ASE software.

In this first example script and execute it with the verdi run command. This is a minimal script that
uses GPAW and a plane-wave basis to compute the total energy of a structure. Note that for a serial calculation, it is
necessary to run the calculation.set_withmpi(False) method. Note also, that by default, only the total
energy of the structure is computed and retrieved.

This second example instead shows a demo of all possible options supported by the current plugin. By specify-
ing an optimizer key in the dictionary, the ASE optimizers are run. In the example, the QuasiNewton algorithm is run
to minimize the forces and find the equilibrium structures. By specifying the key “calculator_getters”, the code will
get from the calculator, the properties which are specified in the value, using the get method of the calculator; similar
applies for the atoms_getters, which will call the atoms.get method. extra_lines and post_lines are
used to insert python commands that are executed before or after the call to the calculators. extra_imports is used
to specify the import of more modules.

Lastly, this script is an example of how to run GPAW parallel. Essentially, nothing has to be changed in input,
except that there is no need to call the method calculation.set_withmpi(False).

Wannier90

Note: The Wannier plugin referenced below is available in the EPFL version.

Description Wannier90 is a tool for obtaining maximally localized wannier functions from DFT calculations. The
Wannier90 code is freely available under the GNU LGPL license (the Wannier90 installation guide and the source can
be found here).

In AiiDA, this plugin will support input to wannier90, through any calculations done in QE, via the pw2wann code.

Plugins

Wannier90
Note: The Wannier90 plugin referenced below is available in the EPFL version.

Description Wannier90 is a tool for obtaining maximally localized wannier functions from DFT calculations. The
Wannier90 code is freely available under the GNU LGPL license (the Wannier90 installation guide and the source can
be found here).

In AiiDA, this plugin will support input to wannier90, through any calculations done in QE, via the pw2wannier90.x
code.

Supported codes

• tested on Wannier90 v2.0.1

50 Chapter 1. User’s guide

http://www.wannier.org/index.html
http://www.wannier.org/index.html

AiiDA documentation, Release 0.7.0

Inputs

• parent_calculation, The parent calculation can either be a PW calculation or Wannier90. See the Files Copied
for more details.

Note: There are no direct links between calculations. The use_parent_calculation will set a link to the Remote-
Folder attached to that calculation. Alternatively, the method use_parent_folder can be used to set this link
directly.

• kpoints, class KpointsData Reciprocal space points on which to build the wannier functions. Note
that this must be an evenly spaced grid and must be constructed using an mp_grid kpoint mesh, with
{‘FORCE_KPOINTS_LIST’: True} setting in the PW nscf calculation. It is a requirement of Wannier90,
though not of this plugin, that symmetry not be used in the parent calculation, that is the setting card
[’SYSTEM’].update({’nosym’: True}) be applied in the parent calculation.

• kpoints_path, class KpointsData (optional) A set of kpoints which indicate the path to be plotted by wan-
nier90 band plot feature.

• parameters, class ParameterData Input parameters that defines the calculations to be performed, and their
parameters. Unlike the wannier90 code, which does not check capitilization, this plugin is case sensitive. All
keys must be lowercase e.g. num_wann is acceptable but NUM_WANN is not. See the Wannier90 documentation
for more details.

• precode_parameters, class ParameterData (optional) Input parameters for the precode. For this plugin the
precode is expected to be pw2wannier. As with parameters, all keys must be capitalized. See the Wannier90
documentation for more details on the input parameters for pw2wannier.

• structure, class StructureData Input structure mandatory for execution of the code.

• projections, class OrbitalData An OrbitalData object containing it it a list of orbitals

Note: You should construct the projections using the convenience method gen_projections. Which will produce
an OrbitalData given a list of dictionaries. Some examples, taken directly from the wannier90 user guide, would
be:

1. CuO, SP, P, and D on all Cu; SP3 hyrbrids on O.

In Wannier90 Cu:l=0;l=1;l=2 for Cu and O:l=-3 or O:sp3 for O

Would become {’kind_name’:’Cu’,’ang_mtm_name’:[’SP’,’P’,’D’]} for Cu and
{’kind_name’:’O’,’ang_mtm_l’:-3} or {..., ’ang_mtm_name’:[’SP3’]} for O

2. A single projection onto a PZ orbital orientated in the (1,1,1) direction:

In Wannier90 c=0,0,0:l=1:z=1,1,1 or c=0,0,0:pz:z=1,1,1

Would become {’position_cart’:(0,0,0),’ang_mtm_l’:1,’zaxis’:(1,1,1)} or {...
, ’ang_mtm_name’:’PZ’,...}

3. Project onto S, P, and D (with no radial nodes), and S and P (with one radial node) in silicon:

In Wannier90 Si:l=0;l=1;l=2, Si:l=0;l=1;r=2

Would become [{’kind_name’:’Si’,’ang_mtm_l’:[0,1,2]},
{’kind_name’:’Si’,’ang_mtm_l’:[0,1],’radial_nodes’:2}]

• settings, class ParameterData An optional dictionary that activates non-default operations. Possible values
are:

1.1. User’s guide 51

AiiDA documentation, Release 0.7.0

– ‘INIT_ONLY’: If set to true, will only initialize the calculation, but will not run the actual wan-
nierization. That is, wannier90.x -pp aiida.win and precode2wannier < aiida.in >
aiida.out will be run only. This is ideal in use as a start point for future restarts.

– ‘ADDITIONAL_RETRIEVE_LIST’: A list of additional files to be retrieved at the end of the calcula-
tion.

– ‘ADDITIONAL_SYMLINK_LIST’: A list of additional files to be symlinked from the parent calcula-
tion.

– ‘ADDITIONAL_COPY_LIST’: A list of additional files to be copied from the parent calculation.

• use_preprocessing_code a preprocessing code may be supplied, currently the code must be a pw2wannier
code, with which the initial setup of the wannierization will be performed. If a pre_processing_code is sup-
plied the following will be run. wannier90.x -pp aiida.win, precode2wannier < aiida.in
> aiida.out, wannier90.x aiida.win. However, if no preprocessing code is supplied only
wannier90.x aiida.win will be run.

Files Copied Depending on the startup settings used, and what the parent calculation was will alter which files are
copied, which are symlinked see the table below. The goal being to copy the minimum number of files, and to not
symlink to files that will be rewritten. The calculation names used in the table are:

• NOT WANNIER The parent is not a wannier calculation

• HAS PRECODE A wannier90 calculation run with a precode, e.g. initializations

• NO PRECODE A wannier90 calculation run with no precode, e.g. restarts

The following operations will be performed on the files:

• copy: the file, if present, is copied from the parent

• sym: the file, if present, will be symlinked to the parent

• none: the file will neither be copied or symlinked

Parent Calculation
Child Calculation

• NOT WANNIER

• HAS PRECODE

• NO PRECODE
• HAS PRECODE

• ./out/ copy

• .EIG,.MMN,.UNK none

• .AMN none

• .CHK none

• ./out/ sym

• .MMN,.UNK sym

• .AMN, .EIG none

• .CHK none

• ./out/ sym

• .MMN,.UNK sym

52 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

• .AMN, .EIG none

• .CHK none
• NO PRECODE

• NOT ALLOWED

• ./out/ sym

• .MMN,.UNK sym

• .AMN, .EIG sym

• .CHK copy

• ./out/ sym

• .MMN,.UNK sym

• .AMN, .EIG sym

• .CHK copy

Note: For the case where the child has precode and the parent is a wannier calculation the .MMN file
will hard-set not to be written, regardless of what is in the precode_parameters. (i.e. if the parent is not a
wannier90 calc, WRITE_MMN = .false. is automatically set in precode.)

Note: The .MMN file is only calculated for the case of the parent being a NOT WANNIER. (See the table)
If, for whatever reason, you wish to recalculate these files please use NOT WANNIER as a parent.

Outputs

• output_parameters ParameterData (accessed by calculation.res) Contains the scalar proper-
ties. Currently parsed parameters include:

– number_wannier_functions: the number of wannier functions

– Omega_D, Omega_I, Omega_OD, Omega_total wich are: the diagonal Ω𝐷, invariant Ω𝐼 , offdi-
agonal Ω𝑂𝐷, and total spread Ω𝑡𝑜𝑡𝑎𝑙. Units are always Ang^2

– wannier_functions_output a list of dictionaries containing:

* coordinates: the center of the wannier function

* spread: the spread of the wannier function. Units are always Ang^2

* wannier_function: numerical index of the wannier function

* im_re_ratio: if available the Imaginary/Real ratio of the wannier function

– Warnings: parsed list of warnings

– output_verbosity: the output verbosity, throws a warning if any value other than default is
used

– preprocess_only: whether the calc only did the preprocessing step wannier90 -pp

– r2_nm_writeout: whether r^2 nm file was written

– wannierise_convergence_tolerence: the tolerance for convergence, units of Ang^2

1.1. User’s guide 53

AiiDA documentation, Release 0.7.0

– xyz_wf_center_writeout: whether xyz_wf_center file was explicitly and independently writ-
ten

– Other parameters, should match those described in the user guide

• interpolated_bands BandsData If available, will parse the interpolated bands and store them.

Errors Errors of the parsing are reported in the log of the calculation (accessible with the verdi
calculation logshow command). Moreover, they are stored in the ParameterData under the key
warnings, and are accessible with Calculation.res.warnings.

NWChem

Description NWChem is an open-source high performance computational chemistry tool.

Plugins

nwchem.basic

Description A very simple plugin for main NWChem’s nwchem executable.

Inputs

• StructureData A structure.

• ParameterData (optional) A dictionary with control variables. An example (default values):

{
"abbreviation": "aiida_calc", # Short name for the computation
"title": "AiiDA NWChem calculation", # Long name for the computation
"basis": # Basis per chemical type

{
"Ba": "library 6-31g",
"Ti": "library 6-31g",
"O": "library 6-31g",

},
"task": "scf", # Computation task
"add_cell": True, # Include cell parameters?

}

Outputs

• ParameterData A dictionary with energy values. For example:

{
"nuclear_repulsion_energy": "9.194980930276",
"one_electron_energy": "-122.979939235872",
"total_scf_energy": "-75.983997570474",
"two_electron_energy": "37.800960735123"

}

54 Chapter 1. User’s guide

http://www.nwchem-sw.org

AiiDA documentation, Release 0.7.0

nwchem.nwcpymatgen

Description pymatgen-based input plugin for main NWChem‘s nwchem executable.

Inputs

• StructureData (optional) A structure.

• ParameterData A dictionary with control variables.

Outputs

• job_info: ParameterData A dictionary of general parameters of the computation, like details of
compilation, used time and memory.

May also contain one or more of the following:

• output: ParameterData A dictionary describing the job. An example:

{
"basis_set": {},
"corrections": {},
"energies": [],
"errors": [],
"frequencies": null,
"has_error": false,
"job_type": "NWChem Geometry Optimization"

}

• trajectory: TrajectoryData (optional) A trajectory, made of structures, produced in the steps
of geometry optimization.

Note: Functionality to extract structures from NWChem‘s output is not present in pymatgen
3.0.13 or earlier.

Errors Errors are reported in the errors field of output ParameterData dictionary. Additionally,
there’s a boolean flag has_error in the same dictionary.

1.1.6 Scripting with AiiDA

While many common functionalities are provided by either command-line tools (via verdi) or the web
interface, for fine tuning (or automatization) it is useful to directly access the python objects and call their
methods.

This is possible in two ways, either via an interactive shell, or writing and running a script. Both methods
are described below.

1.1. User’s guide 55

AiiDA documentation, Release 0.7.0

verdi shell

By running verdi shell on the terminal, a new interactive IPython shell will be opened (this requires that
IPython is installed on your computer).

Note that simply opening IPython and loading the AiiDA modules will not work (unless you perform the
operations described in the following section) because the database settings are not loaded by default and
AiiDA does not know how to access the database.

Moreover, by calling verdi shell, you have the additional advantage that some classes and modules are
automatically loaded. In particular the following modules/classes are already loaded and available:

from aiida.orm import (Node, Calculation, JobCalculation, Code, Data,
Computer, Group, DataFactory, CalculationFactory)

from aiida.backends.djsite.db import models

Note: It is possible to customize the shell by adding modules to be loaded automatically, thanks to the
verdi devel setproperty verdishell.modules command. See here for more information.

A further advantage is that bash completion is enabled, allowing to press the TAB key to see available
submethods of a given object (see for instance the documentation of the ResultManager).

Writing python scripts for AiiDA

Alternatively, if you do not need an interactive shell but you prefer to write a script and then launch it from
the command line, you can just write a standard python .py file. The only modification that you need to do
is to add, at the beginning of the file and before loading any other AiiDA module, the following two lines:

from aiida import load_dbenv
load_dbenv()

that will load the database settings and allow AiiDA to reach your database. Then, you can load as usual
python and AiiDA modules and classes, and use them. If you want to have the same environment of the
verdi shell interactive shell, you can also add (below the load_dbenv call) the following lines:

from aiida.orm import Calculation, Code, Computer, Data, Node
from aiida.orm import CalculationFactory, DataFactory
from aiida.backends.djsite.db import models

or simply import the only modules that you will need in the script.

While this method will work, we strongly suggest to use instead the verdi run command, described here
below.

The verdi run command and the runaiida executable

In order to simplify the procedure described above, it is possible to execute a python file using verdi
run: this command will accept as parameter the name of a file, and will execute it after having loaded the
modules described above.

The command verdi run has the additional advantage of adding all stored nodes to suitable special
groups, of type autogroup.run, for later usage. You can get the list of all these groups with the command:

56 Chapter 1. User’s guide

http://ipython.org/

AiiDA documentation, Release 0.7.0

verdi group list -t autogroup.run

Some further command line options of verdi run allow the user to fine-tune the autogrouping behavior;
for more details, refer to the output of verdi run -h. Note also that further command line parameters to
verdi run are passed to the script as sys.argv.

Note: It is not possible to run multiple times the load_dbenv() command. Since calling verdi run
will automatically call the load_dbenv() command, you cannot run a script that contains this call (this is
instead needed if you want to run the script simply via python scriptname.py). If you want to allow for
both options, use the following method to discover if the db environment was already loaded:

from aiida import load_dbenv, is_dbenv_loaded

if not is_dbenv_loaded():
load_dbenv()

Finally, we also defined a runaiida command, that simply will pass all its parameters to verdi run.
The reason for this is that one can define a new script to be run with verdi run, add as the first line the
shebang command #!/usr/bin/env runaiida, and give to the file execution permissions, and the file
will become an executable that is run using AiiDA. A simple example could be:

#!/usr/bin/env runaiida
import sys

pk = int(sys.argv[1])
node = load_node(pk)
print "Node {} is: {}".format(pk, repr(node))

import aiida
print "AiiDA version is: {}".format(aiida.get_version())

1.1.7 StructureData tutorial

General comments

This section contains an example of how you can use the StructureData object to create complex crys-
tals.

With the StructureData class we did not try to have a full set of features to manipulate crystal structures.
Indeed, other libraries such as ASE exist, and we simply provide easy ways to convert between the ASE
and the AiiDA formats. On the other hand, we tried to define a “standard” format for structures in AiiDA, that
can be used across different codes.

Tutorial

Take a look at the following example:

alat = 4. # angstrom
cell = [[alat, 0., 0.,],

[0., alat, 0.,],
[0., 0., alat,],

1.1. User’s guide 57

https://wiki.fysik.dtu.dk/ase/

AiiDA documentation, Release 0.7.0

]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.), symbols='Fe')
s.append_atom(position=(alat/2.,alat/2.,alat/2.), symbols='O')

With the commands above, we have created a crystal structure s with a cubic unit cell and lattice parameter
of 4 angstrom, and two atoms in the cell: one iron (Fe) atom in the origin, and one oxygen (O) at the center
of the cube (this cell has been just chosen as an example and most probably does not exist).

Note: As you can see in the example above, both the cell coordinates and the atom coordinates are
expressed in angstrom, and the position of the atoms are given in a global absolute reference frame.

In this way, any periodic structure can be defined. If you want to import from ASE in order to specify the
coordinates, e.g., in terms of the crystal lattice vectors, see the guide on the conversion to/from ASE below.

When using the append_atom() method, further parameters can be passed. In particular, one can specify
the mass of the atom, particularly important if you want e.g. to run a phonon calculation. If no mass is
specified, the mass provided by NIST (retrieved in October 2014) is going to be used. The list of masses is
stored in the module aiida.common.constants, in the elements dictionary.

Moreover, in the StructureData class of AiiDA we also support the storage of crystal structures with
alloys, vacancies or partial occupancies. In this case, the argument of the parameter symbols should
be a list of symbols, if you want to consider an alloy; moreover, you must pass a weights list, with the
same length as symbols, and with values between 0. (no occupancy) and 1. (full occupancy), to specify
the fractional occupancy of that site for each of the symbols specified in the symbols list. The sum of all
occupancies must be lower or equal to one; if the sum is lower than one, it means that there is a given
probability of having a vacancy at that specific site position.

As an example, you could use:

s.append_atom(position=(0.,0.,0.),symbols=['Ba','Ca'],weights=[0.9,0.1])

to add a site at the origin of a structure s consisting of an alloy of 90% of Barium and 10% of Calcium
(again, just an example).

The following line instead:

s.append_atom(position=(0.,0.,0.),symbols='Ca',weights=0.9)

would create a site with 90% probability of being occupied by Calcium, and 10% of being a vacancy.

Utility methods s.is_alloy() and s.has_vacancies() can be used to verify, respectively, if more than
one element if given in the symbols list, and if the sum of all weights is smaller than one.

Note: if you pass more than one symbol, the method s.is_alloy() will always return True, even if only
one symbol has occupancy 1. and all others have occupancy zero:

>>> s = StructureData(cell=[[4,0,0],[0,4,0],[0,0,4]])
>>> s.append_atom(position=(0.,0.,0.), symbols=['Fe', 'O'], weights=[1.,0.])
>>> s.is_alloy()
True

58 Chapter 1. User’s guide

http://www.nist.gov/pml/data/index.cfm

AiiDA documentation, Release 0.7.0

Internals: Kinds and Sites

Internally, the append_atom() method works by manipulating the kinds and sites of the current structure.
Kinds are instances of the Kind class and represent a chemical species, with given properties (compos-
ing element or elements, occupancies, mass, ...) and identified by a label (normally, simply the element
chemical symbol).

Sites are instances of the Site class and represent instead each single site. Each site refers to a Kind to
identify its properties (which element it is, the mass, ...) and to its three spatial coordinates.

The append_atom() works in the following way:

• It creates a new Kind class with the properties passed as parameters (i.e., all parameters except
position).

• It tries to identify if an identical Kind already exists in the list of kinds of the structure (e.g., in the
same atom with the same mass was already previously added). Comparison of kinds is performed
using aiida.orm.data.structure.Kind.compare_with(), and in particular it returns True if
the mass and the list of symbols and of weights are identical (within a threshold). If an identical kind k
is found, it simply adds a new site referencing to kind k and with the provided position. Otherwise,
it appends k to the list of kinds of the current structure and then creates the site referencing to k. The
name of the kind is chosen, by default, equal to the name of the chemical symbol (e.g., “Fe” for iron).

• If you pass more than one species for the same chemical symbol, but e.g. with different masses, a
new kind is created and the name is obtained postponing an integer to the chemical symbol name.
For instance, the following lines:

s.append_atom(position = [0,0,0], symbols='Fe', mass = 55.8)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 57)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 59)

will automatically create three kinds, all for iron, with names Fe, Fe1 and Fe2, and masses 55.8, 57.
and 59. respecively.

• In case of alloys, the kind name is obtained concatenating all chemical symbols names (and a X is
the sum of weights is less than one). The same rules as above are used to append a digit to the kind
name, if needed.

• Finally, you can simply specify the kind_name to automatically generate a new kind with a specific
name. This is the case if you want a name different from the automatically generated one, or for
instance if you want to create two different species with the same properties (same mass, symbols,
...). This is for instance the case in Quantum ESPRESSO in order to describe an antiferromagnetic
cyrstal, with different magnetizations on the different atoms in the unit cell.

In this case, you can for instance use:

s.append_atom(position = [0,0,0], symbols='Fe', mass = 55.845, name='Fe1')
s.append_atom(position = [2,2,2], symbols='Fe', mass = 55.845, name='Fe2')

To create two species Fe1 and Fe2 for iron, with the same mass.

Note: You do not need to specify explicitly the mass if the default one is ok for you. However, when
you pass explicitly a name and it coincides with the name of an existing species, all properties that
you specify must be identical to the ones of the existing species, or the method will raise an exception.

1.1. User’s guide 59

AiiDA documentation, Release 0.7.0

Note: If you prefer to work with the internal Kind and Site classes, you can obtain the same result
of the two lines above with:

from aiida.orm.data.structure import Kind, Site
s.append_kind(Kind(symbols='Fe', mass=55.845, name='Fe1'))
s.append_kind(Kind(symbols='Fe', mass=55.845, name='Fe1'))
s.append_site(Site(kind_name='Fe1', position=[0.,0.,0.]))
s.append_site(Site(kind_name='Fe2', position=[2.,2.,2.]))

Conversion to/from ASE

If you have an AiiDA structure, you can get an ase.Atom object by just calling the get_ase method:

ase_atoms = aiida_structure.get_ase()

Note: As we support alloys and vacancies in AiiDA, while ase.Atom does not, it is not possible to export
to ASE a structure with vacancies or alloys.

If instead you have as ASE Atoms object and you want to load the structure from it, just pass it when
initializing the class:

StructureData = DataFactory('structure')
or:
from aiida.orm.data.structure import StructureData
aiida_structure = StructureData(ase = ase_atoms)

Creating multiple species

We implemented the possibility of specifying different Kinds (species) in the ase.atoms and then importing
them.

In particular, if you specify atoms with different mass in ASE, during the import phase different kinds will be
created:

>>> import ase
>>> StructureData = DataFactory("structure")
>>> asecell = ase.Atoms('Fe2')
>>> asecell[0].mass = 55.
>>> asecell[1].mass = 56.
>>> s = StructureData(ase=asecell)
>>> for kind in s.kinds:
>>> print kind.name, kind.mass
Fe 55.0
Fe1 56.0

Moreover, even if the mass is the same, but you want to get different species, you can use the ASE tags
to specify the number to append to the element symbol in order to get the species name:

60 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

>>> import ase
>>> StructureData = DataFactory("structure")
>>> asecell = ase.Atoms('Fe2')
>>> asecell[0].tag = 1
>>> asecell[1].tag = 2
>>> s = StructureData(ase=asecell)
>>> for kind in s.kinds:
>>> print kind.name
Fe1
Fe2

Note: in complicated cases (multiple tags, masses, ...), it is possible that exporting a AiiDA structure to
ASE and then importing it again will not perfectly preserve the kinds and kind names.

Conversion to/from pymatgen

AiiDA structure can be converted to pymatgen’s Molecule and Structure objects by using, accordingly,
get_pymatgen_molecule and get_pymatgen_structure methods:

pymatgen_molecule = aiida_structure.get_pymatgen_molecule()
pymatgen_structure = aiida_structure.get_pymatgen_structure()

A single method get_pymatgen can be used for both tasks: converting periodic structures (periodic bound-
ary conditions are met in all three directions) to pymatgen’s Structure and other structures to pymatgen’s
Molecule:

pymatgen_object = aiida_structure.get_pymatgen()

It is also possible to convert pymatgen’s Molecule and Structure objects to AiiDA structures:

StructureData = DataFactory("structure")
from_mol = StructureData(pymatgen_molecule=mol)
from_struct = StructureData(pymatgen_structure=struct)

Also in this case, a generic converter is provided:

StructureData = DataFactory("structure")
from_mol = StructureData(pymatgen=mol)
from_struct = StructureData(pymatgen=struct)

Note: Converters work with version 3.0.13 or later of pymatgen. Earlier versions may cause errors.

1.1.8 Quantum Espresso PWscf user-tutorial

This chapter will show how to launch a single PWscf (pw.x) calculation. It is assumed that you have
already performed the installation, and that you already setup a computer (with verdi), installed Quantum
Espresso on the cluster and in AiiDA. Although the code could be quite readable, a basic knowledge of
Python and object programming is useful.

1.1. User’s guide 61

http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Molecule
http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Structure

AiiDA documentation, Release 0.7.0

Your classic pw.x input file

This is the input file of Quantum Espresso that we will try to execute. It consists in the total energy calculation
of a 5 atom cubic cell of BaTiO3. Note also that AiiDA is a tool to use other codes: if the following input is
not clear to you, please refer to the Quantum Espresso Documentation.

&CONTROL
calculation = 'scf'
outdir = './out/'
prefix = 'aiida'
pseudo_dir = './pseudo/'
restart_mode = 'from_scratch'
verbosity = 'high'
wf_collect = .true.

/
&SYSTEM

ecutrho = 2.4000000000d+02
ecutwfc = 3.0000000000d+01
ibrav = 0
nat = 5
ntyp = 3

/
&ELECTRONS

conv_thr = 1.0000000000d-06
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
O 15.9994 O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF
ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
O 2.0000000000 2.0000000000 0.0000000000
O 2.0000000000 0.0000000000 2.0000000000
O 0.0000000000 2.0000000000 2.0000000000
K_POINTS automatic
4 4 4 0 0 0
CELL_PARAMETERS angstrom

4.0000000000 0.0000000000 0.0000000000
0.0000000000 4.0000000000 0.0000000000
0.0000000000 0.0000000000 4.0000000000

In the old way, not only you had to prepare ‘manually’ this file, but also prepare the scheduler submission
script, send everything on the cluster, etc. We are going instead to prepare everything in a more program-
matic way.

Quantum Espresso Pw Walkthrough

We’ve got to prepare a script to submit a job to your local installation of AiiDA. This example will be a rather
long script: in fact there is still nothing in your database, so that we will have to load everything, like the
pseudopotential files and the structure. In a more practical situation, you might load data from the database
and perform a small modification to re-use it.

Let’s say that through the verdi command you have already installed a cluster, say TheHive, and that you
also compiled Quantum Espresso on the cluster, and installed the code pw.x with verdi with label pw-5.1
for instance, so that in the rest of this tutorial we will reference to the code as pw-5.1@TheHive.

62 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Let’s start writing the python script. First of all, we need to load the configuration concerning your particular
installation, in particular, the details of your database installation:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

Code

Now we have to select the code. Note that in AiiDA the object ‘code’ in the database is meant to represent
a specific executable, i.e. a given compiled version of a code. This means that if you install Quantum
Espresso (QE) on two computers A and B, you will need to have two different ‘codes’ in the database
(although the source of the code is the same, the binary file is different).

If you setup the code pw-5.1 on machine TheHive correctly, then it is sufficient to write:

codename = 'pw-5.1@TheHive'
from aiida.orm import Code
code = Code.get_from_string(codename)

Where in the last line we just load the database object representing the code.

Note: the .get_from_string() method is just a helper method for user convenience, but there are
some weird cases that cannot be dealt in a simple way (duplicated labels, code names that are an integer
number, code names containing the ‘@’ symbol, ...: try to not do this! This is not an error, but does not allow
to use the .get_from_string() method to get those calculations). In this case, you can use directly the
.get() method, for instance:

code = Code.get(label='pw-5.1', machinename='TheHive',
useremail='user@domain.com')

or even more generally get the code from its (integer) PK:

code = load_node(PK)

Structure

We now proceed in setting up the structure.

Note: Here we discuss only the main features of structures in AiiDA, needed to run a Quantum ESPRESSO
PW calculation.

For more detailed information, give a look to the StructureData tutorial .

There are two ways to do that in AiiDA, a first one is to use the AiiDA Structure, which we will explain in the
following; the second choice is the Atomic Simulation Environment (ASE) which provides excellent tools to
manipulate structures (the ASE Atoms object needs to be converted into an AiiDA Structure, see the note
at the end of the section).

We first have to load the abstract object class that describes a structure. We do it in the following way:
we load the DataFactory, which is a tool to load the classes by their name, and then call StructureData the

1.1. User’s guide 63

http://wiki.fysik.dtu.dk/ase/

AiiDA documentation, Release 0.7.0

abstract class that we loaded. (NB: it’s not yet a class instance!) (If you are not familiar with the terminology
of object programming, we could take Wikipedia and see their short explanation: in common speech that
one refers to a file as a class, while the file is the object or the class instance. In other words, the class is
our definition of the object Structure, while its instance is what will be saved as an object in the database):

from aiida.orm import DataFactory
StructureData = DataFactory('structure')

We define the cell with a 3x3 matrix (we choose the convention where each ROW represents a lattice
vector), which in this case is just a cube of size 4 Angstroms:

alat = 4. # angstrom
cell = [[alat, 0., 0.,],

[0., alat, 0.,],
[0., 0., alat,],

]

Now, we create the StructureData instance, assigning immediately the cell. Then, we append to the empty
crystal cell the atoms, specifying their element name and their positions:

BaTiO3 cubic structure
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols='Ba')
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols='Ti')
s.append_atom(position=(alat/2.,alat/2.,0.),symbols='O')
s.append_atom(position=(alat/2.,0.,alat/2.),symbols='O')
s.append_atom(position=(0.,alat/2.,alat/2.),symbols='O')

To see more methods associated to the class StructureData, look at the Structure documentation.

Note: When you create a node (in this case a StructureData node) as described above, you are just
creating it in the computer memory, and not in the database. This is particularly useful to run tests without
filling the AiiDA database with garbage.

You will see how to store all the nodes in one shot toward the end of this tutorial; if, however, you want to
directly store the structure in the database for later use, you can just call the store() method of the Node:

s.store()

For an extended tutorial about the creation of Structure objects, check this tutorial.

Note: AiiDA supports also ASE structures. Once you created your structure with ASE, in an object instance
called say ase_s, you can straightforwardly use it to create the AiiDA StructureData, as:

s = StructureData(ase=ase_s)

and then save it s.store().

Parameters

Now we need to provide also the parameters of a Quantum Espresso calculation, like the cutoff for the
wavefunctions, some convergence threshold, etc... The Quantum ESPRESSO pw.x plugin requires to pass

64 Chapter 1. User’s guide

http://en.wikipedia.org/wiki/Object_(computer_science)

AiiDA documentation, Release 0.7.0

this information within a ParameterData object, that is a specific AiiDA data node that can store a dictionary
(even nested) of basic data types: integers, floats, strings, lists, dates, ... We first load the class through
the DataFactory, just like we did for the Structure. Then we create the instance of the object parameter.
To represent closely the structure of the QE input file, ParameterData is a nested dictionary, at the first level
the namelists (capitalized), and then the variables with their values (in lower case).

Note also that numbers and booleans are written in Python, i.e. False and not the Fortran string .false.!

ParameterData = DataFactory('parameter')

parameters = ParameterData(dict={
'CONTROL': {

'calculation': 'scf',
'restart_mode': 'from_scratch',
'wf_collect': True,
},

'SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
},

'ELECTRONS': {
'conv_thr': 1.e-6,
}})

Note: also in this case, we chose not to store the parameters node. If we wanted, we could even have
done it in a single line:

parameters = ParameterData(dict={...}).store()

The experienced QE user will have noticed also that a couple of variables are missing: the prefix, the
pseudo directory and the scratch directory are reserved to the plugin which will use default values, and
there are specific AiiDA methods to restart from a previous calculation.

Input parameters validation

The dictionary provided above is the standard format for storing the inputs of Quantum ESPRESSO pw.x
in the database. It is important to store the inputs of different calculations in a consistent way because
otherwise later querying becomes impossible (e.g. if different units are used for the same flags, if the same
input is provided in different formats, ...).

In the PW input plugin, we provide a function that will help you in both validating the input, and creating the
input in the expected format without remembering in which namelists the keywords are located.

You can access this function as follows. First, you define the input dictionary:

test_dict = {
'CONTROL': {

'calculation': 'scf',
},

'SYSTEM': {
'ecutwfc': 30.,
},

'ELECTRONS': {
'conv_thr': 1.e-6,
}}

1.1. User’s guide 65

AiiDA documentation, Release 0.7.0

Then, you can verify if the input is correct by using the pw_input_helper() function, conveniently ex-
poses also as a input_helper class method of the PwCalculation class:

resdict = CalculationFactory('quantumespresso.pw').input_helper(test_dict, structure=s)

If the input is invalid, the function will raise a InputValidationError exception, and the error message
will have a verbose explanation of the possible errors, and in many cases it will suggest how to fix them.
Otherwise, in resdict you will find the same dictionary you passed in input, potentially slightly modified
to fix some small mistakes (e.g., if you pass an integer value where a float is expected, the type will be
converted). You can then use the output for the input ParameterData node:

parameters = ParameterData(dict=resdict)

As an example, if you pass an incorrect input, e.g. the following where we have introduced a few errors:

test_dict = {
'CONTROL': {

'calculation': 'scf',
},

'SYSTEM': {
'ecutwfc': 30.,
'cosab': 10.,
'nosym': 1,
},

'ELECTRONS': {
'convthr': 1.e-6,
'ecutrho': 100.
}}

After running the input_helper method, you will get an exception with a message similar to the following:

QEInputValidationError: Errors! 4 issues found:

* You should not provide explicitly keyword 'cosab'.

* Problem parsing keyword convthr. Maybe you wanted to specify one of these: conv_thr, nconstr, forc_conv_thr?

* Expected a boolean for keyword nosym, found <type 'int'> instead

* Error, keyword 'ecutrho' specified in namelist 'ELECTRONS', but it should be instead in 'SYSTEM'

As you see, a quite large number of checks are done, and if a name is not provided, a list of similar valid
names is provided (e.g. for the wrong keyword “convthr” above).

There are a few additional options that are useful:

• If you don’t want to remember the namelists, you can pass a ‘flat’ dictionary, without namelists, and
add the flat_mode=True option to input_helper. Beside the usual validation, the function will
reconstruct the correct dictionary to pass as input for the AiiDA QE calculation. Example:

test_dict_flat = {
'calculation': 'scf',
'ecutwfc': 30.,
'conv_thr': 1.e-6,
}

resdict = CalculationFactory('quantumespresso.pw').input_helper(
test_dict_flat, structure=s, flat_mode = True)

and after running, resdict will contain:

66 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

test_dict = {
'CONTROL': {

'calculation': 'scf',
},

'SYSTEM': {
'ecutwfc': 30.,
},

'ELECTRONS': {
'conv_thr': 1.e-6,
}}

where the namelists have been automatically generated.

• You can pass a string with a specific version number for a feature that was added only in a given
version. For instance:

resdict = CalculationFactory('quantumespresso.pw').input_helper(
test_dict, structure=s,version='5.3.0')

If the specific version is not among those for which we have a list of valid parameters, the error
message will tell you which versions are available.

Note: We will try to maintain the input_helper every time a new version of Quantum ESPRESSO is re-
leased, but consider the input_helper function as a utility, rather than the official way to provide the input
– the only officially supported way to provide an input to pw.x is through a direct dictionary, as described
earlier in the section “Parameters”. This applies in particular if you are using very old versions of QE, or
customized versions that accept different parameters.

Other inputs

The k-points have to be saved in another kind of data, namely KpointsData:

KpointsData = DataFactory('array.kpoints')
kpoints = KpointsData()
kpoints.set_kpoints_mesh([4,4,4])

In this case it generates a 4*4*4 mesh without offset. To add an offset one can replace the last line by:

kpoints.set_kpoints_mesh([4,4,4],offset=(0.5,0.5,0.5))

Note: Only offsets of 0 or 0.5 are possible (this is imposed by PWscf).

You can also specify kpoints manually, by inputing a list of points in crystal coordinates (here they all have
equal weights):

import numpy
kpoints.set_kpoints([[i,i,0] for i in numpy.linspace(0,1,10)],

weights = [1. for i in range(10)])

Note: It is also possible to generate a gamma-only computation. To do so one has to specify additional
settings, of type ParameterData, putting gamma-only to True:

1.1. User’s guide 67

AiiDA documentation, Release 0.7.0

settings = ParameterData(dict={'gamma_only':True})

then set the kpoints mesh to a single point (gamma):

kpoints.set_kpoints_mesh([1,1,1])

and in the end add (after calc = code.new_calc(), see below) a line to use these settings:

calc.use_settings(settings)

As a further comment, this is specific to the way the plugin for Quantum Espresso works. Other codes
may need more than two ParameterData, or even none of them. And also how this parameters have to be
written depends on the plugin: what is discussed here is just the format that we decided for the Quantum
Espresso plugins.

Calculation

Now we proceed to set up the calculation. Since during the setup of the code we already set the code to be
a quantumespresso.pw code, there is a simple method to create a new calculation:

calc = code.new_calc()

We have to specify the details required by the scheduler. For example, on a SLURM or PBS scheduler, we
have to specify the number of nodes (num_machines), possibly the number of MPI processes per node
(num_mpiprocs_per_machine) if we want to run with a different number of MPI processes with respect
to the default value configured when setting up the computer in AiiDA, the job walltime, the queue name (if
desired), ...:

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})
OPTIONAL, use only if you need to explicitly specify a queue name
calc.set_queue_name("the_queue_name")

(For the complete scheduler documentation, see Supported schedulers)

Note: an alternative way of calling a method starting with the string set_, is to pass directly the value to
the .new_calc() method. This is to say that the following lines:

calc = code.new_calc()
calc.set_max_wallclock_seconds(3600)
calc.set_resources({"num_machines": 1})

is equivalent to:

calc = code.new_calc(max_wallclock_seconds=3600,
resources={"num_machines": 1})

At this point, we just created a “lone” calculation, that still does not know anything about the inputs that we
created before. We need therefore to tell the calculation to use the parameters that we prepared before, by
properly linking them using the use_ methods:

68 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)
calc.use_kpoints(kpoints)

In practice, when you say calc.use_structure(s), you are setting a link between the two nodes (s and
calc), that means that s is the input structure for calculation calc. Also these links are cached and do not
require to store anything in the database yet.

In the case of the gamma-only computation (see above), you also need to add:

calc.use_settings(settings)

Pseudopotentials

There is still one missing piece of information, that is the pseudopotential files, one for each element of the
structure.

In AiiDA, it is possible to specify manually which pseudopotential files to use for each atomic species.
However, for any practical use, it is convenient to use the pseudopotential families. Its use is documented
in Pseudopotential families tutorial . If you got one installed, you can simply tell the calculation to use the
pseudopotential family with a given name, and AiiDA will take care of linking the proper pseudopotentials to
the calculation, one for each atomic species present in the input structure. This can be done using:

calc.use_pseudos_from_family('my_pseudo_family')

Labels and comments

Sometimes it is useful to attach some notes to the calculation, that may help you later understand why
you did such a calculation, or note down what you understood out of it. Comments are a special set of
properties of the calculation, in the sense that it is one of the few properties that can be changed, even after
the calculation has run.

Comments come in various flavours. The most basic one is the label property, a string of max 255 charac-
ters, which is meant to be the title of the calculation. To create it, simply write:

calc.label = "A generic title"

The label can be later accessed as a class property, i.e. the command:

calc.label

will return the string you previously set (empty by default). Another important property to set is the descrip-
tion, which instead does not have a limitation on the maximum number of characters:

calc.description = "A much longer description"

And finally, there is the possibility to add comments to any calculation (actually, to any node). The peculiarity
of comments is that they are user dependent (like the comments that you can post on facebook pages), so
it is best suited to calculation exposed on a website, where you want to remember the comments of each
user. To set a comment, you need first to import the django user, and then write it with a dedicated method:

1.1. User’s guide 69

AiiDA documentation, Release 0.7.0

from aiida.backends.djsite.utils import get_automatic_user
calc.add_comment("Some comment", user=get_automatic_user())

The comments can be accessed with this function:

calc.get_comments_tuple()

Execute

If we are satisfied with what you created, it is time to store everything in the database. Note that after storing
it, it will not be possible to modify it (nor you should: you risk of compromising the integrity of the database)!

Unless you already stored all the inputs beforehand, you will need to store the inputs before being able
to store the calculation itself. Since this is a very common operation, there is an utility method that will
automatically store both all the input nodes of calc and then calc itself:

calc.store_all()

Once we store the calculation, it is useful to print its PK (principal key, that is its identifier) that is useful in
the following to interact with it:

print "created calculation; with uuid='{}' and PK={}".format(calc.uuid,calc.pk)

Note: the PK will change if you give the calculation to someone else, while the UUID (the Universally
Unique IDentifier) is a string that is assured to be always the same also if you share your data with collabo-
rators.

Summarizing, we created all the inputs needed by a PW calculation, that are: parameters, kpoints, pseu-
dopotential files and the structure. We then created the calculation, where we specified that it is a PW
calculation and we specified the details of the remote cluster. We set the links between the inputs and the
calculation (calc.use_***) and finally we stored all this objects in the database (.store_all()).

That’s all that the calculation needs. Now we just need to submit it:

calc.submit()

Everything else will be managed by AiiDA: the inputs will be checked to verify that it is consistent with a
PW input. If the input is complete, the pw input file will be prepared in a folder together with all the other
files required for the execution (pseudopotentials, etc.). It will be then sent on cluster, submitted, and after
execution automatically retrieved and parsed.

To know how to monitor and check the state of submitted calculations, go to Calculations.

To continue the tutorial with the ph.x phonon code of Quantum ESPRESSO, continue here: Quantum
Espresso Phonon user-tutorial .

Script: source code

In this section you’ll find two scripts that do what explained in the tutorial. The compact is a script with a
minimal configuration required. You can copy and paste it (or download it), modify the two strings codename
and pseudo_family with the correct values, and execute it with:

70 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

python pw_short_example.py

(It requires to have one family of pseudopotentials configured).

You will also find a longer version, with more exception checks, error management and user interaction.
Note that the configuration of the computer resources (like number of nodes and machines) is hardware
and scheduler dependent. The configuration used below should work for a pbspro or slurm cluster, asking
to run on 1 node only.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code, DataFactory
StructureData = DataFactory('structure')
ParameterData = DataFactory('parameter')
KpointsData = DataFactory('array.kpoints')

###############################
Set your values here
codename = 'pw-5.1@TheHive'
pseudo_family = 'lda_pslibrary'
###############################

code = Code.get_from_string(codename)

BaTiO3 cubic structure
alat = 4. # angstrom
cell = [[alat, 0., 0.,],

[0., alat, 0.,],
[0., 0., alat,],

]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols='Ba')
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols='Ti')
s.append_atom(position=(alat/2.,alat/2.,0.),symbols='O')
s.append_atom(position=(alat/2.,0.,alat/2.),symbols='O')
s.append_atom(position=(0.,alat/2.,alat/2.),symbols='O')

parameters = ParameterData(dict={
'CONTROL': {

'calculation': 'scf',
'restart_mode': 'from_scratch',
'wf_collect': True,
},

'SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
},

'ELECTRONS': {
'conv_thr': 1.e-6,
}})

1.1. User’s guide 71

AiiDA documentation, Release 0.7.0

kpoints = KpointsData()
kpoints.set_kpoints_mesh([4,4,4])

calc = code.new_calc(max_wallclock_seconds=3600,
resources={"num_machines": 1})

calc.label = "A generic title"
calc.description = "A much longer description"

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)
calc.use_kpoints(kpoints)
calc.use_pseudos_from_family(pseudo_family)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error mes-
sages inside your AiiDA folder, under examples/submission/test_pw.py.

Advanced features

For a list of advanced features that can be activated (change of the command line parameters, blocking
some coordinates, ...) you can refer to this section in the pw.x input plugin documentation.

1.1.9 Importing previously run Quantum ESPRESSO pw.x calculations: PwImmi-
grant

Once you start using AiiDA to run simulations, we believe that you will find it so convenient that you will use
it for all your calculations.

At the beginning, however, you may have some calculations that you already have run and are sitting in
some folders, and that you want to import inside AiiDA.

This can be achieved with the PwImmigrant class described below.

Quantum Espresso PWscf immigration user-tutorial

If you are a new AiiDA user, it’s likely you already have a large number of calculations that you ran before
installing AiiDA. This tutorial will show you how to immigrate any of these PWscf (pw.x) calculations into
your AiiDA database. They will then exist there as if you had actually run them using AiiDA (with the
exception of the times and dates the calculations were run).

It is assumed that you have already performed the installation, that you already setup a computer (with
verdi), and that you have installed Quantum Espresso on the cluster and pw.x as a code in AiiDA. You
should also be familiar with using AiiDA to run a PWscf calculation and the various input and output nodes
of a PwCalculation. Please go through Quantum Espresso PWscf user-tutorial before proceeding.

Example details

72 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

The rest of the tutorial will detail the steps of immigrating two example pw.x calculations that were run in
/scratch/, using the code named ’pw_on_TheHive’, on 1 node with 1 mpi process. The input/output
file names of these calculations are

• pw_job1.in/pw_job1.out

• pw_job2.in/pw_job2.out

Imports and database environement

As usual, we load the database environment and load the PwimmigrantCalculation class using the
CalculationFactory.

from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

Code, computer, and resources

Important: It is up to the user to setup and link the following calculation inputs manually:

• the code

• the computer

• the resources

These input nodes should be created to be representative of those that were used for the calculation that
is to be immigrated. (Eg. If the job was run using version 5.1 of Quantum-Espresso, the user should have
already run verdi code setup to create the code’s node and should load and pass this code when
initializing the calculation node.) If any of these input nodes are not representative of the actual properties
the calculation was run with, there may be errors when performing a calculation restart of an immigrated
calculation, for example.

Next, we load the code and computer that have already been configured to be representative of those used
to perform the calculation. We also define the resources representive of those that were used to run the
calculation.

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

1.1. User’s guide 73

AiiDA documentation, Release 0.7.0

Initialization of the calculation

Now, we are ready to initialize the immigrated calculation objects from the PwimmigrantCalculation
class. We will pass the necessary parameters as keywords during the initialization calls. Then, we link the
code from above as an input node.

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,

resources=resources,
remote_workdir='/scratch/',
input_file_name='pw_job1.in',
output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,

resources=resources,
remote_workdir='/scratch/',
input_file_name='pw_job2.in',
output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

The user may have noticed the additional initialization keywords/parameters–remote_wordir,
input_file_name, and output_file_name–passed here. These are necessary in order to tell AiiDA
which files to use to automatically generate the calculation‘s input nodes in the next step.

The immigration

Now that AiiDA knows where to look for the input files of the calculations we are immigrating, all we need to
do in order to generate all the input nodes is call the create_input_nodes method. This method is the
most helpful method of the PwimmigrantCalculation class. It parses the job’s input file and creates
and links the follow types of input nodes:

• ParameterData – based on the namelists and their variable-value pairs

• KpointsData – based on the K_POINTS card

• SturctureData – based on the ATOMIC_POSITIONS and CELL_PARAMETERS cards (and the a or
celldm(1) of the &SYSTEM namelist, if alat is specified through these variables)

• UpfData – one for each of the atomic species, based on the pseudopotential files specified in the
ATOMIC_SPECIES card

• settings ParameterData – if there are any fixed coordinates, or if the gamma kpoint is used

All units conversion and/or coordinate transformations are handled automatically, and the input nodes are
generated in the correct units and coordinates required by AiiDA.

Note: Any existing UpfData nodes are simply linked without recreation; no duplicates are generated during
this method call.

Note: After this method call, the calculation and the generated input nodes are still in the cached state and
are not yet stored in the database. Therefore, the user may examine the input nodes that were generated

74 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

(by examining the attributes of the NodeInputManager, calc.inp) and edit or replace any of them. The
immigration can also be canceled at this point, in which case the calculation and the input nodes would not
be stored in the database.

Finally, the last step of the immigration is to call the prepare_for_retrieval_and_parsing method.
This method stores the calculation and it’s input nodes in the database, copies the original input file to the
calculation’s repository folder, and then tells the daemon to retrieve and parse the calculation’s output files.

Note: If the daemon is not currently running, the retrieval and parsing process will not begin
until it is started.

Because the input and pseudopotential files need to be retrieved from the computer, the computer’s trans-
port plugin needs to be open. Rather than opening and closing the transport for each calculation, we
instead require the user to pass an open transport instance as a parameter to the create_input_nodes
and prepare_for_retrieval_and_parsing methods. This minimizes the number of transport open-
ing and closings, which is highly beneficial when immigrating a large number of calculations.

Calling these methods with an open transport is performed as follows:

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.
calc1.create_input_nodes(open_transport)
calc2.create_input_nodes(open_transport)

Store the calculations and their input nodes and tell the daeomon the output
is ready to be retrieved and parsed.
calc1.prepare_for_retrieval_and_parsing(open_transport)
calc2.prepare_for_retrieval_and_parsing(open_transport)

The process above is easily expanded to large-scale immigrations of multiple jobs.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

1.1. User’s guide 75

AiiDA documentation, Release 0.7.0

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,

resources=resources,
remote_workdir='/scratch/',
input_file_name='pw_job1.in',
output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,

resources=resources,
remote_workdir='/scratch/',
input_file_name='pw_job2.in',
output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

Parse the calculations' input files to automatically generate and link the
calculations' input nodes.
calc1.create_input_nodes(open_transport)
calc2.create_input_nodes(open_transport)

Store the calculations and their input nodes and tell the daeomon the output
is ready to be retrieved and parsed.
calc1.prepare_for_retrieval_and_parsing(open_transport)
calc2.prepare_for_retrieval_and_parsing(open_transport)

1.1.10 Quantum Espresso Phonon user-tutorial

Note: The Phonon plugin referenced below is available in the EPFL version.

In this chapter will get you through the launching of a phonon calculation with Quantum Espresso, with
ph.x, a density functional perturbation theory code. For this tutorial, it is required that you managed to
launch the pw.x calculation, which is at the base of the phonon code; and of course it is assumed that you
already know how to use the QE code.

76 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

The input of a phonon calculation can be actually simple, the only care that has to be taken, is to point to
the same scratch of the previous pw calculation. Here we will try to compute the dynamical matrix on a
mesh of points (actually consisting of a 1x1x1 mesh for brevity). The input file that we should create is more
or less this one:

AiiDA calculation
&INPUTPH

epsil = .true.
fildyn = 'DYN_MAT/dynamical-matrix-'
iverbosity = 1
ldisp = .true.
nq1 = 1
nq2 = 1
nq3 = 1
outdir = './out/'
prefix = 'aiida'
tr2_ph = 1.0000000000d-08

/

Walkthrough

This input is much simpler than the previous PWscf work, here the only novel thing you will have to learn is
how to set a parent calculation.

As before, we write a script step-by-step.

We first load a couple of useful modules that you already met in the previous tutorial, and load the database
settings:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

So, you were able to launch previously a pw.x calculation.

Code

Again, you need to have compiled the code on the cluster and configured a new code ph.x in AiiDA in the
very same way you installed pw.x (see). Then we load the Code class-instance from the database:

codename = 'my-ph.x'
code = Code.get_from_string(codename)

Parameter

Just like the PWscf calculation, here we load the class ParameterData and we instanciate it in parameters.
Again, ParameterData will simply represent a nested dictionary in the database, namelists at the first
level, and then variables and values. But this time of course, we need to use the variables of PHonon!

1.1. User’s guide 77

AiiDA documentation, Release 0.7.0

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={

'INPUTPH': {
'tr2_ph' : 1.0e-8,
'epsil' : True,
'ldisp' : True,
'nq1' : 1,
'nq2' : 1,
'nq3' : 1,
}})

Calculation

Now we create the object PH-calculation. As for pw.x, we simply do:

calc = code.new_calc()

and we set the parameters of the scheduler (and just like the PWscf, this is a configuration valid for the
PBSpro and slurm schedulers only, see Supported schedulers).

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

We then tell the calculation to use the code and the parameters that we prepared above:

calc.use_parameters(parameters)

Parent calculation

The phonon calculation needs to know on which PWscf do the perturbation theory calculation. From the
database point of view, it means that the PHonon calculation is always a child of a PWscf. In practice,
this means that when you want to impose this relationship, you decided to take the input parameters of the
parent PWscf calculation, take its charge density and use them in the phonon run. That’s way we need to
set the parent calculation.

You first need to remember the ID of the parent calculation that you launched before (let’s say it’s #6): so
that you can load the class of a QE-PWscf calculation (with the CalculationFactory), and load the object
that represent the QE-PWscf calculation with ID #6:

from aiida.orm import CalculationFactory
PwCalculation = CalculationFactory('quantumespresso.pw')
parent_id = 6
parentcalc = load_node(parent_id)

Now that we loaded the parent calculation, we can set the phonon calc to inherit the right information from
it:

calc.use_parent_calculation(parentcalc)

Note that in our database schema relations between two calculation objects are prohibited. The link be-
tween the two is indirect and is mediated by a third Data object, which represent the scratch folder on
the remote cluster. Therefore the relation between the parent Pw and the child Ph appears like: Pw ->
remotescratch -> Ph.

78 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Execution

Now, everything is ready, and just like PWscf, you just need to store all the nodes and submit this input to
AiiDA, and the calculation will launch!

calc.store_all()
calc.submit()

Script to execute

This is the script described in the tutorial above. You can use it, just remember to customize it using the
right parent_id, the code, and the proper scheduler info.

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

#####################
ADAPT TO YOUR NEEDS
parent_id = 6
codename = 'my-ph.x'
#####################

code = Code.get_from_string(codename)

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={

'INPUTPH': {
'tr2_ph' : 1.0e-8,
'epsil' : True,
'ldisp' : True,
'nq1' : 1,
'nq2' : 1,
'nq3' : 1,
}})

QEPwCalc = CalculationFactory('quantumespresso.pw')
parentcalc = load_node(parent_id)

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)
calc.use_code(code)
calc.use_parent_calculation(parentcalc)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

1.1. User’s guide 79

AiiDA documentation, Release 0.7.0

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error mes-
sages inside your AiiDA folder, under examples/submission/test_ph.py.

1.1.11 Quantum Espresso Car-Parrinello user-tutorial

This chapter will teach you how to set up a Car-Parrinello (CP) calculation as implemented in the Quantum
Espresso distribution. Again, AiiDA is not meant to teach you how to use a Quantum-Espresso code, it is
assumed that you already know CP.

It is recommended that you first learn how to launch a PWscf calculation before proceeding in this tuto-
rial (see Quantum Espresso PWscf user-tutorial), since here we will only emphasize the differences with
respect to launching a PW calculation.

We want to setup a CP run of a 5 atom cell of BaTiO3. The input file that we should create is more or less
this one:

&CONTROL
calculation = 'cp'
dt = 3.0000000000d+00
iprint = 1
isave = 100
max_seconds = 1500
ndr = 50
ndw = 50
nstep = 10
outdir = './out/'
prefix = 'aiida'
pseudo_dir = './pseudo/'
restart_mode = 'from_scratch'
verbosity = 'high'
wf_collect = .false.

/
&SYSTEM

ecutrho = 2.4000000000d+02
ecutwfc = 3.0000000000d+01
ibrav = 0
nat = 5
nr1b = 24
nr2b = 24
nr3b = 24
ntyp = 3

/
&ELECTRONS

electron_damping = 1.0000000000d-01
electron_dynamics = 'damp'
emass = 4.0000000000d+02
emass_cutoff = 3.0000000000d+00

/
&IONS

ion_dynamics = 'none'
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
O 15.9994 O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF

80 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
O 2.0000000000 2.0000000000 0.0000000000
O 2.0000000000 0.0000000000 2.0000000000
O 0.0000000000 2.0000000000 2.0000000000
CELL_PARAMETERS angstrom

4.0000000000 0.0000000000 0.0000000000
0.0000000000 4.0000000000 0.0000000000
0.0000000000 0.0000000000 4.0000000000

You can immediately see that the structure of this input file closely resembles that of the PWscf: only some
variables are different.

Walkthrough

Everything works like the PW calculation: you need to get the code from the database:

codename = 'my_cp'
code = Code.get_from_string(codename)

Then create the StructureData with the structure, and a ParameterData node for the inputs. This time, of
course, you have to specify the correct variables for a cp.x calculation:

StructureData = DataFactory('structure')
alat = 4. # angstrom
cell = [[alat, 0., 0.,],

[0., alat, 0.,],
[0., 0., alat,],

]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols=['Ba'])
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols=['Ti'])
s.append_atom(position=(alat/2.,alat/2.,0.),symbols=['O'])
s.append_atom(position=(alat/2.,0.,alat/2.),symbols=['O'])
s.append_atom(position=(0.,alat/2.,alat/2.),symbols=['O'])

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={

'CONTROL': {
'calculation': 'cp',
'restart_mode': 'from_scratch',
'wf_collect': False,
'iprint': 1,
'isave': 100,
'dt': 3.,
'max_seconds': 25*60,
'nstep': 10,
},

'SYSTEM': {
'ecutwfc': 30.,
'ecutrho': 240.,
'nr1b': 24,
'nr2b': 24,
'nr3b': 24,
},

'ELECTRONS': {

1.1. User’s guide 81

AiiDA documentation, Release 0.7.0

'electron_damping': 1.e-1,
'electron_dynamics': 'damp',
'emass': 400.,
'emass_cutoff': 3.,
},

'IONS': {
'ion_dynamics': 'none',

}}).store()

We then create a new calculation with the proper settings:

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1, "num_mpiprocs_per_machine": 16})

And we link the input data to the calculation (and therefore set the links in the database). The main differ-
ence here is that CP does not support k-points, so you should not (and cannot) link any kpoint as input:

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)

Finally, load the proper pseudopotentials using e.g. a pseudopotential family (see Pseudopotential families
tutorial):

pseudo_family = 'lda_pslib'
calc.use_pseudos_from_family(pseudo_family)

and store everything and submit:

calc.store_all()
calc.submit()

And now, the calculation will be executed and saved in the database automatically.

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error mes-
sages inside your AiiDA folder, under examples/submission/test_cp.py.

1.1.12 Wannier90 user-tutorial

Note: The Wannier90 plugin referenced below is available in the EPFL version.

Here we will review an example application of the wannier90 input plugin. In this example we will attempt
to make MLWF for the oxygen 2p states in BaTiO3. This tutorial assumes that you are already familiar with
the wannier90 code). You should also finish the Quantum Espresso PWscf user-tutorial . This tutorial will
make use of parent_calculations and therefore it would be helpful, though not necessary, to do Quantum
Espresso Phonon user-tutorial . For more details on the wannier90 plugin consult Wannier90.

82 Chapter 1. User’s guide

http://www.wannier.org/index.html

AiiDA documentation, Release 0.7.0

Calculation Setup

Prior to running this tutorial first you must prepare the SCF and NSCF calculations. First run an SCF calcula-
tion for BaTiO3, you can use the settings in examples/submission/test_pw.py which should properly
setup the SCF calculation. After the SCF calculation you will need to compute an NSCF calculation, with
the kpoint grid explicitly written. You may use examples/submission/wannier/test_nscf4wann.py
to help here. Before continuing, note inside the nscf script. You should see the following lines:

settings_dict.update({ 'FORCE_KPOINTS_LIST':True})
kpoints = KpointsData()
kpoints_mesh = 4
kpoints.set_kpoints_mesh([kpoints_mesh, kpoints_mesh, kpoints_mesh])

This is very similar to using a kpoint mesh for a PW calculation, but note that we must use the
FORCE_KPOINTS_LIST in the settings dict. The following settings should be used as cards in the PW
calculation setup:

new_input_dict['CONTROL'].update({'calculation': 'nscf'})
new_input_dict['SYSTEM'].update({'nosym': True})
new_input_dict['SYSTEM'].update({'nbnd':20}) # Tune if you need more bands

where the nosym is a requirement of wannier90.x but not of this plugin specifically. It is often useful to change the number of bands in the calculation
as shown in the ``{'nbnd':20}`` dictionary.

Input Script

Here we will go through a sample input script. First import the wannier90 code name and setup a new
calculation:

Basic Code setup
from aiida.orm import Code
codename = "MY_Wannier90_CODENAME"
code = Code.get_from_string(codename)
calc = code.new_calc()

Then set up the precode, e.g. pw2wannier90.x:

Basic Precode setup
pre_codename = "MY_PRECODE_NAME"
pre_code = Code.get_from_string(pre_codename)
calc.use_preprocessing_code(pre_code)

Note: Whether a pre_code is supplied or not will change the way the calculation is run. Af-
ter finishing this tutorial try running the same calculation again without a precode by commenting out
calc.use_preprocessing_code(pre_code). You should also change the parent_id to the wannier90
calculation produced by running this script the first time.

Then use a parent calculation, in this case the parent should be an nscf calculation the first time through
this tutorial. (You can then try playing with using wannier90 calculations as parent):

parent_id = "MY_PARENT_NSCF_CALC_PK"
parent_calc = Calculation.get_subclass_from_pk(parent_id)
calc.use_parent_calculation(parent_calc)

1.1. User’s guide 83

AiiDA documentation, Release 0.7.0

We can then setup the parameters using ParameterData, this syntax is very similar to that used in PW. You
can then input the parameters to be used in the calculation like how it is shown below:

from aiida.orm import DataFactory
ParameterData = DataFactory('parameter')
parameter = ParameterData(dict={'bands_plot':True,

'num_iter': 100,
'dis_num_iter': 200,
'num_print_cycles': 10,
'guiding_centres': True,
'num_wann': 9,
'exclude_bands': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
})

calc.use_parameters(parameter)

Specific parameters can then be passed to preprocessing code using precode_parameters (in this case we
are not using an precode_paramters):

precode_parameter = {}
precode_parameter = ParameterData(dict=precode_parameter)
calc.use_precode_parameters(precode_parameter)

Note: One example of a useful precode_parameter would be to tell the preprocessing code to
write UNK files. Try this out by adding precode_parameter.update({’write_unk’:True}) after
precode_parameter = {}.

For both the structure and the kpoints, you should always just copy those used by the parent like how it is
done below:

structure = parent_calc.get_inputs_dict()['structure']
calc.use_structure(structure)
kpoints = parent_calc.get_inputs_dict()['kpoints']
calc.use_kpoints(kpoints)

If you wish to supply a kpoint path for band plotting in the following way

kpoints_path = DataFactory('array.kpoints')()
kpoints_path.set_cell_from_structure(structure)
kpoints_path.set_kpoints_path()
calc.use_kpoints_path(kpoints_path)

In this example we would like to have our intitial projections be ‘P’ like on every Oxygen, ‘O’ site. In
wannier90 syntax this would be equivalent to writing O:P in the projections section. See projections in
Inputs for more details on how to use projections in the wannier90 plugin. For this plugin we would use the
following:

orbitaldata = calc.gen_projections([{'kind_name':"O",'ang_mtm_name':"P"}])
calc.use_projections(orbitaldata)

After set remainging computer settings, as well as an input settings:

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})
settings_dict = {}

84 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

settings = ParameterData(dict=settings_dict)
calc.use_settings(settings)

Note: one useful setting to try would be to tell the code to only do the preprocessing steps but not the
actual wannierization. This could be done by using settings_dict.update({’INIT_ONLY’:True})
after settings_dict = {}. See settings in Inputs for information on this and other settings and how
the impact code running.

Finally store and launch the calculation:

calc.store_all()
print "created calculation; ID={}".format(calc.dbnode.pk)
calc.submit()
print "submitted calculation; ID={}".format(calc.dbnode.pk)

Additional Exercises

After this try looking at the output. Particularly the centers and spread of the wannier functions, and the
gauge-invarient spread Omega_I. After this try doing the following:

1. Try plotting the band structure, add {‘RESTART’:’plot’} to parameter and comment out
calc.use_precode_parameters using the wannier90 calculation as parent

2. Do a new initialization calculation that writes UNK files, using INIT_ONLY in the settings_dict and
WRITE_UNK in precode_parameters

3. Use this calculation to run another wannier90 calculation, change WANNIER_PLOT in parameters run
again without any precode and see the im_re_ratio in the resulting wannier functions.

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions and prints nice error mes-
sages inside your AiiDA folder, under examples/submission/wannier/test_wannier_BaTiO3.py.

1.1.13 Quantum Espresso Projwfc user-tutorial

Note: The Quantum Espresso Projwfc plugin referenced below is available in the EPFL version.

This chapter will show how to launch a single Projwfc (projwfc.x) calculation. It assumes you already
familiar with the underlying code as well as how to use basic features of AiiDA. This tutorial assumes
you are at least familiar with the concepts introduced during the Quantum Espresso Phonon user-tutorial ,
specifically you should be familiar with using a parent calculation.

This section is intentially left short, as there is really nothing new in using projwfc calculations relative to ph
calculations. Simply adapt the script below to suit your needs, refer to the quantum espresso documenta-
tion.

1.1. User’s guide 85

AiiDA documentation, Release 0.7.0

Script to execute

This is the script described in the tutorial above. You can use it, just remember to customize it using the
right parent_id, the code, and the proper scheduler info.

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

#####################
ADAPT TO YOUR NEEDS
parent_id = 6
codename = 'my-projwfc.x'
#####################

code = Code.get_from_string(codename)

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={

'PROJWFC': {
'DeltaE' : 0.2,
'ngauss' : 1,
'degauss' : 0.02

}})

QEPwCalc = CalculationFactory('quantumespresso.projwfc')
parentcalc = load_node(parent_id)

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)
calc.use_code(code)
calc.use_parent_calculation(parentcalc)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

1.1.14 Getting parsed calculation results

In this section, we describe how to get the results of a calculation, after AiiDA parsed the output of the
calculation.

When a calculation is done on the remote computer, AiiDA will retrieve the results and try to parse the
results with the default parser, if one is available for the given calculation. These results are stored in new
nodes, and connected as output of the calculation. Of course, it is possible for a given calculation to check
output nodes and get their content. However, AiiDA provides a way to directly access the results, using the
aiida.orm.calculation.job.CalculationResultManager class, described in the next section.

The CalculationResultManager

86 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Note: In the following, we assume that calc is a correctly finished and parsed Quantum ESPRESSO pw.x
calculation. You can load such a calculation for instance with the command:

calc = load_node(YOURPK)

either in verdi shell, or in a python script (see here for more information on how to use verdi shell
or how to run python scripts for AiiDA), and where YOURPK is substituted by a valid calculation PK in your
database.

Each JobCalculation has a res attribute that is a CalculationResultManager object and gives direct
access to parsed data.

To use it, you can just use then:

calc.res

that will however just return the class. You can however convert it to a list, to get all the possible keys that
were parsed. For instance, if you type:

print list(calc.res)

you will get something like this:

[u'rho_cutoff', u'energy', u'energy_units', ...]

(the list of keys has been cut for clarity: you will get many more keys).

Once you know which keys have been parsed, you can access the parsed value simply as an attribute of
the res ResultManager. For instance, to get the final total energy, you can use:

print calc.res.energy

that will print the total energy in units of eV, as also stated in the energy_units key:

print calc.res.energy_units

Similarly, you can get any other parsed value, for any code that provides a parser.

Note: the CalculationResultManager is also integrated with iPython/verdi shell completion mecha-
nism: if calc is a valid JobCalculation, you can type:

calc.res.

and then press the TAB key of the keyboard to get/complete the list of valid parsed properties for the
calculation calc.

1.1. User’s guide 87

AiiDA documentation, Release 0.7.0

1.1.15 Pseudopotential families tutorial

What is a pseudopotential family

As you might have seen in the previous PWscf tutorial, the procedure of attaching a pseudopotential file to
each atomic species could be a bit tedious. In many situations, you will not produce a different pseudopoten-
tial file for every calculation you do. More likely, when you start a project you will stick to a pseudopotential
file for as long as possible. Moreover, in a high-throughput calculation, you will like to do calculation over
several elements keeping the same functional. That’s also part of the reason why there are several projects
(like PSLibrary or GBRV to name a few), that intend to develop a set of pseudopotentials that covers most
of the periodic table for different functionals.

That’s why we introduced the pseudopotential families. They are basically a set of pseudopotentials that
are grouped together in a special type of AiiDA Group of nodes, with the requirement that at most one
pseudopotential can be present for a given chemical element.

Of course, no requirements are enforced on the complete coverage of the periodic table (also because
really complete pseudopotential sets for the whole periodic table do not exist). In other words, this means
that you can create a pseudopotential family containing the pseudopotentials only for a few elements that
you are interested in.

Note: it is your responsibility to group together pseudopotentials of the same type, or obtained using the
same functionals, approximations and/or levels of theory.

How to create a pseudopotential family

Let’s say for example that we want to create a family of LDA ultrasoft pseudopotentials. As the first step,
you need to get all the pseudopotential files in a single folder. For your convenience, it is useful to use a
common name for your files, for example with a structure like ‘Element.a-short-description.UPF’.

The utility to upload a family of pseudopotentials is accessed via verdi:

verdi data upf uploadfamily path/to/folder name_of_the_family "some description for your convenience"

where path/to/folder is the path to the folder where you collected all the UPF files that you want to add
to the AiiDA database and to the family with name name_of_the_family, and the final parameter is a
string that is set in the description field of the group.

Note: This command will first check the MD5 checksum of each file, and it will not create a new UPFData
node if the pseudopotential is already present in the DB. In this case, it will simply add that UpfData node
to the group with name name_of_the_family.

Note: if you add the optional flag --stop-if-existing, the code will stop (without creating any new
UPFData node, nor creating a group) if at least one of the files in the folder is already found in the AiiDA
DB.

After the upload (which may take some seconds, so please be patient) the upffamily will be ready to be
used.

88 Chapter 1. User’s guide

http://qe-forge.org/gf/project/pslibrary/frs/
http://www.physics.rutgers.edu/gbrv/

AiiDA documentation, Release 0.7.0

Note that if you pass as name_of_the_family a name that already exists, the pseudopotentials in the
folder will be added to the existing group. The code will raise an error if you try to add two (different)
pseudopotentials for the same element.

Get the list of existing families

If you want to know what are the pseudopotential families already existing in the DB, type:

verdi data upf listfamilies

Add a -d (or --with-description) flag if you want to read also the description of the family.

You can also filter the groups to get only a list of those containing a set of given elements using the -e
option. For instance, if you want to get only the families containing the elements Ba, Ti and O, use:

verdi data upf listfamilies -e Ba Ti O

For more help on the command line options, type:

verdi data upf listfamilies -h

1.1.16 Manually loading pseudopotentials

If you do not want to use pseudopotentials from a family, it is also possible to load them manually (even if
this is, in general, discouraged by us).

A possible way of doing it is the following: we start by creating a list of pseudopotential filenames that we
need to use:

raw_pseudos = [
"Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
"Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
"O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF"]

(in this simple example, we expect the pseudopotentials to be in the same folder of the script). Then, we
loop over the filenames and add them to the AiiDA database. The get_or_create method checks if the
pseudopotential is already in the database (by checking its MD5 checksum) and either stores it, or just
returns the node already present in the database (the second value returned is a boolean and tells us if the
pseudo was already present or not). We also store the returned nodes in a list (pseudos_to_use).

UpfData = DataFactory('upf')
pseudos_to_use = []

for filename in raw_pseudos:
absname = os.path.abspath(filename)
pseudo, created = UpfData.get_or_create(absname,use_first=True)
pseudos_to_use.append(pseudo)

As the last step, we make a loop over the pseudopotentials, and attach its pseudopotential object to the
calculation:

for pseudo in pseudos_to_use:
calc.use_pseudo(pseudo, kind=pseudo.element)

1.1. User’s guide 89

AiiDA documentation, Release 0.7.0

Note: when the pseudopotential is created, it is parsed and the elements to which it refers is stored in the
database and can be accessed using the pseudo.element property, as shown above.

1.1.17 The verdi commands

For some the most common operations on the AiiDA software, you can work directly on the command line
using the set of verdi commands. You already used the verdi install when installing the software.
There are quite some more functionalities attached to this command, here’s a list:

• calculation: query and interact with calculations

• code: setup and manage codes to be used

• comment : manage general properties of nodes in the database

• completioncommand : return the bash completion function to put in ~/.bashrc

• computer : setup and manage computers to be used

• daemon: manage the AiiDA daemon

• data: setup and manage data specific types

• devel : AiiDA commands for developers

• export : export nodes and group of nodes

• group: setup and manage groups

• import : export nodes and group of nodes

• install : install/setup aiida for the current user/create a new profile

• node: manage operations on AiiDA nodes

• profile: list and manage AiiDA profiles

• run: execute an AiiDA script

• runserver : run the AiiDA webserver on localhost

• shell : run the interactive shell with the Django environment

• user : list and configure new AiiDA users.

• workflow : manage the AiiDA worflow manager

Each command above can be preceded by the -p <profile> or --profile=<profile> option, as in:

verdi -p <profile> calculation list

This allows to select a specific AiiDA profile, and therefore a specific database, on which the command is
executed. Thus several databases can be handled and accessed simultaneously by AiiDA. To install a new
profile, use the install command.

Note: This profile selection has no effect on the verdi daemon commands.

Following below, a list with the subcommands available.

90 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

verdi calculation

• kill: stop the execution on the cluster of a calculation.

• logshow: shows the logs/errors produced by a calculation

• plugins: lists the supported calculation plugins

• inputcat: shows an input file of a calculation node.

• inputls: shows the list of the input files of a calculation node.

• list: list the AiiDA calculations. By default, lists only the running calculations.

• outputcat: shows an ouput file of a calculation node.

• outputls: shows the list of the output files of a calculation node.

• show: shows the database information related to the calculation: used code, all the input nodes and
all the output nodes.

• gotocomputer: open a shell to the calc folder on the cluster

• label: view / set the label of a calculation

• description: view / set the description of a calculation

Note: When using gotocomputer, be careful not to change any file that AiiDA created, nor to modify the
output files or resubmit the calculation, unless you really know what you are doing, otherwise AiiDA may
get very confused!

verdi code

• show: shows the information of the installed code.

• list: lists the installed codes

• hide: hide codes from verdi code list

• reveal: un-hide codes for verdi code list

• setup: setup a new code

• rename: change the label (name) of a code. If you like to load codes based on their labels and not
on their UUID’s or PK’s, take care of using unique labels!

• update: change (some of) the installation description of the code given at the moment of the setup.

• delete: delete a code from the database. Only possible for disconnected codes (i.e. a code that has
not been used yet)

verdi comment

Manages the comments attached to a database node.

• add: add a new comment

• update: change an existing comment

• remove: remove a comment

• show: show the comments attached to a node.

1.1. User’s guide 91

AiiDA documentation, Release 0.7.0

verdi completioncommand

Prints the string to be copied and pasted to the bashrc in order to allow for autocompletion of the verdi
commands.

verdi computer

• setup: creates a new computer object

• configure: set up some extra info that can be used in the connection with that computer.

• enable: to enable a computer. If the computer is disabled, the daemon will not try to connect to the
computer, so it will not retrieve or launch calculations. Useful if a computer is under mantainance.

• rename: changes the name of a computer.

• disable: disable a computer (see enable for a larger description)

• show: shows the details of an installed computer

• list: list all installed computers

• delete: deletes a computer node. Works only if the computer node is a disconnected node in the
database (has not been used yet)

• test: tests if the current user (or a given user) can connect to the computer and if basic operations
perform as expected (file copy, getting the list of jobs in the scheduler queue, ...)

verdi daemon

Manages the daemon, i.e. the process that runs in background and that manages submission/retrieval of
calculations.

• status: see the status of the daemon. Typically, it will either show Daemon not running or you will
see two processes with state RUNNING.

• stop: stops the daemon

• configureuser: sets the user which is running the daemon. See the installation guide for more details.

• start: starts the daemon.

• logshow: show the last lines of the daemon log (use for debugging)

• restart: restarts the daemon.

verdi data

Manages database data objects.

• upf: handles the Pseudopotential Datas

– listfamilies: list presently stored families of pseudopotentials

– uploadfamily: install a new family (group) of pseudopotentials

– import: create or return (if already present) a database node, having the contents of a supplied
file

– exportfamily: export a family of pseudopotential files into a folder

• structure: handles the StructureData

92 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

– list: list currently saved nodes of StructureData kind

– show: use a third-party visualizer (like vmd or xcrysden) to graphically show the StructureData

– export: export the node as a string of a specified format

– deposit: deposit the node to a remote database

• parameter: handles the ParameterData objects

– show: output the content of the python dictionary in different formats.

• cif: handles the CifData objects

– list: list currently saved nodes of CifData kind

– show: use third-party visualizer (like jmol) to graphically show the CifData

– import: create or return (if already present) a database node, having the contents of a supplied
file

– export: export the node as a string of a specified format

– deposit: deposit the node to a remote database

• trajectory: handles the TrajectoryData objects

– list: list currently saved nodes of TrajectoryData kind

– show: use third-party visualizer (like jmol) to graphically show the TrajectoryData

– export: export the node as a string of a specified format

– deposit: deposit the node to a remote database

• label: view / set the label of a data

• description: view / set the description of a data

verdi devel

Here there are some functions that are in the development stage, and that might eventually find their way
outside of this placeholder. As such, they are buggy, possibly difficult to use, not necessarily documented,
and they might be subject to non back-compatible changes.

• delproperty, describeproperties, getproperty, listproperties, setproperty: handle the properties,
see here for more information.

verdi export

Export data from the AiiDA database to a file. See also verdi import to import this data on another
database.

verdi group

• list: list all the groups in the database.

• description: show or change the description of a group

• show: show the content of a group.

• create: create a new empty group.

1.1. User’s guide 93

AiiDA documentation, Release 0.7.0

• delete: delete an existing group (but not the nodes belonging to it).

• addnodes: add nodes to a group.

• removenodes: remove nodes from a group.

verdi import

Imports data (coming from other AiiDA databases) in the current database

verdi install

Used in the installation to configure the database. If it finds an already installed database, it updates the
tables migrating them to the new schema.

Note: One can also create a new profile with this command:

verdi -p <new_profile_name> install

The install procedure then works as usual, and one can select there a new database. See also the profile
command.

verdi node

• repo: Show files and their contents in the local repository

• show: Show basic node information (PK, UUID, class, inputs and outputs)

verdi profile

• list: Show the list of currently available profiles, indicating which one is the default one, and showing
the current one with a > symbol

• setdefault: Set the default profile, i.e. the one to be used when no -p option is specified before the
verdi command

verdi run

Run a python script for AiiDA. This is the command line equivalent of the verdi shell. Has also features of
autogroupin: by default, every node created in one a call of verdi run will be grouped together.

verdi runserver

Starts a lightweight Web server for development and also serves static files. Currently in ongoing develop-
ment.

verdi shell

Runs a Python interactive interpreter. Tries to use IPython or bpython, if one of them is available. Loads on
start a good part of the AiiDA infrastructure (see here for information on how to customize it).

94 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

verdi user

Manages the AiiDA users. Two valid subcommands.

• list: list existing users configured for your AiiDA installation.

• configure: configure a new AiiDA user.

verdi workflow

Manages the workflow. Valid subcommands:

• report: display the information on how the workflow is evolving.

• kill: kills a workflow.

• list: lists the workflows present in the database. By default, shows only the running ones.

1.1.18 AiiDA schedulers

Supported schedulers

The list below describes the supported schedulers, i.e. the batch job schedulers that manage the job
queues and execution on any given computer.

PBSPro

The PBSPro scheduler is supported (and it has been tested with version 12.1).

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-
like)

SLURM

The SLURM scheduler is supported (and it has been tested with version 2.5.4).

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-
like)

SGE

The SGE scheduler (Sun Grid Engine, now called Oracle Grid Engine) is supported (and it has been tested
with version GE 6.2u3), together with some of the main variants/forks.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the ParEnvJobResource (SGE-like)

1.1. User’s guide 95

http://www.pbsworks.com/Product.aspx?id=1
https://computing.llnl.gov/linux/slurm/
http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

AiiDA documentation, Release 0.7.0

PBS/Torque & Loadleveler

PBS/Torque and Loadleveler are not fully supported yet, even if their support is one of our top priorities.
For the moment, you can try the PBSPro plugin instead of PBS/Torque, that may also work for PBS/Torque
(even if there will probably be some small issues).

Direct execution (bypassing schedulers)

The direct scheduler, to be used mainly for debugging, is an implementation of a scheduler plugin that does
not require a real scheduler installed, but instead directly executes a command, puts it in the background,
and checks for its process ID (PID) to discover if the execution is completed.

Warning: The direct execution mode is very fragile. Currently, it spawns a separate Bash shell to
execute a job and track each shell by process ID (PID). This poses following problems:

• PID numeration is reset during reboots;
• PID numeration is different from machine to machine, thus direct execution is not possible in multi-

machine clusters, redirecting each SSH login to a different node in round-robin fashion;
• there is no real queueing, hence, all calculation started will be run in parallel.

Warning: Direct execution bypasses schedulers, so it should be used with care in order not to disturb
the functioning of machines.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the NodeNumberJobResource (PBS-
like)

Job resources

When asking a scheduler to allocate some nodes/machines for a given job, we have to specify some job
resources (that typically include information as, for instance, the number of required nodes or the numbers
of MPI processes per node).

Unfortunately, the way of specifying this piece of information is different on different clusters. Instead of
having one only abstract class, we chose to adopt different subclasses, keeping in this way the specification
of the resources as similar as possible to what the user would do when writing a scheduler script. Note that
only one subclass can be used, given a specific scheduler.

The base class, from which all job resource subclasses inherit, is
aiida.scheduler.datastructures.JobResource. All classes define at least one method,
get_tot_num_mpiprocs(), that returns the total number of MPI processes requested.

Note: to load a specific job resource subclass, you can load it manually by directly loading the correct
class, e..g.:

from aiida.scheduler.datastructures import NodeNumberJobResource

However, in general, you will pass the fields to set directly to the set_resources() method of a
JobCalculation object. For instance:

96 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

calc = JobCalculation(computer=...) # select here a given computer configured
in AiiDA

This assumes that the computer is configured to use a scheduler with
job resources of type NodeNumberJobResource
calc.set_resources({"num_machines": 4, "num_mpiprocs_per_machine": 16})

NodeNumberJobResource (PBS-like)

This is the way of specifying the job resources in PBS and SLURM. The class is
aiida.scheduler.datastructures.NodeNumberJobResource.

Once an instance of the class is obtained, you have the following fields that you can set:

• res.num_machines: specify the number of machines (also called nodes) on which the code should
run

• res.num_mpiprocs_per_machine: number of MPI processes to use on each machine

• res.tot_num_mpiprocs: the total number of MPI processes that this job is requesting

• res.num_cores_per_machine: specify the number of cores to use on each machine

• res.num_cores_per_mpiproc: specify the number of cores to run each MPI process

Note that you need to specify only two among the first three fields above, for instance:

res = NodeNumberJobResource()
res.num_machines = 4
res.num_mpiprocs_per_machine = 16

asks the scheduler to allocate 4 machines, with 16 MPI processes on each machine. This will automatically
ask for a total of 4*16=64 total number of MPI processes.

The same can be achieved passing the fields directly to the constructor:

res = NodeNumberJobResource(num_machines=4, num_mpiprocs_per_machine=16)

or, even better, directly calling the set_resources() method of the JobCalculation class (assuming
here that calc is your calculation object):

calc.set_resources({"num_machines": 4, "num_mpiprocs_per_machine": 16})

Note:

If you specify res.num_machines, res.num_mpiprocs_per_machine, and res.tot_num_mpiprocs fields (not
recommended), make sure that they satisfy:

res.num_machines * res.num_mpiprocs_per_machine = res.tot_num_mpiprocs

Moreover, if you specify res.tot_num_mpiprocs, make sure that this is a multiple of
res.num_machines and/or res.num_mpiprocs_per_machine.

1.1. User’s guide 97

AiiDA documentation, Release 0.7.0

Note: When creating a new computer, you will be asked for a default_mpiprocs_per_machine. If
you specify it, then you can avoid to specify num_mpiprocs_per_machine when creating the resources
for that computer, and the default number will be used.

Of course, all the requirements between num_machines, num_mpiprocs_per_machine and
tot_num_mpiprocs still apply.

Moreover, you can explicitly specify num_mpiprocs_per_machine if you want to use a value different
from the default one.

The num_cores_per_machine and num_cores_per_mpiproc fields are optional. If you specify
num_mpiprocs_per_machine and num_cores_per_machine fields, make sure that:

res.num_cores_per_mpiproc * res.num_mpiprocs_per_machine = res.num_cores_per_machine

If you want to specifiy single value in num_mpiprocs_per_machine and num_cores_per_machine,
please make sure that res.num_cores_per_machine is multiple of res.num_cores_per_mpiproc and/or
res.num_mpiprocs_per_machine.

Note: In PBSPro, the num_mpiprocs_per_machine and num_cores_per_machine fields are used for
mpiprocs and ppn respectively.

Note: In Torque, the num_mpiprocs_per_machine field is used for ppn unless the
num_mpiprocs_per_machine is specified.

ParEnvJobResource (SGE-like)

In SGE and similar schedulers, one has to specify a parallel environment and the total number of CPUs
requested. The class is aiida.scheduler.datastructures.ParEnvJobResource.

Once an instance of the class is obtained, you have the following fields that you can set:

• res.parallel_env: specify the parallel environment in which you want to run your job (a string)

• res.tot_num_mpiprocs: the total number of MPI processes that this job is requesting

Remember to always specify both fields. No checks are done on the consistency between the specified
parallel environment and the total number of MPI processes requested (for instance, some parallel envi-
ronments may have been configured by your cluster administrator to run on a single machine). It is your
responsibility to make sure that the information is valid, otherwise the submission will fail.

Some examples:

• setting the fields one by one:

res = ParEnvJobResource()
res.parallel_env = 'mpi'
res.tot_num_mpiprocs = 64

• setting the fields directly in the class constructor:

res = ParEnvJobResource(parallel_env='mpi', tot_num_mpiprocs=64)

98 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

• even better, directly calling the set_resources() method of the JobCalculation class (assum-
ing here that calc is your calculation object):

calc.set_resources({"parallel_env": 'mpi', "tot_num_mpiprocs": 64})

1.1.19 Calculations

AiiDA calculations can be of two kinds:

• JobCalculation: those who need to be run on a scheduler

• InlineCalculation: rapid executions that are executed by the daemon itself, on your local ma-
chine.

In the following, we will refer to the JobCalculations as a Calculation for the sake of simplicity, unless we
explicitly say otherwise. In the same way, also the command verdi calculation refers to JobCalcula-
tion’s.

1.1.20 Check the state of calculations

Once a calculation has been submitted to AiiDA, everything else will be managed by AiiDA: the inputs will
be checked to verify that they are consistent. If the inputs are complete, the input files will be prepared,
sent on cluster, and a job will be submitted. The AiiDA daemon will then monitor the scheduler, and after
execution the outputs automatically retrieved and parsed.

During these phases, it is useful to be able to check and verify the state of a calculation. There are different
ways to perform such an operation, described below.

The verdi calculation command

The simplest way to check the state of submitted calculations is to use the verdi calculation list
command from the command line. To get help on its use and command line options, run it with the -h or
--help option:

verdi calculation list --help

Possible calculation states

The calculation could be in several states. The most common you should see:

1. NEW: the calculation node has been created, but has not been submitted yet.

2. WITHSCHEDULER: the job is in some queue on the remote computer. Note that this does not mean
that the job is waiting in a queue, but it may be running or finishing, but it did not finish yet. AiiDA has
to wait.

3. FINISHED: the job on the cluster was finished, AiiDA already retrieved it and stored the results in the
database. In most cases, this also means that the parser managed to parse the output file.

4. FAILED: something went wrong, and AiiDA rose an exception. The error could be of various nature:
the inputs were not enough or were not correct, the execution on the cluster failed, or (depending
on the output plugin) the code ended without completing successfully or producing a valid output file.
Other possible more specific “failed” states include SUBMISSIONFAILED, RETRIEVALFAILED and
PARSINGFAILED.

1.1. User’s guide 99

AiiDA documentation, Release 0.7.0

5. For very short times, when the job completes on the remote computer and AiiDA retrieves and parses
it, you may happen to see a calculation in the COMPUTED, RETRIEVING and PARSING states.

Eventually, when the calculation has finished, you will find the computed quantities in the database, and
you will be able to query the database for the results that were parsed!

Directly in python

If you prefer to have more flexibility or to check the state of a calculation programmatically, you can execute
a script like the following, where you just need to specify the ID of the calculation you are interested in:

from aiida import load_dbenv
load_dbenv()

from aiida.orm import JobCalculation

pk must be a valid integer pk
calc = load_node(pk)
Alternatively, with the UUID (uuid must be a valid UUID string)
calc = load_node(uuid)
print "AiiDA state:", calc.get_state()
print "Last scheduler state seen by the AiiDA deamon:", calc.get_scheduler_state()

Note that, as specified in the comments, you can also get a code by knowing its UUID; the advantage is
that, while the numeric ID will typically change after a sync of two databases, the UUID is a unique identifier
and will be preserved across different AiiDA instances.

Note: calc.get_scheduler_state() returns the state on the scheduler (queued, held, running, ...)
as seen the last time that the daemon connected to the remote computer. The time at which the last check
was performed is returned by the calc.get_scheduler_lastchecktime() method (that returns None
if no check has been performed yet).

The verdi calculation gotocomputer command

Sometimes, it may be useful to directly go to the folder on which the calculation is running, for instance to
check if the output file has been created.

In this case, it is possible to run:

verdi calculation gotocomputer CALCULATIONPK

where CALCULATIONPK is the PK of the calculation. This will open a new connection to the computer
(either simply a bash shell or a ssh connection, depending on the transport) and directly change directory
to the appropriate folder where the code is running.

Note: Be careful not to change any file that AiiDA created, nor to modify the output files or resubmit the
calculation, unless you really know what you are doing, otherwise AiiDA may get very confused!

100 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

1.1.21 Set calculation properties

There are various methods which specify the calculation properties. Here follows a brief documentation of
their action.

• c.set_max_memory_kb: require explicitely the memory to be allocated to the scheduler job.

• c.set_append_text: write a set of bash commands to be executed after the call to the executable.
These commands are executed only for this instance of calculations. Look also at the computer and
code append_text to write bash commands for any job run on that computer or with that code.

• c.set_max_wallclock_seconds: set (as integer) the scheduler-job wall-time in seconds.

• c.set_computer: set the computer on which the calculation is run. Unnecessary if the calculation
has been created from a code.

• c.set_mpirun_extra_params: set as a list of strings the parameters to be passed to the mpirun
command. Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x
Note: the process number is set by the resources.

• c.set_custom_scheduler_commands: set a string (even multiline) which contains personalized
job-scheduling commands. These commands are set at the beginning of the job-scheduling script,
before any non-scheduler command. (prepend_texts instead are set after all job-scheduling com-
mands).

• c.set_parser_name: set the name of the parser to be used on the output. Typically, a plugin will
have already a default plugin set, use this command to change it.

• c.set_environment_variables: set a dictionary, whose key and values will be used to set new
environment variables in the job-scheduling script before the execution of the calculation. The dictio-
nary is translated to: export ’keys’=’values’.

• c.set_prepend_text: set a string that contains bash commands, to be written in the job-
scheduling script for this calculation, right before the call to the executable. (it is used for example
to load modules). Note that there are also prepend text for the computer (that are used for any job-
scheduling script on the given computer) and for the code (that are used for any scheduling script
using the given code), the prepend_text here is used only for this instance of the calculation: be
careful in avoiding duplication of bash commands.

• c.set_extra: pass a key and a value, to be stored in the Extra attribute table in the database.

• c.set_extras: like set extra, but you can pass a dictionary with multiple keys and values.

• c.set_priority: set the job-scheduler priority of the calculation (AiiDA does not have internal
priorities). The function accepts a value that depends on the scheduler. plugin (but typically is an
integer).

• c.set_queue_name: pass in a string the name of the queue to use on the job-scheduler.

• c.set_import_sys_environment: default=True. If True, the job-scheduling script will load the
environment variables.

• c.set_resources: set the resources to be used by the calculation like the number of nodes, wall-
time, ..., by passing a dictionary to this method. The keys of this dictionary, i.e. the resources, depend
on the specific scheduler plugin that has to run them. Look at the documentation of the scheduler
(type is given by: calc.get_computer().get_scheduler_type()).

• c.set_withmpi: True or False, if True (the default) it will call the executable as a parallel run.

1.1. User’s guide 101

AiiDA documentation, Release 0.7.0

1.1.22 Comments

There are various ways of attaching notes/comments to a node within AiiDA. In the first examples of script-
ing, you should already have notices the possibility of storing a label or a description to any AiiDA
Node. However, these properties are defined at the creation of the Node, and it is not possible to modify
them after the Node has been stored.

The Node comment provides a simple way to have a more dynamic management of comments, in which
any user can write a comment on the Node, or modify it or delete it.

The verdi comment provides a set of methods that are used to manipulate the comments:

• add: add a new comment to a Node.

• update: modify a comment.

• show: show the existing comments attached to the Node.

• remove: remove a comment.

1.1.23 Extracting data from the Database

In this section we will overview some of the tools provided by AiiDA by means of you can navigate through
the data inside the AiiDA database.

Finding input and output nodes

Let’s start with a reference node that you loaded from the database, for example the node with PK 17:

n = load_node(17)

Now, we want to find the nodes which have a direct link to this node. There are several meth-
ods to extract this information (for developers see all the methods and their docstring: get_outputs,
get_outputs_dict, c.get_inputs and c.get_inputs_dict). The most practical way to access this
information, especially when working on the verdi shell, is by means of the inp and out methods.

The inp method is used to list and access the nodes with a direct link to n in input. The names of the input
links can be printed by list(n.inp) or interactively by n.inp. + TAB. As an example, suppose that n
has an input KpointsData object under the linkname kpoints. The command:

n.inp.kpoints

returns the KpointsData object.

Similar methods exists for the out method, which will display the names of links in output from n and can be
used to access such output nodes. Suppose that n has an output FolderData with linkname retrieved,
than the command:

n.out.retrieved

returns the FolderData object.

Note: At variance with input, there can be more than one output objects with the same linkname (for
example: a code object can be used by several calculations always with the same linkname code). As
such, for every output linkname, we append the string _pk, with the pk of the output node. There is also

102 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

a linkname without pk appended, which is assigned to the oldest link. As an example, imagine that n is a
code, which is used by calculation #18 and #19, the linknames shown by n.out are:

n.out. >>

* code

* code_18

* code_19

The method n.out.code_18 and n.out.code_19 will return two different calculation objects, and
n.out.code will return the oldest (the reference is the creation time) between calculation 18 and 19.
If one calculation (say 18) exist only in output, there is then less ambiguity, and you are sure that the output
of n.out.code coincides with n.out.code_18.

1.1.24 Querying in AiiDA

The advantage of storing information in a database is that questions can be asked on the data, and an
answer can be rapidly provided.

Here we describe different approaches to query the data in AiiDA.

Note: This section is still only a stub and will be significantly improved in the next versions.

Directly querying in Django

If you know how AiiDA stores the data internally in the database, you can directly use Django to query the
database (or even use directly SQL commands, if you really feel the urge to do so). Documentation on how
queries work in Django can be found on the official Django documentation. The models can be found in
aiida.backends.djsite.db.models and is directly accessible as models in the verdi shell via
verdi run.

Directly querying in SQLAlchemy

Check out the documentation on <http://www.sqlalchemy.org/>. Models are in
aiida.backends.sqlalchemy.models

Using the querytool

We provide a Python class (aiida.orm.querytool.QueryTool) to perform the most common types of
queries (mainly on nodes, links and their attributes) through an easy Python class interface, without the
need to know anything about the SQL query language.

Note: We are working a lot on the interface for querying through the QueryTool, so the interface could
change significantly in the future to allow for more advanced querying capabilities.

To use it, in your script (or within the verdi shell) you need first to load the QueryTool class:

from aiida.orm.querytool import QueryTool

1.1. User’s guide 103

https://docs.djangoproject.com/en/1.7/topics/db/queries/
http://www.sqlalchemy.org/

AiiDA documentation, Release 0.7.0

Then, create an instance of this class, which will represent your query (you need to create a new instance
for each different query you want to execute):

q = QueryTool()

Now, you can call a set of methods on the q object to decide the filters you want to apply. The first type
of filter one may want to apply is on the type of nodes you want to obtain (the QueryTool, in the current
version, always queries only nodes in the DB). You can do so passing the correct Node subclass to the
set_class() method, for instance:

q.set_class(Calculation)

Then, if you want to query only calculations within a given group:

q.set_group(group_name, exclude=False)

where group_name is the name of the group you want to select. The exclude parameter, if True, negates
the query (i.e., considers all objects not included in the give group). You can call the set_group() method
multiple times to add more filters.

The most important query specification, though, is on the attributes of a given node.

If you want to query for attributes in the DbAttribute table, use the add_attr_filter() method:

q.add_attr_filter("energy", "<=", 0., relnode="res")

At this point, the query q describes a query you still have to run, which will return each calculation calc for
which the result node calc.res.energy is less or equal to 0.

The relnode parameter allows the user to perform queries not only on the nodes you want to get out of
the query (in this case, do not specify any relnode parameter) but also on the value of the attributes of
nodes linked to the result nodes. For instance, specifying "res" as relnode, one gets as result of the
query nodes whose output result has a negative energy.

Also in this case, you can add multiple filters on attributes, or you can use the same syntax also on data
you stored in the DbExtra table using add_extra_filter().

Note: We remind here that while attributes are properties that describe a node, are used internally by
AiiDA and cannot be changed after the node is stored – for instance, the coordinates of atoms in a crystal
structure, the input parameters for a calculation, ... – extras (stored in DbExtra) have the same format and
are at full disposal of the user for adding metadata to each node, tagging, and later quick querying.

Finally, to run the query and get the results, you can use the run_query() method, that will return an
iterator over the results of the query. For instance, if you stored A and B as extra data of a given node, you
can get a list of the energy of each calculation, and the value of A and B, using the following command:

res = [(node.res.energy,
node.get_extra("A"),
node.get_extra("B"))
for node in q.run_query()]

Note: After having run a query, if you want to run a new one, even if it is a simple modification of the current
one, please discard the q object and create a new one with the new filters.

104 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

The transitive closure table

Another type of query that is very common is the discovery of whether two nodes are linked through a path
in the AiiDA graph database, regardless of how many nodes are in between.

This is particularly important because, for instance, you may be interested in discovering which crystal
structures have, say, all phonon frequencies that are positive; but the information on the phonon frequencies
is in a node that is typically not directly linked to the crystal structure (you typically have in between at least
a SCF calculation, a phonon calculation on a coarse grid, and an interpolation of the phonon bands on a
denser grid; moreover, each calculation may include multiple restarts).

In order to make these queries very efficient (and since we expect that typical workflows, especially in
Physics and Materials Science, involve a lot of relatively small, disconnected graphs), we have implemented
triggers at the database SQL level to automatically generate a transitive closure table, i.e., a table that for
each node contains all his parents (at any depth level) and all the children (at any depth level). This means
that, every time two nodes are joined by a link, this table is automatically updated to contain all the new
available paths.

With the aid of such a table, discovering if two nodes are connected or not becomes a matter of a single
query. This table is accessible using Django commands, and is called DbPath.

Transitive closure paths contain a parent and a child. Moreover, they also contain a depth, giving how
many nodes have to be traversed to connect the two parent and child nodes (to make this possible, an
entry in the DbPath table is stored for each possible path in the graph). The depth does not include the first
and last node (so, a depth of zero means that two nodes are directly connected through a link).

Three further columns are stored, and they are mainly used to quickly (and recursively) discover which are
the nodes that have been traversed.

Todo

The description of the exact meaning of the three additional columns (entry_edge_id,
direct_edge_id, and exit_edge_id, will be added soon; in the meatime, you can give a look
to the implementation of the expand() method).

Finally, given a DbPath object, we provide a expand() method to get a list of all the nodes (in the correct
order) that are traversed by the specific path. List elements are AiiDA nodes.

Here we present a simple example of how you can use the transitive closure table, imagining that you want
to get the path between two nodes n1 and n2. We will assume that only a single path exists between the
two nodes. If no path exists, an exception will be raised in the line marked below. If more than one path
exists, only the first one will be returned. The extension to manage the exception and to manage multiple
paths is straightforward:

n1 = load_node(NODEPK1)
n2 = load_node(NODEPK2)
In the following line, we are choosing only the first
path returned by the query (with [0]).
Change here to manage zero or multiple paths!
dbpath = models.DbPath.objects.filter(parent=n1, child=n2)[0]
Print all nodes in the path
print dbpath.expand()

1.1. User’s guide 105

AiiDA documentation, Release 0.7.0

Using the QueryBuilder

Introduction

This section describes the use of the QueryBuilder, which is meant to help you querying the database with
a Python interface and regardless of backend and schema employed in the background. Before jumping
into the specifics, let’s discuss what you should be clear about before writing a query:

• You should know what you want to query for. In database-speek, you need to tell the backend what to
project. For example, you might be interested in the label of a calculation and the pks of all its outputs.

• In many use-cases, you will query for relationships between entities that are connected in a graph-like
fashion, with links as edges and nodes as vertices. You have to know the relationships between these
entities. A Node can be either input or output of another Node, but also an ancestor or a descendant.

• In almost all cases, you will be interested in a subset of all possible entities that could be returned
based on the joins between the entities of your graph. In other ways, you need to have an idea of how
to filter the results.

If you are clear about what you want and how you can get it, you will have to provide this information to
QueryBuilder, who will build an SQL-query for you. There is more than one possible API that you can use:

1. The appender-method

2. Using the queryhelp

What you will use depends on the specific use case. The functionalities are the same, so it’s up to you what
to use.

The appender method

Let’s first discuss the appender-method using some concrete examples. We will start from simple examples
and get to more complex ones later. The first thing to know is how to chose entities that you want to query:

from aiida.orm.querybuilder import QueryBuilder
qb = QueryBuilder() # Instantiating instance
qb.append(JobCalculation) # Setting first vertice of path

So, let’s suppose that’s what we want to query for (all job calculations in the database). The question is how
to get the results from the query:

from aiida.orm.querybuilder import QueryBuilder
qb = QueryBuilder() # Instantiating instance
qb.append(JobCalculation) # Setting first vertice of path

first_row = qb.first() # Returns a list (!)
of the results of the first row

all_results = qb.dict() # Returns all results as
a list of dictionaries

all_r_generator = qb.iterdict() # Return a generator of dictionaries
of all results

Some more (for completeness)
all_rows = qb.all() # Returns a list of lists

106 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

all_rows_generator = qb.iterall() # Returns a generator of lists

Since we now know how to set an entity, we can start to filter by properties of that entity. Suppose we do
not want to all JobCalculations, but only the ones in state ‘FINISHED’:

qb = QueryBuilder() # An empty QueryBuilder instances
qb.append(

JobCalculation, # I am appending a JobCalculation
filters={ # Specifying the filters:

'state':{'==':'FINISHED'}, # the calculation has to have finished
},

)

How, can we have multiple filters? Suppose you are interested in all calculations in your database that are
in state ‘FINISHED’ and were created in the last n days:

from datetime import timedelta
from aiida.utils import timezone
now = timezone.now()
time_n_days_ago = now - timedelta(days=n)

qb = QueryBuilder() # An empty QueryBuilder instances
qb.append(

JobCalculation, # I am appending a JobCalculation
filters={ # Specifying the filters:

'state':{'==':'FINISHED'}, # the calculation has to have finished AND
'ctime':{'>':time_n_days_ago} # created in the last n days

},
)
resultgen = qb.dict() # Give me all results

Let’s go through the above example. We have instantiated QueryBuilder instance. We appended to its path
a JobCalculation (a remote calculation), and specified that we are only interested in calculations that have
finished and that were created in the last n days.

What if we want calculations that have finished or were created in the last n days:

qb = QueryBuilder()
qb.append(

JobCalculation,
filters={

'or':[
{'state':{'==':'FINISHED'}},
{'ctime':{'>': now - timedelta(days=n)}}

]
},

)
res =qb.dict()

If we’d have written and instead of or, we would have created the exact same query as in the first query,
because and is the default behavior if you attach several filters. What if you want calculation in state
‘FINISHED’ or ‘RETRIEVING’? This will be the next example:

qb = QueryBuilder()
qb.append(

JobCalculation,

1.1. User’s guide 107

AiiDA documentation, Release 0.7.0

filters={
'state':{'in':['FINISHED', 'RETRIEVING']}

},
)
res = qb.all()

In order to negate a filter, that is to apply the not operator, precede the filter keyword with an exclamation
mark. So, to ask for all calculations that are not in ‘FINISHED’ or ‘RETRIEVING’:

qb = QueryBuilder()
qb.append(

JobCalculation,
filters={

'state':{'!in':['FINISHED', 'RETRIEVING']}
},

)
res = qb.all()

This showed you how to ‘filter’ by properties of a node (and implicitly by type) So far we can do that for a
single a single node in the database. But we sometimes need to query relationships in graph-like database.
There are several relationships that entities in Aiida can have:

Entity from Entity to Relationship Explanation
Node Node input_of One node as input of another node
Node Node output_of One node as output of another node
Node Node ancestor_of One node as the ancestor of another node (Path)
Node Node descendant_of One node as descendant of another node (Path)
Node Group group_of The group of a node
Group Node member_of The node is a member of a group
Node Computer computer_of The computer of a node
Computer Node has_computer The node of a computer
Node User creator_of The creator of a node is a user
User Node created_by The node was created by a user

Let’s join a node to its output, e.g. StructureData and JobCalculation (as output):

qb = QueryBuilder()
qb.append(StructureData, tag='structure')
qb.append(JobCalculation, output_of='structure')

In the above example, we have first appended StructureData to the path. So that we can refer to that vertice
later, we tag it with a unique keyword of our choice, which can be used only once. When we append another
vertice to the path, we specify the relationship to a previous entity by using one of the keywords in the above
table and as a value the tag of the vertice that it has a relationship with. Some more examples:

StructureData as an input of a job calculation
qb = QueryBuilder()
qb.append(JobCalculation, tag='calc')
qb.append(StructureData, input_of='calc')

StructureData and ParameterData as inputs to a calculation
qb = QueryBuilder()
qb.append(JobCalculation, tag='calc')
qb.append(StructureData, input_of='calc')
qb.append(ParameterDataData, input_of='calc')

108 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Filtering the remote data instance by the computer it ran on (name)
qb = QueryBuilder()
qb.append(RemoteData, tag='remote')
qb.append(Computer, computer_of='remote', filters={'name':{'==':'mycomputer'}})

Find all descendants of a structure with a certain uuid
qb = QueryBuilder()
qb.append(StructureData, tag='structure', filters={'uuid':{'==':myuuid}})
qb.append(Node, descendant_of='structure')

The above QueryBuilder will join a structure to all its descendants via the transitive closure table. But what
will the query return exactly. We do not want everything returned because it might lead to a big overhead.
You need to specify what you want to return using the keyword project.

Let’s stick to the previous example:

Find all descendants of a structure with a certain uuid
qb = QueryBuilder()
qb.append(

StructureData,
tag='structure',
filters={'uuid':{'==':myuuid}},

)
qb.append(

Node,
descendant_of='structure',
project=['type', 'uuid'], # returns type (string) and uuid (string)

)

In the above example, executing the query returns the type and the id of all Node that are descendants of
the structure:

qb = QueryBuilder()
qb.append(

StructureData,
tag='structure',
filters={'uuid':{'==':myuuid}},

)
qb.append(

Node,
descendant_of='structure',
project=['type', 'id'], # returns type (string) and id (string)
tag='descendant'

)

Return the dictionaries:
print "\n\nqb.iterdict()"
for d in qb.iterdict():

print '>>>', d

Return the lists:
print "\n\nqb.iterall()"
for l in qb.iterall():

print '>>>', l

Return the first result:
print "\n\nqb.first()"
print '>>>', qb.first()

1.1. User’s guide 109

AiiDA documentation, Release 0.7.0

results in the following output:

qb.iterdict()
>>> {'descendant': {'type': u'calculation.job.quantumespresso.pw.PwCalculation.', 'id': 7716}}
>>> {'descendant': {'type': u'data.remote.RemoteData.', 'id': 8510}}
>>> {'descendant': {'type': u'data.folder.FolderData.', 'id': 9090}}
>>> {'descendant': {'type': u'data.array.ArrayData.', 'id': 9091}}
>>> {'descendant': {'type': u'data.array.trajectory.TrajectoryData.', 'id': 9092}}
>>> {'descendant': {'type': u'data.parameter.ParameterData.', 'id': 9093}}

qb.iterall()
>>> [u'calculation.job.quantumespresso.pw.PwCalculation.', 7716]
>>> [u'data.remote.RemoteData.', 8510]
>>> [u'data.folder.FolderData.', 9090]
>>> [u'data.array.ArrayData.', 9091]
>>> [u'data.array.trajectory.TrajectoryData.', 9092]
>>> [u'data.parameter.ParameterData.', 9093]

qb.first()
>>> [u'calculation.job.quantumespresso.pw.PwCalculation.', 7716]

Asking only for the properties that you are interested in can result in much faster queries. If you want the
Aiida-ORM instance, add ‘*’ to your list of projections:

qb = QueryBuilder()
qb.append(

StructureData,
tag='structure',
filters={'uuid':{'==':myuuid}},

)
qb.append(

Node,
descendant_of='structure',
project=['*'], # returns the Aiida ORM instance
tag='desc'

)

Return the dictionaries:
print "\n\nqb.iterdict()"
for d in qb.iterdict():

print '>>>', d

Return the lists:
print "\n\nqb.iterall()"
for l in qb.iterall():

print '>>>', l

Return the first result:
print "\n\nqb.first()"
print '>>>', qb.first()

Output:

qb.iterdict()
>>> {'desc': {'*': <PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>}}
>>> {'desc': {'*': <RemoteData: uuid: 13a378f8-91fa-42c7-8d7a-e469bbf02e2d (pk: 8510)>}}

110 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

>>> {'desc': {'*': <FolderData: uuid: 91d5a5e8-6b88-4e43-9652-9efda4adb4ce (pk: 9090)>}}
>>> {'desc': {'*': <ArrayData: uuid: 7c34c219-f400-42aa-8bf2-ee36c7c1dd40 (pk: 9091)>}}
>>> {'desc': {'*': <TrajectoryData: uuid: 09288a5f-dba5-4558-b115-1209013b6b32 (pk: 9092)>}}
>>> {'desc': {'*': <ParameterData: uuid: 371677e1-d7d4-4f2e-8a41-594aace02759 (pk: 9093)>}}

qb.iterall()
>>> [<PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>]
>>> [<RemoteData: uuid: 13a378f8-91fa-42c7-8d7a-e469bbf02e2d (pk: 8510)>]
>>> [<FolderData: uuid: 91d5a5e8-6b88-4e43-9652-9efda4adb4ce (pk: 9090)>]
>>> [<ArrayData: uuid: 7c34c219-f400-42aa-8bf2-ee36c7c1dd40 (pk: 9091)>]
>>> [<TrajectoryData: uuid: 09288a5f-dba5-4558-b115-1209013b6b32 (pk: 9092)>]
>>> [<ParameterData: uuid: 371677e1-d7d4-4f2e-8a41-594aace02759 (pk: 9093)>]

qb.first()
>>> [<PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>]

Note: Be aware that, for consistency, QueryBuilder.all / iterall always returns a list of lists, and first always
a list, even if you project on one entity!

If you are not sure which keys to ask for, you can project with ‘**’, and the QueryBuilder instance will return
all column properties:

qb = QueryBuilder()
qb.append(

StructureData,
project=['**']

)

Output:

qb.limit(1).dict()
>>> {'StructureData': {

u'user_id': 2,
u'description': u'',
u'ctime': datetime.datetime(2016, 2, 3, 18, 20, 17, 88239),
u'label': u'',
u'mtime': datetime.datetime(2016, 2, 3, 18, 20, 17, 116627),
u'id': 3028,
u'dbcomputer_id': None,
u'nodeversion': 1,
u'type': u'data.structure.StructureData.',
u'public': False,
u'uuid': u'93c0db51-8a39-4a0d-b14d-5a50e40a2cc4'

}}

You should know by now that you can define additional properties of nodes in the attributes and the extras
of a node. There will be many cases where you will either want to filter or project on those entities. The
following example gives us a PwCalculation where the cutoff for the wavefunctions has a value above 30.0
Ry:

qb = QueryBuilder()
qb.append(PwCalculation, project=['*'], tag='calc')
qb.append(

1.1. User’s guide 111

AiiDA documentation, Release 0.7.0

ParameterData,
input_of='calc',
filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
project=[

'attributes.SYSTEM.ecutwfc',
'attributes.SYSTEM.ecutrho',

]
)

The above examples filters by a certain attribute. Notice how you expand into the dictionary using the dot
(.). That works the same for the extras.

Note: Comparisons in the attributes (extras) are also implicitly done by type.

Let’s do a last example. You are familiar with the Quantum Espresso tutorial? Great, because this will be
our use case here. We will query for calculations that were done on a certain structure (mystructure), that
fulfill certain requirements, such as a cutoff above 30.0. In our case, we have a structure (an instance of
StructureData) and an instance of ParameterData that are both inputs to a PwCalculation. You need to tell
the QueryBuilder that:

qb = QueryBuilder()
qb.append(

StructureData,
filters={'uuid':{'==':mystructure.uuid}},
tag='strucure'

)
qb.append(

PwCalculation,
output_of='strucure',
project=['*'],
tag='calc'

)
qb.append(

ParameterData,
filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
input_of='calc',
tag='params'

)

A few cheats to save some typing:

• The default edge specification, if no keyword is provided, is always output_of the previous vertice.

• Equality filters (‘==’) can be shortened, as will be shown below.

• Tags are not necessary, you can simply use the class as a label. This works as long as the same
Aiida-class is not used again

A shorter version of the previous example:

qb = QueryBuilder()
qb.append(

StructureData,
filters={'uuid':mystructure.uuid},

)
qb.append(

PwCalculation,

112 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

project='*',
)
qb.append(

ParameterData,
filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
input_of=PwCalculation

)

Let’s proceed to some more advanced stuff. If you’ve understood everything so far you’re in good shape to
query the database, so you can skip the rest if you want.

Another feature that had to be added are projections, filters and labels on the edges of the graphs, that is to
say links or paths between nodes. It works the same way, just that the keyword is preceeded by ‘link ‘. Let’s
take the above example, but put a filter on the label of the link, project the label and label:

qb = QueryBuilder()
qb.append(

JobCalculation,
filters={'ctime':{'>': now - timedelta(days=3)}},
project={'id':{'func':'count'}}

)
qb.append(

ParameterData,
filters={'attributes.energy':{'>':-5.0}},
edge_filters={'label':{'like':'output_%'}},
edge_project='label'

)

You can also order by properties of the node, although ordering by attributes or extras is not implemented
yet. Assuming you want to order the above example by the time of the calculations:

qb = QueryBuilder()
qb.append(

JobCalculation,
project=['*']

)
qb.append(

ParameterData,
filters={'attributes.energy':{'>':-5.0}},

)

qb.order_by({JobCalculation:{'ctime':'asc'}}) # 'asc' or 'desc' (ascending/descending)

You can also limit the number of rows returned with the method limit :

qb = QueryBuilder()
qb.append(

JobCalculation,
filters={'ctime':{'>': now - timedelta(days=3)}},
project=['*']

)
qb.append(

ParameterData,
filters={'attributes.energy':{'>':-5.0}},

)

order by time descending

1.1. User’s guide 113

AiiDA documentation, Release 0.7.0

qb.order_by({JobCalculation:{'ctime':'desc'}})

Limit to results to the first 10 results:
qb.limit(10)

The above query returns the latest 10 calculation that produced a final energy above -5.0.

The queryhelp

As mentioned above, there are two possibilities to tell the QueryBuilder what to do. The second uses
one big dictionary that we can call the queryhelp in the following. It has the same functionalities as the
appender method. But you could save this dictionary in a JSON or in the database and use it over and over.
Using the queryhelp, you have to specify the path, the filter and projections beforehand and instantiate the
QueryBuilder with that dictionary:

qb = Querybuilder(**queryhelp)

What do you have to specify:

• Specifying the path: Here, the user specifies the path along which to join tables as a list, each list item
being a vertice in your path. You can define the vertice in two ways: The first is to give the Aiida-class:

queryhelp = {
'path':[Data]

}

or (better)

queryhelp = {
'path':[

{'cls': Data}
]

}

Another way is to give the polymorphic identity of this class, in our case stored in type:

queryhelp = {
'path':[

{'type':"data."}
]

}

Note: In Aiida, polymorphism is not strictly enforced, but done with type specification. Type-
discrimination when querying is achieved by attaching a filter on the type every time a subclass of
Node is given.

Each node has to have a unique tag. If not given, the tag is chosen to be equal to the name of the
class. This will not work if the user chooses the same class twice. In this case he has to provide the
tag:

queryhelp = {
'path':[

{
'cls':Node,

114 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

'tag':'node_1'
},
{

'cls':Node,
'tag':'node_2'

}
]

}

There also has to be some information on the edges, in order to join correctly. There are several
redundant ways this can be done:

– You can specify that this node is an input or output of another node preceding the current one
in the list. That other node can be specified by an integer or the class or type. The following
examples are all valid joining instructions, assuming there is a structure defined at index 2 of the
path with tag “struc1”:

edge_specification = queryhelp['path'][3]
edge_specification['output_of'] = 2
edge_specification['output_of'] = StructureData
edge_specification['output_of'] = 'struc1'
edge_specification['input_of'] = 2
edge_specification['input_of'] = StructureData
edge_specification['input_of'] = 'struc1'

– queryhelp_item[’direction’] = integer

If any of the above specs (“input_of”, “output_of”) were not specified, the key “direction” is looked
for. Directions are defined as distances in the tree. 1 is defined as one step down the tree along
a link. This means that 1 joins the node specified in this dictionary to the node specified on
list-item before as an output. Direction defaults to 1, which is why, if nothing is specified, this
node is joined to the previous one as an output by default. A minus sign reverse the direction of
the link. The absolute value of the direction defines the table to join to with respect to your own
position in the list. An absolute value of 1 joins one table above, a value of 2 to the table defined
2 indices above. The two following queryhelps yield the same query:

qh1 = {
'path':[

{
'cls':PwCalculation

},
{

'cls':Trajectory
},
{

'cls':ParameterData,
'direction':-2

}
]

}

returns same query as:

qh2 = {
'path':[

{
'cls':PwCalculation

1.1. User’s guide 115

AiiDA documentation, Release 0.7.0

},
{

'cls':Trajectory
},
{

'cls':ParameterData,
'input_of':PwCalculation

}
]

}

Shorter version:

qh3 = {
'path':[

ParameterData,
PwCalculation,
Trajectory,

]
}

• Project: Determing which columns the query will return:

queryhelp = {
'path':[Relax],
'project':{

Relax:['state', 'id'],
}

}

If you are using JSONB columns, you can also project a value stored inside the json:

queryhelp = {
'path':[

Relax,
StructureData,

],
'project':{

Relax:['state', 'id'],
}

}

Returns the state and the id of all instances of Relax where a structures is linked as output of a relax-
calculation. The strings that you pass have to be name of the columns. If you pass a star (‘*’), the
query will return the instance of the AiidaClass.

• Filters: What if you want not every structure, but only the ones that were added after a certain time t
and have an id higher than 50:

queryhelp = {
'path':[

{'cls':Relax}, # Relaxation with structure as output
{'cls':StructureData}

],
'filters':{

StructureData:{
'time':{'>': t},

116 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

'id':{'>': 50}
}

}
}

If you want to include filters and projections on links between nodes, you will have to add these to filters and
projections in the queryhelp. Let’s take an example that we had and add a few filters on the link:

queryhelp = {
'path':[

{'cls':Relax, 'tag':'relax'}, # Relaxation with structure as output
{'cls':StructureData, 'tag':'structure'}

],
'filters':{

'structure':{
'time':{'>': t},
'id':{'>': 50}

},
'relax--structure':{

'time':{'>': t},
'label':{'like':'output_%'},

}
},
'project':{

'relax--structure':['label'],
'structure':['label'],
'relax':['label', 'state'],

}
}

Notice that the label for the link, by default, is the labels of the two connecting nodes delimited by two
dashes ‘–‘. The order does not matter, the following queryhelp would results in the same query:

queryhelp = {
'path':[

{'cls':Relax, 'label':'relax'}, # Relaxation with structure as output
{'cls':StructureData, 'label':'structure'}

],
'filters':{

'structure':{
'time':{'>': t},
'id':{'>': 50}

},
'relax--structure':{

'time':{'>': t},
'label':{'like':'output_%'},

}
},
'project':{

'relax--structure':['label'],
'structure':['label'],
'relax':['label', 'state'],

}
}

If you dislike that way to label the link, you can choose the linklabel in the path when definining the entity to
join:

1.1. User’s guide 117

AiiDA documentation, Release 0.7.0

queryhelp = {
'path':[

{'cls':Relax, 'label':'relax'}, # Relaxation with structure as output
{

'cls':StructureData,
'label':'structure',
'edge_tag':'ThisIsMyLinkLabel' # Definining the linklabel

}
],
'filters':{

'structure':{
'time':{'>': t},
'id':{'>': 50}

},
'ThisIsMyLinkLabel':{ # Using this linklabel

'time':{'>': t},
'label':{'like':'output_%'},

}
},
'project':{

'ThisIsMyLinkLabel':['label'],
'structure':['label'],
'relax':['label', 'state'],

}
}

You can set a limit and an offset in the queryhelp:

queryhelp = {
'path':[Node],
'limit':10,
'offset':20

}

That queryhelp would tell the QueryBuilder to return 10 rows after the first 20 have been skipped.

1.1.25 AiiDA workflows

Workflows are one of the most important components for real high-throughput calculations, allowing the
user to scale well defined chains of calculations on any number of input structures, both generated or
acquired from an external source.

Instead of offering a limited number of automatization schemes, crafted for some specific functions (equation
of states, phonons, etc...) in AiiDA a complete workflow engine is present, where the user can script in
principle any possible interaction with all the AiiDA components, from the submission engine to the materials
databases connections. In AiiDA a workflow is a python script executed by a daemon, containing several
user defined functions called steps. In each step all the AiiDA functions are available and calculations and
launched and retrieved, as well as other sub-workflows.

In this document we’ll introduce the main workflow infrastructure from the user perspective, discussing
and presenting some examples that will cover all the features implemented in the code. A more detailed
description of each function can be found in the developer documentation.

118 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

How it works

The rationale of the entire workflow infrastructure is to make efficient, reproducible and scriptable anything
a user can do in the AiiDA shell. A workflow in this sense is nothing more than a list of AiiDA commands,
split in different steps that depend one on each other and that are executed in a specific order. A workflow
step is written with the same python language, using the same commands and libraries you use in the shell,
stored in a file as a python class and managed by a daemon process.

Before starting to analyze our first workflow we should summarize very shortly the main working logic of
a typical workflow execution, starting with the definition of the management daemon. The AiiDA daemon
handles all the operations of a workflow, script loading, error handling and reporting, state monitoring and
user interaction with the execution queue.

The daemon works essentially as an infinite loop, iterating several simple operations:

1. It checks the running step in all the active workflows, if there are new calculations attached to a step
it submits them.

2. It retrieves all the finished calculations. If one step of one workflow exists where all the calculations
are correctly finished it reloads the workflow and executes the next step as indicated in the script.

3. If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

This simplified process is the very heart of the workflow engine, and while the process loops a user can
submit a new workflow to be managed from the Verdi shell (or through a script loading the necessary Verdi
environment). In the next chapter we’ll initialize the daemon and analyze a simple workflow, submitting it
and retrieving the results.

Note: The workflow engine of AiiDA is now fully operational but will undergo major improvements in a near
future. Therefore, some of the methods or functionalities described in the following might change.

The AiiDA daemon

As explained the daemon must be running to allow the execution of workflows, so the first thing needed to
start it to launch the daemon. We can use the verdi script facility from your computer’s shell:

>> verdi daemon start

This command will launch a background job (a daemon in fact) that will continuously check for new or
running workflow to manage. Thanks to the asynchronous structure of AiiDA if the daemon gets interrupted
(or the computer running the daemon restarted for example), once it will be restarted all the workflow will
proceed automatically without any problem. The only thing you need to do to restart the workflow it’s
exactly the same command above. To stop the daemon instead we use the same command with the stop
directive, and to have a very fast check about the execution we can use the state directive to obtain more
information.

A workflow demo

Now that the daemon is running we can focus on how to write our first workflow. As explained a workflow
is essentially a python class, stored in a file accessible by AiiDA (in the same AiiDA path). By convention
workflows are stored in .py files inside the aiida/workflows directory; in the distribution you’ll find some
examples (some of them analyzed here) and a user directory where user defined workflows can be stored.
Since the daemon is aware only of the classes present at the time of its launch, remember to restart the
daemon (verdi daemon restart) every time you add a new workflow to let AiiDA see it.

1.1. User’s guide 119

AiiDA documentation, Release 0.7.0

We can now study a very first example workflow, contained in the wf_demo.py file inside the distribution’s
workflows directory. Even if this is just a toy model, it helps us to introduce all the features and details on
how a workflow works, helping us to understand the more sophisticated examples reported later.

1 import aiida.common
2 from aiida.common import aiidalogger
3 from aiida.orm.workflow import Workflow
4 from aiida.orm import Code, Computer
5

6 logger = aiidalogger.getChild('WorkflowDemo')
7

8 class WorkflowDemo(Workflow):
9

10 def __init__(self,**kwargs):
11

12 super(WorkflowDemo, self).__init__(**kwargs)
13

14 def generate_calc(self):
15

16 from aiida.orm import Code, Computer, CalculationFactory
17 from aiida.common.datastructures import calc_states
18

19 CustomCalc = CalculationFactory('simpleplugins.templatereplacer')
20

21 computer = Computer.get("localhost")
22

23 calc = CustomCalc(computer=computer,withmpi=True)
24 calc.set_resources(num_machines=1, num_mpiprocs_per_machine=1)
25 calc._set_state(calc_states.FINISHED)
26 calc.store()
27

28 return calc
29

30 @Workflow.step
31 def start(self):
32

33 from aiida.orm.node import Node
34

35 # Testing parameters
36 p = self.get_parameters()
37

38 # Testing calculations
39 self.attach_calculation(self.generate_calc())
40 self.attach_calculation(self.generate_calc())
41

42 # Testing report
43 self.append_to_report("Starting workflow with params: {0}".format(p))
44

45 # Testing attachments
46 n = Node()
47 attrs = {"a": [1,2,3], "n": n}
48 self.add_attributes(attrs)
49

50 # Test process
51 self.next(self.second_step)
52

53 @Workflow.step
54 def second_step(self):

120 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

55

56 # Test retrieval
57 calcs = self.get_step_calculations(self.start)
58 self.append_to_report("Retrieved calculation 0 (uuid): {0}".format(calcs[0].uuid))
59

60 # Testing report
61 a = self.get_attributes()
62 self.append_to_report("Execution second_step with attachments: {0}".format(a))
63

64 # Test results
65 self.add_result("scf_converged", calcs[0])
66

67 self.next(self.exit)

As discussed before this is native python code, meaning that a user can load any library or script accessible
from their PYTHONPATH and interacting with any database or service of preference inside the workflow.
We’ll now go through all the details of the first workflow, line by line, discussing the most important methods
and discovering along the way all the features available.

lines 1-7 Module imports. Some are necessary for the Workflow objects but many more can be added for
user defined functions and libraries.

lines 8-12 Superclass definition, a workflow MUST extend the Workflow class from the
aiida.orm.workflow. This is a fundamental requirement, since the subclassing is the way AiiDA under-
stand if a class inside the file is an AiiDA workflow or a simple utility class. Note that for back-compatibility
with python 2.7 also the explicit initialization of line 12 is necessary to make things work correctly.

lines 14-28 Once the class is defined a user can add as many methods as he wishes, to generate calcula-
tions or to download structures or to compute new ones starting form a query in previous AiiDA calculations
present in the DB. In the script above the method generate_calc will simply prepare a dummy calcula-
tion, setting it’s state to finished and returning the object after having it stored in the repository. This utility
function will allow the dummy workflow run without the need of any code or machine except for localhost
configured. In real cases, as we’ll see, a calculation will be set up with parameters and structures defined
in more sophisticated ways, but the logic underneath is identical as far as the workflow inner working is
concerned.

lines 30-51 This is the first step, one of the main components in the workflow logic. As you can see the
start method is decorated as a Workflow.step making it a very unique kind of method, automatically
stored in the database as a container of calculations and sub-workflows. Several functions are available to
the user when coding a workflow step, and in this method we can see most of the basic ones:

• line 36 self.get_parameters(). With this method we can retrieve the parameters passed to the
workflow when it was initialized. Parameters cannot be modified during an execution, while attributes
can be added and removed.

• lines 39-40 self.attach_calculation(JobCalculation). This is a key point in the work-
flow, and something possible only inside a step method. JobCalculations, generated in the methods
or retrieved from other utility methods, are attached to the workflow’s step, launched and executed
completely by the daemon, without the need of user interaction. Failures, re-launching and queue
management are all handled by the daemon, and thousands of calculations can be attached. The
daemon will poll the servers until all the step calculations will be finished, and only after that it will
pass to the next step.

• line 43 self.append_to_report(string). Once the workflow will be launched, the user inter-
actions are limited to some events (stop, relaunch, list of the calculations) and most of the times is
very useful to have custom messages during the execution. For this each workflow is equipped with
a reporting facility, where the user can fill with any text and can retrieve both live and at the end of the
execution.

1.1. User’s guide 121

AiiDA documentation, Release 0.7.0

• lines 45-48 self.add_attributes(dict). Since the workflow is instantiated every step from
scratch, if a user wants to pass arguments between steps he must use the attributes facility, where a
dictionary of values (accepted values are basic types and AiiDA nodes) can be saved and retrieved
from other steps during future executions.

• line 52 self.next(Workflow.step). This is the final part of a step, where the user points the
engine about what to do after all the calculations in the steps (on possible sub-workflows, as we’ll see
later) are terminated. The argument of this function has to be a Workflow.step decorated method
of the same workflow class, or in case this is the last step to be executed you can use the common
method self.exit, always present in each Workflow subclass.

Note: make sure to store() all input nodes for the attached calculations, as unstored nodes will be
lost during the transition from one step to another.

lines 53-67 When the workflow will be launched through the start method, the AiiDA daemon will load
the workflow, execute the step, launch all the calculations and monitor their state. Once all the calculations
in start will be finished the daemon will then load and execute the next step, in this case the one called
second_step. In this step new features are shown:

• line 57 self.get_step_calculations(Workflow.step). Anywhere after the first step we may
need to retrieve and analyze calculations executed in a previous steps. With this method we can have
access to the list of calculations of a specific workflows step, passed as an argument.

• line 61 self.get_attributes(). With this call we can retrieve the attributes stored in previous
steps. Remember that this is the only way to pass arguments between different steps, adding them
as we did in line 48.

• line 65 self.add_result(). When all the calculations are done it’s useful to tag some
of them as results, using custom string to be later searched and retrieved. Similarly to the
get_step_calculations, this method works on the entire workflow and not on a single step.

• line 67 self.next(self.exit). This is the final part of each workflow, setting the exit. Every
workflow inheritate a fictitious step called exit that can be set as a next to any step. As the names
suggest, this implies the workflow execution to finish correctly.

Running a workflow

After saving the workflow inside a python file located in the aiida/workflows directory, we can launch
the workflow simply invoking the specific workflow class and executing the start() method inside the
Verdi shell. It’s important to remember that all the AiiDA framework needs to be accessible for the workflow
to be launched, and this can be achieved either with the verdi shell or by any other python environment that
has previously loaded the AiiDA framework (see the developer manual for this).

To launch the verdi shell execute verdi shell from the command line; once inside the shell we have
to import the workflow class we want to launch (this command depends on the file location and the class
name we decided). In this case we expect we’ll launch the WorkflowDemo presented before, located in the
wf_demo.py file in the clean AiiDA distribution. In the shell we execute:

>> from aiida.workflows.wf_demo import WorkflowDemo
>> params = {"a":[1,2,3]}
>> wf = WorkflowDemo(params=params)
>> wf.start()

122 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

Note: If you want to write the above script in a file, remember to run it with verdi run and not simply
with python, or otherwise to use the other techniques described here.

In these four lines we loaded the class, we created some fictitious parameter and we initialized the workflow.
Finally we launched it with the start() method, a lazy command that in the backgroud adds the workflow
to the execution queue monitored by the verdi daemon. In the backgroud the daemon will handle all the
workflow processes, stepping each method, launching and retrieving calculations and monitoring possible
errors and problems.

Since the workflow is now managed by the daemon, to interact with it we need special methods. There are
basically two ways to see how the workflows are running: by printing the workflow list or its report.

• Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step and each calculation (and, when
present, each sub-workflow - see below). It is the fastest way to have a snapshot of what your AiiDA
workflow daemon is working on. An example output right after the WorkflowDemo submission should
be

+ Workflow WorkflowDemo (pk: 1) is RUNNING [0h:05m:04s]
|-* Step: start [->second_step] is RUNNING
| | Calculation (pk: 1) is FINISHED
| | Calculation (pk: 2) is FINISHED

For each workflow is reported the pk number, a unique id identifying that specific execution of the
workflow, something necessary to retrieve it at any other time in the future (as explained in the next
point).

Note: You can also print the list of any individual workflow from the verdi shell (here in the shell
where you defined your workflow as wf, see above):

>> import aiida.orm.workflow as wfs
>> print "\n".join(wfs.get_workflow_info(wf._dbworkflowinstance))

• Workflow report

As explained, each workflow is equipped with a reporting facility the user can use to log any important
intermediate information, useful to debug the state or show some details. Moreover the report is also
used by AiiDA as an error reporting tool: in case of errors encountered during the execution, the AiiDA
daemon will copy the entire stack trace in the workflow report before halting it’s execution. To access
the report we need the specific pk of the workflow. From the command line we would run:

>> verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the get_report() method:

>> load_workflow(PK_NUMBER).get_report()

1.1. User’s guide 123

AiiDA documentation, Release 0.7.0

In both variants, PK_NUMBER is the pk number of the workflow we want the report of. The
load_workflow function loads a Workflow instance from its pk number, or from its uuid (given
as a string).

Note: It’s always recommended to get the workflow instance from load_workflow (or from the
Workflow.get_subclass_from_pk method) without saving this object in a variable. The infor-
mation generated in the report may change and the user calling a get_report method of a class
instantiated in the past will probably lose the most recent additions to the report.

Once launched, the workflows will be handled by the daemon until the final step or until some error occurs.
In the last case, the workflow gets halted and the report can be checked to understand what happened.

• Killing a workflow

A user can also kill a workflow while it’s running. This can be done with the following verdi command:

>> verdi workflow kill PK_NUMBER_1 PK_NUMBER_2 PK_NUMBER_N

where several pk numbers can be given. A prompt will ask for a confirmation; this can be avoided by using
the -f option.

An alternative way to kill an individual workflow is to use the kill method. In the verdi shell type:

>> load_workflow(PK_NUMBER).kill()

or, equivalently:

>> Workflow.get_subclass_from_pk(PK_NUMBER).kill()

Note: Sometimes the kill operation might fail because one calculation cannot be killed (e.g. if it’s running
but not in the WITHSCHEDULER, TOSUBMIT or NEW state), or because one workflow step is in the CREATED
state. In that case the workflow is put to the SLEEP state, such that no more workflow steps will be launched
by the daemon. One can then simply wait until the calculation or step changes state, and try to kill it again.

A more sophisticated workflow

In the previous chapter we’ve been able to see almost all the workflow features, and we’re now ready to
work on some more sophisticated examples, where real calculations are performed and common real-life
issues are solved. As a real case example we’ll compute the equation of state of a simple class of materials,
XTiO3; the workflow will accept as an input the X material, it will build several structures with different crystal
parameters, run and retrieve all the simulations, fit the curve and run an optimized final structure saving it
as the workflow results, aside to the final optimal cell parameter value.

1 ## ===
2 ## WorkflowXTiO3_EOS
3 ## ===
4

5 class WorkflowXTiO3_EOS(Workflow):
6

7 def __init__(self,**kwargs):
8

9 super(WorkflowXTiO3_EOS, self).__init__(**kwargs)

124 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

10

11 ## ===
12 ## Object generators
13 ## ===
14

15 def get_structure(self, alat = 4, x_material = 'Ba'):
16

17 cell = [[alat, 0., 0.,],
18 [0., alat, 0.,],
19 [0., 0., alat,],
20]
21

22 # BaTiO3 cubic structure
23 s = StructureData(cell=cell)
24 s.append_atom(position=(0.,0.,0.),symbols=x_material)
25 s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols=['Ti'])
26 s.append_atom(position=(alat/2.,alat/2.,0.),symbols=['O'])
27 s.append_atom(position=(alat/2.,0.,alat/2.),symbols=['O'])
28 s.append_atom(position=(0.,alat/2.,alat/2.),symbols=['O'])
29 s.store()
30

31 return s
32

33 def get_pw_parameters(self):
34

35 parameters = ParameterData(dict={
36 'CONTROL': {
37 'calculation': 'scf',
38 'restart_mode': 'from_scratch',
39 'wf_collect': True,
40 },
41 'SYSTEM': {
42 'ecutwfc': 30.,
43 'ecutrho': 240.,
44 },
45 'ELECTRONS': {
46 'conv_thr': 1.e-6,
47 }}).store()
48

49 return parameters
50

51 def get_kpoints(self):
52

53 kpoints = KpointsData()
54 kpoints.set_kpoints_mesh([4,4,4])
55 kpoints.store()
56

57 return kpoints
58

59 def get_pw_calculation(self, pw_structure, pw_parameters, pw_kpoint):
60

61 params = self.get_parameters()
62

63 pw_codename = params['pw_codename']
64 num_machines = params['num_machines']
65 num_mpiprocs_per_machine = params['num_mpiprocs_per_machine']
66 max_wallclock_seconds = params['max_wallclock_seconds']
67 pseudo_family = params['pseudo_family']

1.1. User’s guide 125

AiiDA documentation, Release 0.7.0

68

69 code = Code.get_from_string(pw_codename)
70 computer = code.get_remote_computer()
71

72 QECalc = CalculationFactory('quantumespresso.pw')
73

74 calc = QECalc(computer=computer)
75 calc.set_max_wallclock_seconds(max_wallclock_seconds)
76 calc.set_resources({"num_machines": num_machines, "num_mpiprocs_per_machine": num_mpiprocs_per_machine})
77 calc.store()
78

79 calc.use_code(code)
80

81 calc.use_structure(pw_structure)
82 calc.use_pseudos_from_family(pseudo_family)
83 calc.use_parameters(pw_parameters)
84 calc.use_kpoints(pw_kpoint)
85

86 return calc
87

88

89 ## ===
90 ## Workflow steps
91 ## ===
92

93 @Workflow.step
94 def start(self):
95

96 params = self.get_parameters()
97 x_material = params['x_material']
98

99 self.append_to_report(x_material+"Ti03 EOS started")
100 self.next(self.eos)
101

102 @Workflow.step
103 def eos(self):
104

105 from aiida.orm import Code, Computer, CalculationFactory
106 import numpy as np
107

108 params = self.get_parameters()
109

110 x_material = params['x_material']
111 starting_alat = params['starting_alat']
112 alat_steps = params['alat_steps']
113

114

115 a_sweep = np.linspace(starting_alat*0.85,starting_alat*1.15,alat_steps).tolist()
116

117 aiidalogger.info("Storing a_sweep as "+str(a_sweep))
118 self.add_attribute('a_sweep',a_sweep)
119

120 for a in a_sweep:
121

122 self.append_to_report("Preparing structure {0} with alat {1}".format(x_material+"TiO3",a))
123

124 calc = self.get_pw_calculation(self.get_structure(alat=a, x_material=x_material),
125 self.get_pw_parameters(),

126 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

126 self.get_kpoints())
127

128 self.attach_calculation(calc)
129

130

131 self.next(self.optimize)
132

133 @Workflow.step
134 def optimize(self):
135

136 from aiida.orm.data.parameter import ParameterData
137

138 x_material = self.get_parameter("x_material")
139 a_sweep = self.get_attribute("a_sweep")
140

141 aiidalogger.info("Retrieving a_sweep as {0}".format(a_sweep))
142

143 # Get calculations
144 start_calcs = self.get_step_calculations(self.eos) #.get_calculations()
145

146 # Calculate results
147 #---
148

149 e_calcs = [c.res.energy for c in start_calcs]
150 v_calcs = [c.res.volume for c in start_calcs]
151

152 e_calcs = zip(*sorted(zip(a_sweep, e_calcs)))[1]
153 v_calcs = zip(*sorted(zip(a_sweep, v_calcs)))[1]
154

155 # Add to report
156 #---
157 for i in range (len(a_sweep)):
158 self.append_to_report(x_material+"Ti03 simulated with a="+str(a_sweep[i])+", e="+str(e_calcs[i]))
159

160 # Find optimal alat
161 #---
162

163 murnpars, ier = Murnaghan_fit(e_calcs, v_calcs)
164

165 # New optimal alat
166 optimal_alat = murnpars[3]** (1 / 3.0)
167 self.add_attribute('optimal_alat',optimal_alat)
168

169 # Build last calculation
170 #---
171

172 calc = self.get_pw_calculation(self.get_structure(alat=optimal_alat, x_material=x_material),
173 self.get_pw_parameters(),
174 self.get_kpoints())
175 self.attach_calculation(calc)
176

177

178 self.next(self.final_step)
179

180 @Workflow.step
181 def final_step(self):
182

183 from aiida.orm.data.parameter import ParameterData

1.1. User’s guide 127

AiiDA documentation, Release 0.7.0

184

185 x_material = self.get_parameter("x_material")
186 optimal_alat = self.get_attribute("optimal_alat")
187

188 opt_calc = self.get_step_calculations(self.optimize)[0] #.get_calculations()[0]
189 opt_e = opt_calc.get_outputs(type=ParameterData)[0].get_dict()['energy']
190

191 self.append_to_report(x_material+"Ti03 optimal with a="+str(optimal_alat)+", e="+str(opt_e))
192

193 self.add_result("scf_converged", opt_calc)
194

195 self.next(self.exit)

Before getting into details, you’ll notice that this workflow is devided into sections by comments in the script.
This is not necessary, but helps the user to differentiate the main parts of the code. In general it’s useful to
be able to recognize immediately which functions are steps and which are instead utility or support functions
that either generate structure, modify them, add special parameters for the calculations, etc. In this case
the support functions are reported first, under the Object generators part, while Workflow steps are
reported later in the soundy Workflow steps section. Lets now get in deeper details for each function.

• __init__ Usual initialization function, notice again the necessary super class initialization for back
compatibility.

• start The workflow tries to get the X material from the parameters, called in this case x_material.
If the entry is not present in the dictionary an error will be thrown and the workflow will hang, reporting
the error in the report. After that a simple line in the report is added to notify the correct start and the
eos step will be chained to the execution.

• eos This step is the heart of this workflow. At the beginning parameters needed to investigate the
equation of states are retrieved. In this case we chose a very simple structure with only one interesting
cell parameter, called starting_alat. The code will take this alat as the central point of a linear
mesh going from 0.85 alat to 1.15 alat where only a total of alat_steps will be generated. This
decision is very much problem dependent, and your workflows will certanly need more parameters or
more sophisticated meshes to run a satisfactory equation of state analysis, but again this is only a
tutorial and the scope is to learn the basic concepts.

After retrieving the parameters, a linear interpolation is generated between the values of interest and
for each of these values a calculation is generated by the support function (see later). Each calculation
is then attached to the step and finally the step chains optimize as the step. As told, the manager
will handle all the job execution and retrieval for all the step’s calculation before calling the next step,
and this ensures that no optimization will be done before all the alat steps are computed with success.

• optimize In the first lines the step will retrieve the initial parameters, the a_sweep attribute computed
in the previous step and all the calculations launched and succesfully retrieved. Energy and volume
in each calculation is retrieved thanks to the output parser functions mentioned in the other chapters,
and a simple message is added to the report for each calculation.

Having the volume and the energy for each simulation we can run a Murnaghan fit to obtain the opti-
mal cell parameter and expected energy, to do this we use a simple fitting function Murnaghan_fit
defined at the bottom of the workflow file wf_XTiO3.py. The optimal alat is then saved in the at-
tributes and a new calculation is generated for it. The calculation is attached to the step and the
final_step is attached to the execution.

• final_step In this step the main result is collected and stored. Parameters and attributes are retrieved,
a new entry in the report is stored pointing to the optimal alat and to the final energy of the structure.
Finally the calculation is added to the workflow results and the exit step is chained for execution.

• get_pw_calculation (get_kpoints, get_pw_parameters, get_structure) As you noticed to let the
code clean all the functions needed to generate AiiDA Calculation objects have been factored in the

128 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

utility functions. These functions are highly specific for the task needed, and unrelated to the workflow
functions. Nevertheless they’re a good example of best practise on how to write clean and reusable
workflows, and we’ll comment the most important feature.

get_pw_calculation is called in the workflow’s steps, and it handles the entire Calculation object
creation. First it extracts the parameters from the workflow initialization necessary for the execution
(the machine, the code, and the number of core, pseudos, etc..) and then it generates and stores the
JobCalculation objects, returning it for later use.

get_kpoints genetates a k-point mesh suitable for the calculation, in this case a fixed MP mesh
4x4x4. In a real case scenario this needs much more sophisticated calculations to ensure a correct
convergence, not necessary for the tutorial.

get_pw_parameters builds the minimum set of parameters necessary to run the Quantum
Espresso simulations. In this case as well parameters are not for production.

get_structure generates the real atomic arrangement for the specific calculation. In this case the
configuration is extremely simple, but in principle this can be substituted with an external funtion, im-
plementing even very sophisticated approaches such as genetic algorithm evolution or semi-randomic
modifications, or any other structure evolution function the user wants to test.

As you noticed this workflow needs several parameters to be correctly executed, something natural for real
case scenarios. Nevertheless the launching procedure is identical as for the simple example before, with
just a little longer dictionary of parameters:

>> from aiida.workflows.wf_XTiO3 import WorkflowXTiO3_EOS
>> params = {'pw_codename':'PWcode', 'num_machines':1, 'num_mpiprocs_per_machine':8, 'max_wallclock_seconds':30*60, 'pseudo_family':'PBE', 'alat_steps':5, 'x_material':'Ba','starting_alat':4.0}
>> wf = WorkflowXTiO3_EOS(params=params)
>> wf.start()

To run this workflow remember to update the params dictionary with the correct values for your AiiDA
installation (namely pw_codename and pseudo_family).

Chaining workflows

After the previous chapter we’re now able to write a real case workflow that runs in a fully automatic way
EOS analysis for simple structures. This covers almost all the workflow engine’s features implemented in
AiiDA, except for workflow chaining.

Thanks to their modular structure a user can write task-specific workflows very easly. An example is the
EOS before, or an energy convergence procedure to find optimal cutoffs, or any other necessity the user
can code. These self contained workflows can easily become a library of result-oriented scripts that a user
would be happy to reuse in several ways. This is exactly where sub-workflows come in handy.

Workflows, in an abstract sense, are in fact calculations, that accept as input some parameters and that
produce results as output. The way this calculations are handled is competely transparent for the user and
the engine, and if a workflow could launch other workflows it would just be a natural extension of the step’s
calculation concept. This is in fact how workflow chaining has been implemented in AiiDA. Just as with
calculations, in each step a workflow can attach another workflow for executions, and the AiiDA daemon will
handle its execution waiting for its successful end (in case of errors in any subworkflow, such errors will be
reported and the entire workflow tree will be halted, exactly as when a calculation fails).

To introduce this function we analyze our last example, where the WorkflowXTiO3_EOS is used as a sub
workflow. The general idea of this new workflow is simple: if we’re now able to compute the EOS of any
XTiO3 structure we can build a workflow to loop among several X materials, obtain the relaxed structure for
each material and run some more sophisticated calculation. In this case we’ll compute phonon vibrational
frequncies for some XTiO3 materials, namely Ba, Sr and Pb.

1.1. User’s guide 129

AiiDA documentation, Release 0.7.0

1 ## ===
2 ## WorkflowXTiO3
3 ## ===
4

5 class WorkflowXTiO3(Workflow):
6

7 def __init__(self,**kwargs):
8

9 super(WorkflowXTiO3, self).__init__(**kwargs)
10

11 ## ===
12 ## Calculations generators
13 ## ===
14

15 def get_ph_parameters(self):
16

17 parameters = ParameterData(dict={
18 'INPUTPH': {
19 'tr2_ph' : 1.0e-8,
20 'epsil' : True,
21 'ldisp' : True,
22 'nq1' : 1,
23 'nq2' : 1,
24 'nq3' : 1,
25 }}).store()
26

27 return parameters
28

29 def get_ph_calculation(self, pw_calc, ph_parameters):
30

31 params = self.get_parameters()
32

33 ph_codename = params['ph_codename']
34 num_machines = params['num_machines']
35 num_mpiprocs_per_machine = params['num_mpiprocs_per_machine']
36 max_wallclock_seconds = params['max_wallclock_seconds']
37

38 code = Code.get_from_string(ph_codename)
39 computer = code.get_remote_computer()
40

41 QEPhCalc = CalculationFactory('quantumespresso.ph')
42 calc = QEPhCalc(computer=computer)
43

44 calc.set_max_wallclock_seconds(max_wallclock_seconds) # 30 min
45 calc.set_resources({"num_machines": num_machines, "num_mpiprocs_per_machine": num_mpiprocs_per_machine})
46 calc.store()
47

48 calc.use_parameters(ph_parameters)
49 calc.use_code(code)
50 calc.use_parent_calculation(pw_calc)
51

52 return calc
53

54 ## ===
55 ## Workflow steps
56 ## ===
57

58 @Workflow.step

130 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

59 def start(self):
60

61 params = self.get_parameters()
62 elements_alat = [('Ba',4.0),('Sr', 3.89), ('Pb', 3.9)]
63

64 for x in elements_alat:
65

66 params.update({'x_material':x[0]})
67 params.update({'starting_alat':x[1]})
68

69 aiidalogger.info("Launching workflow WorkflowXTiO3_EOS for {0} with alat {1}".format(x[0],x[1]))
70

71 w = WorkflowXTiO3_EOS(params=params)
72 w.start()
73 self.attach_workflow(w)
74

75 self.next(self.run_ph)
76

77 @Workflow.step
78 def run_ph(self):
79

80 # Get calculations
81 sub_wfs = self.get_step(self.start).get_sub_workflows()
82

83 for sub_wf in sub_wfs:
84

85 # Retrieve the pw optimized calculation
86 pw_calc = sub_wf.get_step("optimize").get_calculations()[0]
87

88 aiidalogger.info("Launching PH for PW {0}".format(pw_calc.get_job_id()))
89 ph_calc = self.get_ph_calculation(pw_calc, self.get_ph_parameters())
90 self.attach_calculation(ph_calc)
91

92 self.next(self.final_step)
93

94 @Workflow.step
95 def final_step(self):
96

97 #self.append_to_report(x_material+"Ti03 EOS started")
98 from aiida.orm.data.parameter import ParameterData
99 import aiida.tools.physics as ps

100

101 params = self.get_parameters()
102

103 # Get calculations
104 run_ph_calcs = self.get_step_calculations(self.run_ph) #.get_calculations()
105

106 for c in run_ph_calcs:
107 dm = c.get_outputs(type=ParameterData)[0].get_dict()['dynamical_matrix_1']
108 self.append_to_report("Point q: {0} Frequencies: {1}".format(dm['q_point'],dm['frequencies']))
109

110 self.next(self.exit)

Most of the code is now simple adaptation of previous examples, so we’re going to comment only the most
relevant differences where workflow chaining plays an important role.

• start This workflow accepts the same input as the WorkflowXTiO3_EOS, but right at the beginning
the workflow a list of X materials is defined, with their respective initial alat. This list is iterated and for

1.1. User’s guide 131

AiiDA documentation, Release 0.7.0

each material a new Workflow is both generated, started and attached to the step. At the end run_ph
is chained as the following step.

• run_ph Only after all the subworkflows in start are succesfully completed this step will be executed,
and it will immediately retrieve all the subworkflow, and from each of them it will get the result cal-
culations. As you noticed the result can be stored with any user defined key, and this is necessary
when someone wants to retrieve it from a completed workflow. For each result a phonon calculation
is launched and then the final_step step is chained.

To launch this new workflow we have only to add a simple entry in the previous parameter dictionary,
specifing the phonon code, as reported here:

>> from aiida.workflows.wf_XTiO3 import WorkflowXTiO3
>> params = {'pw_codename':'PWcode', 'ph_codename':'PHcode', 'num_machines':1, 'num_mpiprocs_per_machine':8, 'max_wallclock_seconds':30*60, 'pseudo_family':'PBE', 'alat_steps':5 }
>> wf = WorkflowXTiO3(params=params)
>> wf.start()

1.1.26 Import structures from external databases

We support the import of structures from external databases. The base class that defines the API for the
importers can be found here: DbImporter. Below, you can find a list of existing plugins that have already
been implemented.

Available plugins

ICSD database importer

In this section we explain how to import CIF files from the ICSD database using the IcsdDbImporter
class.

Before being able to query ICSD, provided by FIZ Karlsruhe, you should have the intranet database in-
stalled on a server (http://www.fiz-karlsruhe.de/icsd_intranet.html). Follow the installation as decsribed in
the manual.

It is necessary to know the webpage of the icsd web interface and have access to the full database from
the local machine.

You can either query the mysql database or the web page, the latter is restricted to a maximum of 1000
search results, which makes it unsuitable for data mining. So better set up the mysql connection.

Setup An instance of the IcsdDbImporter can be created as follows:

importer = aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(server="http://ICSDSERVER.com/", host= "127.0.0.1")

Here is a list of the most important input parameters with an explanation.

For both connection types (web and SQL):

• server: address of web interface of the icsd database; it should contain both the protocol and the
domain name and end with a slash; example:

server = "http://ICSDSERVER.com/"

The following parameters are required only for the mysql query:

132 Chapter 1. User’s guide

http://www.fiz-karlsruhe.de/icsd_intranet.html

AiiDA documentation, Release 0.7.0

• host: database host name address.

Tip: If the database is not hosted on your local machine, it can be useful to create an ssh
tunnel to the 3306 port of the database host:

ssh -L 3306:localhost:3306 username@icsddbhostname.com

If you get an URLError with Errno 111 (Connection refused) when you query the database,
try to use instead:

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@icsddbhostname.com

The database can then be accessed using “127.0.0.1” as host:

host = "127.0.0.1"

• user / pass_wd / db / port: Login username, password, name of database and port of your mysql database.
If the standard installation of ICSD intranet version has been followed, the default values should
work. Otherwise contact your system administrator to get the required information:

user = "dba", pass_wd = "sql", db = "icsd", port = 3306

Other settings:

• querydb: If True (default) the mysql database is queried, otherwise the web page is queried.

A more detailed documentation and additional settings are found under IcsdDbImporter.

How to do a query If the setup worked, you can do your first query:

cif_nr_list = ["50542","617290","35538"]

queryresults = importer.query(id= cif_nr_list)

All supported keywords can be obtained using:

importer.get_supported_keywords()

More information on the keywords are found under http://www.fiz-
karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf

A query returns an instance of IcsdSearchResults

The IcsdEntry at position i can be accessed using:

queryresults.at(i)

You can also iterate through all query results:

for entry in query_results:
do something

Instances of IcsdEntry have following methods:

1.1. User’s guide 133

http://www.fiz-karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf
http://www.fiz-karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf

AiiDA documentation, Release 0.7.0

• get_cif_node(): Return an instance of CifData, which can be used in an AiiDA workflow.

• get_aiida_structure(): Return an AiiDA structure

• get_ase_structure(): Return an ASE structure

The most convenient format can be chosen for further processing.

Full example Here is a full example how the icsd importer can be used:

import aiida.tools.dbimporters.plugins.icsd

cif_nr_list = [
"50542",
"617290",
"35538 ",
"165226",
"158366"
]

importer = aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(server="http://ICSDSERVER.com/",
host= "127.0.0.1")

query_results = importer.query(id=cif_nr_list)
for result in query_results:

print result.source['db_id']
aiida_structure = result.get_aiida_structure()
#do something with the structure

Troubleshooting: Testing the mysql connection To test your mysql connection, first make sure that you can
connect to the 3306 port of the machine hosting the database. If the database is not hosted by your local
machine, use the local port tunneling provided by ssh, as follows:

ssh -L 3306:localhost:3306 username@icsddbhostname.com

Note: If you get an URLError with Errno 111 (Connection refused) when you query the database, try to
use instead:

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@icsddbhostname.com

Note: You need an account on the host machine.

Note: There are plenty of explanations online explaining how to setup an tunnel over a SSH connection
using the -L option, just google for it in case you need more information.

Then open a new verdi shell and type:

import MySQLdb

db = MySQLdb.connect(host = "127.0.0.1", user ="dba", passwd = "sql", db = "icsd", port=3306)

134 Chapter 1. User’s guide

AiiDA documentation, Release 0.7.0

If you do not get an error and it does not hang, you have successfully established your connection to the
mysql database.

COD database importer

COD database importer is used to import crystal structures from the Crystallography Open Database (COD)
to AiiDA.

Setup An instance of CodDbImporter is created as follows:

from aiida.tools.dbimporters.plugins.cod import CodDbImporter
importer = CodDbImporter()

No additional parameters are required for standard queries on the main COD server.

How to do a query A search is initiated by supplying query statements using keyword=value syntax:

results = importer.query(chemical_name="caffeine")

List of possible keywords can be listed using:

importer.get_supported_keywords()

Values for the most of the keywords can be list. In that case the query will return entries, that match any of
the values (binary OR) from the list. Moreover, in the case of multiple keywords, entries, that match all the
conditions imposed by the keywords, will be returned (binary AND).

Example:

results = importer.query(chemical_name=["caffeine","serotonin"],
year=[2000,2001])

is equivalent to the following SQL statement:

results = SELECT * FROM data WHERE
(chemical_name == "caffeine" OR chemical_name == "serotonin") AND
(year = 2000 OR year = 2001)

A query returns an instance of CodSearchResults, which can be used in a same way as a list of
CodEntry instances:

print len(results)

for entry in results:
print entry

Using data from CodEntry CodEntry has a few functions to access the contents of it’s instances:

CodEntry.get_aiida_structure()
CodEntry.get_ase_structure()
CodEntry.get_cif_node()
CodEntry.get_parsed_cif()
CodEntry.get_raw_cif()

1.1. User’s guide 135

http://www.crystallography.net

AiiDA documentation, Release 0.7.0

1.1.27 Export data to external databases

We support the export of data to external databases. In the most general way, the export to external
databases can be viewed as a subworkflow, taking data as input and resulting in the deposition of it to ex-
ternal database(s). Below is a list of supported databases with deposition routines described in comments-
type style.

Supported databases

TCOD database exporter

TCOD database exporter is used to export computation results of StructureData, CifData and
TrajectoryData (or any other data type, which can be converted to them) to the Theoretical Crystal-
lography Open Database (TCOD).

Setup To be able to export data to TCOD, one has to install dependencies for CIF manipulation as well as
cod-tools package, and set up an AiiDA Code for cif_cod_deposit script from cod-tools.

How to deposit a structure Best way to deposit data is to use the command line interface:

verdi DATATYPE structure deposit tcod [--type {published,prepublication,personal}]
[--username USERNAME] [--password]
[--user-email USER_EMAIL] [--title TITLE]
[--author-name AUTHOR_NAME]
[--author-email AUTHOR_EMAIL] [--url URL]
[--code CODE_LABEL]
[--computer COMPUTER_NAME]
[--replace REPLACE] [-m MESSAGE]
[--reduce-symmetry] [--no-reduce-symmetry]
[--parameter-data PARAMETER_DATA]
[--dump-aiida-database]
[--no-dump-aiida-database]
[--exclude-external-contents]
[--no-exclude-external-contents] [--gzip]
[--no-gzip]
[--gzip-threshold GZIP_THRESHOLD]
PK

Where:

• DATATYPE – one of AiiDA structural data types (at the moment of writing, they were StructureData,
CifData and TrajectoryData);

• TITLE – the title of the publication, where the exported data is/will be published; in case of personal
communication, the title should be chosen so as to reflect the exported dataset the best;

• CODE_LABEL – label of AiiDA Code, associated with cif_cod_deposit ;

• COMPUTER_NAME – name of AiiDA Computer, where cif_cod_deposit script is to be launched;

• REPLACE – TCOD ID of the replaced entry in the event of redeposition;

• MESSAGE – string to describe changes for redeposited structures;

• --reduce-symmetry, --no-reduce-symmetry – turn on/off symmetry reduction of the exported
structure (on by default);

136 Chapter 1. User’s guide

http://www.crystallography.net/tcod/
http://www.crystallography.net/tcod/
http://wiki.crystallography.net/tcod_id/

AiiDA documentation, Release 0.7.0

• --parameter-data – specify the PK of ParameterData object, describing the result of the final
(or single) calculation step of the workflow;

• --dump-aiida-database, --no-dump-aiida-database – turn on/off addition of relevant AiiDA
database dump (on by default).

Warning: be aware that TCOD is an open database, thus no copyright-protected data should
be deposited unless permission is given by the owner of the rights.

Note: data, which is deposited as pre-publication material, will be kept private on TCOD server
and will not be disclosed to anyone without depositor’s permission.

• --exclude-external-contents, --no-exclude-external-contents – exclude contents of
initial input files, that contain source property with definitions on how to obtain the contents from
external resources (on by default);

• --gzip, –no-gzip‘ – turn on/off gzip compression for large files (off by default); --gzip-threshold
sets the minimum file size to be compressed.

Other command line options correspond to the options of cif_cod_deposit of the same name. To ease the
use of TCOD exporter, one can define persistent parameters in AiiDA properties. Corresponding command
line parameters and AiiDA properties are presented in the table:

Command line parameter AiiDA property
--author-email tcod.depositor_author_email
--author-name tcod.depositor_author_name
--user-email tcod.depositor_email
--username tcod.depositor_password
--password tcod.depositor_username

Note: --password does not accept any value; instead, the option will prompt the user to enter one’s
password in the terminal.

Note: command line parameters can be used to override AiiDA properties even if properties are set.

Return values The deposition process, which is of JobCalculation type, returns the output of
cif_cod_deposit, wrapped in ParameterData.

1.1.28 Run scripts and open an interactive shell with AiiDA

How to run a script

In order to run a script that interacts with the database, you need to select the proper settings for the
database.

To simplify the procedure, we provide an utility command, load_dbenv. As the first two lines of your script,
write:

from aiida import load_dbenv
load_dbenv()

1.1. User’s guide 137

AiiDA documentation, Release 0.7.0

From there on, you can import without problems any module and interact with the database (submit calcu-
lations, perform queries, ...).

verdi shell

If you want to work in interactive mode (rather than writing a script and then execute it), we strongly suggest
that you use the verdi shell command.

This command will run an IPython shell, if ipython is installed in the system (it also supports bpython), which
has many nice features, including TAB completion and much more.

Moreover, it will automatically execute the load_dbenv command, and automatically several mod-
ules/classes.

Note: It is possible to customize the shell by adding modules to be loaded automatically, thanks to the
verdi devel setproperty verdishell.modules command. See here for more information.

138 Chapter 1. User’s guide

CHAPTER 2

Other guide resources

2.1 Other guide resources

2.1.1 AiiDA cookbook (useful code snippets)

This cookbook is intended to be a collection of useful short scripts and code snippets that may be useful in
the everyday usage of AiiDA. Please read carefully the nodes (if any) before running the scripts!

Deletion of nodes

At the moment, we do not support natively the deletion of nodes. This is mainly because it is very dangerous
to delete data, as this is cannot be undone.

If you really feel the need to delete some code, you can use the function below.

Note: WARNING! In order to preserve the provenance, this function will delete not only the list of specified
nodes, but also all the children nodes! So please be sure to double check what is going to be deleted before
running this function.

Here is the function, pass a list of PKs as parameter to delete those nodes and all the children nodes:

def delete_nodes(pks_to_delete):
"""
Delete a set of nodes.

:note: The script will also delete
all children calculations generated from the specified nodes.

:param pks_to_delete: a list of the PKs of the nodes to delete
"""
from django.db import transaction
from django.db.models import Q
from aiida.backends.djsite.db import models
from aiida.orm import load_node

Delete also all children of the given calculations
Here I get a set of all pks to actually delete, including
all children nodes.
all_pks_to_delete = set(pks_to_delete)

139

AiiDA documentation, Release 0.7.0

for pk in pks_to_delete:
all_pks_to_delete.update(models.DbNode.objects.filter(

parents__in=pks_to_delete).values_list('pk', flat=True))

print "I am going to delete {} nodes, including ALL THE CHILDREN".format(
len(all_pks_to_delete))

print "of the nodes you specified. Do you want to continue? [y/N]"
answer = raw_input()

if answer.strip().lower() == 'y':
Recover the list of folders to delete before actually deleting
the nodes. I will delete the folders only later, so that if
there is a problem during the deletion of the nodes in
the DB, I don't delete the folders
folders = [load_node(pk).folder for pk in all_pks_to_delete]

with transaction.atomic():
Delete all links pointing to or from a given node
models.DbLink.objects.filter(

Q(input__in=all_pks_to_delete) |
Q(output__in=all_pks_to_delete)).delete()

now delete nodes
models.DbNode.objects.filter(pk__in=all_pks_to_delete).delete()

If we are here, we managed to delete the entries from the DB.
I can now delete the folders
for f in folders:

f.erase()

2.1.2 Troubleshooting and tricks

Some tricks

Using the proxy_command option with ssh

This page explains how to use the proxy_command feature of ssh. This feature is needed when you want
to connect to a computer B, but you are not allowed to connect directly to it; instead, you have to connect to
computer A first, and then perform a further connection from A to B.

Requirements The idea is that you ask ssh to connect to computer B by using a proxy to create a sort of
tunnel. One way to perform such an operation is to use netcat, a tool that simply takes the standard input
and redirects it to a given TCP port.

Therefore, a requirement is to install netcat on computer A. You can already check if the netcat or nc
command is available on you computer, since some distributions include it (if it is already installed, the
output of the command:

which netcat

or:

which nc

140 Chapter 2. Other guide resources

AiiDA documentation, Release 0.7.0

will return the absolute path to the executable).

If this is not the case, you will need to install it on your own. Typically, it will be sufficient to look for a netcat
distribution on the web, unzip the downloaded package, cd into the folder and execute something like:

./configure --prefix=.
make
make install

This usually creates a subfolder bin, containing the netcat and nc executables. Write down the full path
to nc that we will need later.

ssh/config You can now test the proxy command with ssh. Edit the ~/.ssh/config file on the computer
on which you installed AiiDA (or create it if missing) and add the following lines:

Host FULLHOSTNAME_B
Hostname FULLHOSTNAME_B
User USER_B
ProxyCommand ssh USER_A@FULLHOSTNAME_A ABSPATH_NETCAT %h %p

where you have to replace:

• FULLHOSTNAMEA and FULLHOSTNAMEB with the fully-qualified hostnames of computer A and B (re-
membering that B is the computer you want to actually connect to, and A is the intermediate computer
to which you have direct access)

• USER_A and USER_B are the usernames on the two machines (that can possibly be the same).

• ABSPATH_NETCAT is the absolute path to the nc executable that you obtained in the previous step.

Remember also to configure passwordless ssh connections using ssh keys both from your computer to A,
and from A to B.

Once you add this lines and save the file, try to execute:

ssh FULLHOSTNAME_B

which should allow you to directly connect to B.

WARNING There are several versions of netcat available on the web. We found at least one case in which
the executable wasn’t working properly. At the end of the connection, the netcat executable might still be
running: as a result, you may rapidly leave the cluster with hundreds of opened ssh connections, one for
every time you connect to the cluster B. Therefore, check on both computers A and B that the number of
processes netcat and ssh are disappearing if you close the connection. To check if such processes are
running, you can execute:

ps -aux | grep <username>

Remember that a cluster might have more than one login node, and the ssh connection will randomly
connect to any of them.

AiiDA config If the above steps work, setup and configure now the computer as explained here.

If you properly set up the ~/.ssh/config file in the previous step, AiiDA should properly parse the informa-
tion in the file and provide the correct default value for the proxy_command during the verdi computer
configure step.

2.1. Other guide resources 141

AiiDA documentation, Release 0.7.0

Some notes on the proxy_command option

• In the ~/.ssh/config file, you can leave the %h and %p placeholders, that are then automatically
replaced by ssh with the hostname and the port of the machine B when creating the proxy. However,
in the AiiDA proxy_command option, you need to put the actual hostname and port. If you start from
a properly configured ~/.ssh/config file, AiiDA will already replace these placeholders with the
correct values. However, if you input the proxy_command value manually, remember to write the
hostname and the port and not %h and %p.

• In the ~/.ssh/config file, you can also insert stdout and stderr redirection, e.g. 2> /dev/null
to hide any error that may occur during the proxying/tunneling. However, you should only give AiiDA
the actual command to be executed, without any redirection. Again, AiiDA will remove the redirection
when it automatically reads the ~/.ssh/config file, but be careful if entering manually the content
in this field.

Connection problems

• When AiiDA tries to connect to the remote computer, it says paramiko.SSHException:
Server u’FULLHOSTNAME’ not found in known_hosts

AiiDA uses the paramiko library to establish SSH connections. paramiko is able to read the remote
host keys from the ~/.ssh/known_hosts of the user under which the AiiDA daemon is running.
You therefore have to make sure that the key of the remote host is stored in the file.

– As a first check, login as the user under which the AiiDA daemon is running and run a:

ssh FULLHOSTNAME

command, where FULLHOSTNAME is the complete host name of the remote computer configured
in AiiDA. If the key of the remote host is not in the known_hosts file, SSH will ask confirmation
and then add it to the file.

– If the above point is not sufficient, check the format of the remote host key. On some machines
(we know that this issue happens at least on recent Ubuntu distributions) the default format is
not RSA but ECDSA. However, paramiko is still not able to read keys written in this format.

To discover the format, run the following command:

ssh-keygen -F FULLHOSTNAME

that will print the remote host key. If the output contains the string ecdsa-sha2-nistp256,
then paramiko will not be able to use this key (see below for a solution). If instead ssh-rsa,
the key should be OK and paramiko will be able to use it.

In case your key is in ecdsa format, you have to first delete the key by using the command:

ssh-keygen -R FULLHOSTNAME

Then, in your ~/.ssh/config file (create it if it does not exist) add the following lines:

Host *
HostKeyAlgorithms ssh-rsa

(use the same indentation, and leave an empty line before and one after). This will set the RSA
algorithm as the default one for all remote hosts. In case, you can set the HostKeyAlgorithms
attribute only to the relevant computers (use man ssh_config for more information).

142 Chapter 2. Other guide resources

AiiDA documentation, Release 0.7.0

Then, run a:

ssh FULLHOSTNAME

command. SSH will ask confirmation and then add it to the file, but this time it should use the
ssh-rsa format (it will say so in the prompt messsage). You can also double-check that the host
key was correctly inserted using the ssh-keygen -F FULLHOSTNAME command as described
above. Now, the error messsage should not appear anymore.

Increasing the debug level

By default, the logging level of AiiDA is minimal to avoid filling logfiles. Only warnings and errors are
logged (to the ~/.aiida/daemon/log/aiida_daemon.log file), while info and debug messages are
discarded.

If you are experiencing a problem, you can change the default minimum logging level of AiiDA messages
(and celery messages – celery is the library that we use to manage the daemon process) using, on the
command line, the two following commands:

verdi devel setproperty logging.celery_loglevel DEBUG
verdi devel setproperty logging.aiida_loglevel DEBUG

After rebooting the daemon (verdi daemon restart), the number of messages logged will increase
significantly and may help in understanding the source of the problem.

Note: In the command above, you can use a different level than DEBUG. The list of the levels and their
order is the same of the standard python logging module.

Note: When the problem is solved, we suggest to bring back the default logging level, using the two
commands:

verdi devel delproperty logging.celery_loglevel
verdi devel delproperty logging.aiida_loglevel

to avoid to fill the logfiles.

Tips to ease the life of the hard drive (for large databases)

Those tips are useful when your database is very large, i.e. several hundreds of thousands of nodes and
workflows or more. With such large databases the hard drive may be constantly working and the computer
slowed down a lot. Below are some solutions to take care of the most typical reasons.

Repository backup

The backup of the repository takes an extensively long time if it is done through a standard rsync or backup
software, since it contains as many folders as the number of nodes plus the number of workflows (and
each folder can contain many files!). A solution is to use instead the incremental backup described in the
repository backup section.

2.1. Other guide resources 143

https://docs.python.org/2/library/logging.html#logging-levels

AiiDA documentation, Release 0.7.0

mlocate cron job

Under typical Linux distributions, there is a cron job (called updatedb.mlocate) running every day to
update a database of files and folders – this is to be used by the locate command. This might become
problematic since the repository contains many folders and will be scanned everyday. The net effect is a
hard drive almost constantly working.

To avoid this issue, edit as root the file /etc/updatedb.conf and put in PRUNEPATHS the name of the
repository folder.

2.1.3 Using AiiDA in multi-user mode

Note: multi-user mode is still not fully supported, and the way it works will change significantly soon. Do
not use unless you know what you are doing.

Todo

To be documented.

Discuss:

• Security issues

• Under which linux user (aiida) to run, and remove the pwd with passwd -d aiida.

• How to setup each user (aiida@localhost for the daemon user, correct email for the others using
verdi install --only-config)

• How to configure a given user (verdi user configure)

• How to list users (also the –color option, and the meaning of colors)

• How to setup the daemon user (verdi daemon configureuser)

• How to start the daemon

• How to configure the permissions! (all AiiDA in the same group, and set the ‘chmod -R g+s’ flag to all
folders and subfolders of the AiiDA repository) (comment that by default now we have a flag (harcoded
to True) in aiida.common.folders to give write permissions to the group both to files and folders created
using the Folder class.

• Some configuration example:

{u'compress': True,
u'key_filename': u'/home/aiida/.aiida/sshkeys/KEYFILE',
u'key_policy': u'RejectPolicy',
u'load_system_host_keys': True,
u'port': 22,
u'proxy_command': u'ssh -i /home/aiida/.aiida/sshkeys/KEYFILE USERNAME@MIDDLECOMPUTER /bin/nc FINALCOMPUTER 22',
u'timeout': 60,
u'username': u'xxx'}

• Moreover, on the remote computer do:

ssh-keyscan FINALCOMPUTER

144 Chapter 2. Other guide resources

mailto:aiida@localhost

AiiDA documentation, Release 0.7.0

and append the output to the known_hosts of the aiida daemon account. Do the same also for the
MIDDLECOMPUTER if a proxy_command is user.

•

2.1.4 Deploying AiiDA using Apache

Note: At this stage, this section is meant for developers only.

Todo

To be documented.

Some notes:

• Configure your default site of Apache (check in /etc/apache2/sites-enabled, probably it is
called 000-default).

Add the full ServerName outside of any <VirtualHost> section:

ServerName FULLSERVERNAMEHERE

and inside the VirtualHost that provide access, specifiy the email of the server administrator (note that
the email will be accessible, e.g. it is shown if a INTERNAL ERROR 500 page is shown):

<VirtualHost *:80>
ServerAdmin administratoremail@xxx.xx

[...]

</VirtualHost>

• Login as the user running apache, e.g. www-data in Ubuntu; use something like:

sudo su www-data -s /bin/bash

and run ``verdi install`` to configure where the DB and the files stay, etc.

Be also sure to check that this apache user belongs to the group that has
read/write permissions to the AiiDA repository.

• If you home directory is set to /var/www, and this is published by Apache, double check that nobody
can access the .aiida subfolder! By default, during verdi install AiiDA puts inside the folder a
.htaccess file to disallow access, but this file is not read by some default Apache configurations.

To have Apache honor the .htaccess file, in the default Apache site (probably the same file as
above) you need to set the AllowOverride all flag in the proper VirtualHost and Directory (note
that there can be more than one, e.g. if you have both HTTP and HTTPS).

You should have something like:

2.1. Other guide resources 145

AiiDA documentation, Release 0.7.0

<VirtualHost *:80>
ServerAdmin xxx@xxx.xx

DocumentRoot /var/www
<Directory /var/www/>

AllowOverride all
</Directory>

</VirtualHost>

Note: Of course, you will typically have other configurations as well, the snippet above just shows
where the AllowOverride all line should appear.

Double check if you cannot list/read the files (e.g. connecting to http://YOURSERVER/.aiida).

Todo

Allow to have a trick to have only one file in .aiida, containing the url where the actual configuration
stuff resides (or some other trick to physically move the configuration files out of /var/www).

• Create a /etc/apache2/sites-available/wsgi-aiida file, with content:

Alias /static/awi /PATH_TO_AIIDA/aiida.backends.djsite/awi/static/awi/
Alias /favicon.ico /PATH_TO_AIIDA/aiida.backends.djsite/awi/static/favicon.ico

WSGIScriptAlias / /PATH_TO_AIIDA/aiida.backends.djsite/settings/wsgi.py
WSGIPassAuthorization On
WSGIPythonPath /PATH_TO_AIIDA/

<Directory /PATH_TO_AIIDA/aiida.backends.djsite/settings>
<Files wsgi.py>
Order deny,allow
Allow from all
For Apache >= 2.4, replace the two lines above with the one below:
Require all granted
</Files>
</Directory>

Note: Replace everywhere PATH_TO_AIIDA with the full path to the AiiDA source code. Check
that the user running the Apache daemon can read/access all files in that folder and subfolders.

Note: in the WSGIPythonPath you can also add other folders that should be in the Python
path (e.g. if you use other libraries that should be accessible). The different paths must be
separated with :.

Note: For Apache >= 2.4, replace the two lines:

Order deny,allow
Allow from all

with:

146 Chapter 2. Other guide resources

AiiDA documentation, Release 0.7.0

Require all granted

Note: The WSGIScriptAlias exposes AiiDA under main address of your website
(http://SERVER/).

If you want to serve AiiDA under a subfolder, e.g. http://SERVER/aiida, then change the
line containing WSGIScriptAlias with:

WSGIScriptAlias /aiida /PATH_TO_AIIDA/aiida.backends.djsite/settings/wsgi.py

without any trailing slashes after ‘/aiida’.

• Enable the given site:

sudo a2ensite wsgi-aiida

and reload the Apache configuration to load the new site:

sudo /etc/init.d/apache2 reload

• A comment on permissions (to be improved): the default Django Authorization (used e.g. in the API)
does not allow a “standard” user to modify data in the DB, but only to read it, therefore if you are
accessing with a user that is not a superuser, all API calls trying to modify the DB will return an HTTP
UNAUTHORIZED message.

Temporarily, you can fix this by going in a verdi shell, loading your user with something like:

u = models.DbUser.objects.get(email='xxx')

and then upgrading the user to a superuser:

u.is_superuser = True
u.save()

2.1.5 AiiDA Website

To run the server:

verdi runserver

For more info:

verdi runserver --help

Anyway the options are those of Django at https://docs.djangoproject.com/en/1.5/ref/django-
admin/#runserver-port-or-address-port

2.1. Other guide resources 147

https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-or-address-port
https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-or-address-port

AiiDA documentation, Release 0.7.0

148 Chapter 2. Other guide resources

CHAPTER 3

Developer’s guide

3.1 Developer’s guide

3.1.1 Developer’s Guide For AiiDA

Python style

When writing python code, a more than reasonable guideline is given by the Google python styleguide
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html. The documentation should be written
consistently in the style of sphinx.

And more generally, write verbose! Will you remember after a month why you had to write that check on
that line? (Hint: no) Write comments!

Pylint

You can check your code style and other important code errors by using Pylint. Once installed you can run
Pylint from the root source directory on the code using the command:

pylint aiida

The most important part is the summary under the Messages table near the end.

Version number

The AiiDA version number is stored in aiida/__init__.py. Make sure to update this when changing
version number.

Inline calculations

If an operation is extremely fast to be run, this can be done directly in Python, without being submitted to
a cluster. However, this operation takes one (or more) input data nodes, and creates new data nodes, the
operation itself is not recorded in the database, and provenance is lost. In order to put a Calculation object
inbetween, we define the InlineCalculation class, that is used as the class for these calculations that
are run “in-line”.

149

http://google-styleguide.googlecode.com/svn/trunk/pyguide.html

AiiDA documentation, Release 0.7.0

We also provide a wrapper (that also works as a decorator of a function), make_inline(). This can be
used to wrap suitably defined function, so that after their execution, a node representing their execution is
stored in the DB, and suitable input and output nodes are also stored.

Note: See the documentation of this function for further documentation of how it should be used, and of
the requirements for the wrapped function.

Database schema

The Django database schema can be found in aiida.backends.djsite.db.models.

If you need to change the database schema follow these steps:

1. Make all the necessary changes to aiida.backends.djsite.db.models

2. Create a new migration file. From aiida/backends/djsite, run:

python manage.py makemigrations

This will create the migration file in aiida/backends/djsite/db/migrations whose name be-
gins with a number followed by some description. If the description is not appropriate then change to
it to something better but retain the number.

3. Open the generated file and make the following changes:

from aiida.backends.djsite.db.migrations import update_schema_version
...
SCHEMA_VERSION = # choose an appropriate version number

(hint: higher than the last migration!)
...
class Migration(migrations.Migration):
...
operations = [

..
update_schema_version(SCHEMA_VERSION)

]

5. Change the LATEST_MIGRATION variable in aiida/backends/djsite/db/migrations/__init__.py
to the name of your migration file:

LATEST_MIGRATION = '0003_my_db_update'

This let’s AiiDA get the version number from your migration and make sure the database and the code
are in sync.

6. Migrate your database to the new version, (again from aiida/backends/djsite), run:

python manage.py migrate

Commits and GIT usage

In order to have an efficient management of the project development, we chose to adopt the guidelines for
the branching model described here. In particular:

• The main branch in which one should work is called develop

150 Chapter 3. Developer’s guide

http://nvie.com/posts/a-successful-git-branching-model/

AiiDA documentation, Release 0.7.0

• The master branch is reserved for releases: every commit there implies a new release. Therefore,
one should never commit directly there (except once per every release).

• New releases should also be tagged.

• Any new modification requiring just one commit can be done in develop

• mid-to-long development efforts should be done in a branch, branching off from develop (e.g. a long
bugfix, or a new feature)

• while working on the branch, often merge the develop branch back into it (if you also have a remote
branch and there are no conflicts, that can be done with one click from the BitBucket web interface,
and then you just do a local ‘git pull’)

• remember to fix generic bugs in the develop (or in a branch to be then merged in the develop), not
in your local branch (except if the bug is present only in the branch); only then merge develop back
into your branch. In particular, if it is a complex bugfix, better to have a branch because it allows to
backport the fix also in old releases, if we want to support multiple versions

• only when a feature is ready, merge it back into develop. If it is a big change, better to instead do a
pull request on BitBucket instead of directly merging and wait for another (or a few other) developers
to accept it beforehand, to be sure it does not break anything.

For a cheatsheet of git commands, see here.

Note: Before committing, always run:

verdi devel tests

to be sure that your modifications did not introduce any new bugs in existing code. Remember to do it even
if you believe your modification to be small - the tests run pretty fast!

Tests

Running the tests

To run the tests, use the:

verdi devel tests

command. You can add a list of tests after the command to run only a selected portion of tests (e.g. while
developing, if you discover that only a few tests fail). Use TAB completion to get the full list of tests. For
instance, to run only the tests for transport and the generic tests on the database, run:

verdi devel tests aiida.transport db.generic

The test-first approach

Remember in best codes actually the tests are written even before writing the actual code, because this
helps in having a clear API.

For any new feature that you add/modify, write a test for it! This is extremely important to have the project
last and be as bug-proof as possible. Even more importantly, add a test that fails when you find a new bug,
and then solve the bug to make the test work again, so that in the future the bug is not introduced anymore.

3.1. Developer’s guide 151

http://it.wikipedia.org/wiki/Test_Driven_Development

AiiDA documentation, Release 0.7.0

Remember to make unit tests as atomic as possible, and to document them so that other developers can
understand why you wrote that test, in case it should fail after some modification.

Creating a new test

There are three types of tests:

1. Tests that do not require the usage of the database (testing the creation of paths in k-space, the
functionality of a transport plugin, ...)

2. Tests that require the database, but do not require submission (e.g. verifying that node attributes can
be correctly queried, that the transitive closure table is correctly generated, ...)

3. Tests that require the submission of jobs

For each of the above types of tests, a different testing approach is followed (you can also see existing tests
as guidelines of how tests are written):

1. Tests are written inside the package that one wants to test, creating a test_MODULENAME.py file.
For each group of tests, create a new subclass of unittest.TestCase, and then create the tests
as methods using the unittests module. Tests inside a selected number of AiiDA packages are auto-
matically discovered when running verdi devel tests. To make sure that your test is discovered,
verify that its parent module is listed in the base_allowed_test_folders property of the Devel
class, inside aiida.cmdline.commands.devel.

For an example of this type of tests, see, e.g., the aiida.common.test_utils module.

2. In this case, we use the testing functionality of Django, adapted to run smoothly with AiiDA.

To create a new group of tests, create a new python file under
aiida.backends.djsite.db.substests, and instead of inheriting each class directly from
unittest, inherit from aiida.backends.djsite.db.testbase.AiidaTestCase. In this way:

(a) The Django testing functionality is used, and a temporary database is used

(b) every time the class is created to run its tests, default data are added to the database, that would
otherwise be empty (in particular, a computer and a user; for more details, see the code of the
AiidaTestCase.setUpClass() method).

(c) at the end of all tests of the class, the database is cleaned (nodes, links, ... are deleted) so that
the temporary database is ready to run the tests of the following test classes.

Note: it is extremely important that these tests are run from the verdi devel tests command
line interface. Not only this will ensure that a temporary database is used (via Django), but also that a
temporary repository folder is used. Otherwise, you risk to corrupt your database data. (In the codes
there are some checks to avoid that these classes are run without the correct environment being
prepared by verdi devel tests.)

Once you create a new file in aiida.backends.djsite.db.substests, you have to add a new
entry to the db_test_list inside aiida.backends.djsite.db.testbase module in order for
verdi devel tests to find it. In particular, the key should be the name that you want to use on
the command line of verdi devel tests to run the test, and the value should be the full module
name to load. Note that, in verdi devel tests, the string db. is prepended to the name of each
test involving the database. Therefore, if you add a line:

db_test_list = {
...

152 Chapter 3. Developer’s guide

https://docs.python.org/2/library/unittest.html
https://docs.djangoproject.com/en/dev/topics/testing/

AiiDA documentation, Release 0.7.0

'newtests': 'aiida.backends.djsite.db.subtests.mynewtestsmodule',
...

}

you will be able to run all all tests inside aiida.backends.djsite.db.subtests.mynewtestsmodule
with the command:

verdi devel tests db.newtests

Note: If in the list of parameters to verdi devel tests you add also a db parameter, then all
database-related tests will be run, i.e., all tests that start with db. (or, if you want, all tests in the
db_test_list described above).

Note: By default, the test database is created using an in-memory SQLite database, which is much
faster than creating from scratch a new test database with PostgreSQL or SQLite. However, if you
want to test database-specific settings and you want to use the same type of database you are using
with AiiDA, set the tests.use_sqlite global property to False:

verdi devel setproperty tests.use_sqlite false

3. These tests require an external engine to submit the calculations and then check the results at job
completion. We use for this a continuous integration server, and the best approach is to write suitable
workflows to run simulations and then verify the results at the end.

Special tests Some tests have special routines to ease and simplify the creation of new tests.
One case is represented by the tests for transport. In this case, you can define tests for
a specific plugin as described above (e.g., see the aiida.transport.plugins.test_ssh and
aiida.transport.plugins.test_local tests). Moreover, there is a test_all_plugins module
in the same folder. Inside this module, the discovery code is adapted so that each test method defined in
that file and decorated with @run_for_all_plugins is run for all available plugins, to avoid to rewrite
the same test code more than once and ensure that all plugins behave in the same way (e.g., to copy files,
remove folders, etc.).

Virtual environment

Sometimes it’s useful to have a virtual environment that separates out the AiiDA dependencies from the
rest of the system. This is especially the case when testing AiiDA against library versions that are different
from those installed on the system.

First, install virtualenv using pip:

pip install virtualenv

Basic usage

1. To create a virtual environment in folder venv, while in the AiiDA directory type:

virtualenv venv

3.1. Developer’s guide 153

AiiDA documentation, Release 0.7.0

This puts a copy of the Python executables and the pip library within the venv folder hierarchy.

2. Activate the environment with:

source venv/bin/activate

Your shell should now be prompt should now start with (venv).

3. (optional) Install AiiDA:

pip install .

4. Deactivate the virtual environment:

deactivate

Deprecated features, renaming, and adding new methods

In case a method is renamed or removed, this is the procedure to follow:

1. (If you want to rename) move the code to the new function name. Then, in the docstring, add some-
thing like:

.. versionadded:: 0.7
Renamed from OLDMETHODNAME

2. Don’t remove directly the old function, but just change the code to use the new function, and add in
the docstring:

.. deprecated:: 0.7
Use :meth:`NEWMETHODNAME` instead.

Moreover, at the beginning of the function, add something like:

import warnings

warnings.warn(
"OLDMETHODNAME is deprecated, use NEWMETHODNAME instead",
DeprecationWarning)

(of course, replace OLDMETHODNAME and NEWMETHODNAME with the correct string, and adapt the
strings to the correct content if you are only removing a function, or just adding a new one).

3.1.2 AiiDA internals

Node

The Node class is the basic class that represents all the possible objects at the AiiDA world. More precisely it
is inherited by many classes including (among others) the Calculation class, representing computations
that convert data into a different form, the Code class representing executables and file collections that are
used by calculations and the Data class which represents data that can be input or output of calculations.

154 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Methods & properties

In the sequel the most important methods and properties of the Node class will be described.

Node subclasses organization The Node class has two important variables:

• _plugin_type_string characterizes the class of the object.

• _query_type_string characterizes the class and all its subclasses (by pointing to the package or
Python file that contain the class).

The convention for all the Node subclasses is that if a class B is inherited by a class A then there
should be a package A under aiida/orm that has a file __init__.py and a B.py in that directory (or a
B package with the corresponding __init__.py)

An example of this is the ArrayData and the KpointsData. ArrayData is placed in
aiida/orm/data/array/__init__.py and KpointsData which inherits from ArrayData is placed
in aiida/orm/data/array/kpoints.py

This is an implicit & quick way to check the inheritance of the Node subclasses.

General purpose methods

• __init__(): The initialization of the Node class can be done by not providing any attributes or by
providing a DbNode as initialization. E.g.:

dbn = a_dbnode_object
n = Node(dbnode=dbn.dbnode)

• ctime() and mtime() provide the creation and the modification time of the node.

• is_stored() informs whether a node is already stored to the database.

• query() queries the database by filtering for the results for similar nodes (if the used object is a sub-
class of Node) or with no filtering if it is a Node class. Note that for this check _plugin_type_string
should be properly set.

• computer() returns the computer associated to this node.

• _validate() does a validation check for the node. This is important for Node subclasses where
various attributes should be checked for consistency before storing.

• get_user() returns the user that created the node.

• _increment_version_number_db(): increment the version number of the node on the DB. This
happens when adding an attribute or an extra to the node. This method should not be called by
the users.

• copy() returns a not stored copy of the node with new UUID that can be edited directly.

• uuid() returns the universally unique identifier (UUID) of the node.

• pk() returns the principal key (ID) of the node.

• dbnode() returns the corresponding Django object.

• get_computer() & set_computer() get and set the computer to be used & is associated to the
node.

3.1. Developer’s guide 155

AiiDA documentation, Release 0.7.0

Annotation methods The Node can be annotated with labels, description and comments. The following
methods can be used for the management of these properties.

Label management:

• label() returns the label of the node. The setter method can be used for the update of the label.

• _update_db_label_field() updates the label in the database. This is used by the setter method
of the label.

Description management:

• description(): the description of the node (more detailed than the label). There is also a setter
method.

• _update_db_description_field(): update the node description in the database.

Comment management:

• add_comment() adds a comment.

• get_comments() returns a sorted list of the comments.

• _get_dbcomments() is similar to get_comments(), just the sorting changes.

• _update_comment() updates the node comment. It can be done by verdi comment update.

• _remove_comment() removes the node comment. It can be done by verdi comment remove.

Link management methods Node objects and objects of its subclasses can have ancestors and descen-
dants. These are connected with links. The following methods exist for the processing & management of
these links.

• _has_cached_links() shows if there are cached links to other nodes.

• add_link_from() adds a link to the current node from the ‘src’ node with the given label. Depending
on whether the nodes are stored or node, the linked are written to the database or to the cache.

• _add_cachelink_from() adds a link to the cache.

• _replace_link_from() replaces or creates an input link.

• _remove_link_from() removes an input link that is stored in the database.

• _replace_dblink_from() is similar to _replace_link_from() but works directly on the
database.

• _remove_dblink_from() is similar to _remove_link_from() but works directly on the
database.

• _add_dblink_from() adds a link to the current node from the given ‘src’ node. It acts directly on
the database.

Listing links example

Assume that the user wants to see the available links of a node in order to understand the structure of the
graph and maybe traverse it. In the following example, we load a specific node and we list its input and
output links. The returned dictionaries have as keys the link name and as value the linked node. Here is
the code:

In [1]: # Let's load a node with a specific pk

In [2]: c = load_node(139168)

156 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

In [3]: c.get_inputs_dict()
Out[3]:
{u'code': <Code: Remote code 'cp-5.1' on daint, pk: 75709, uuid: 3c9cdb7f-0cda-402e-b898-4dd0d06aa5a4>,
u'parameters': <ParameterData: uuid: 94efe64f-7f7e-46ea-922a-fe64a7fba8a5 (pk: 139166)>,
u'parent_calc_folder': <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139118)>,
u'pseudo_Ba': <UpfData: uuid: 5e53b22d-5757-4d50-bbe0-51f3b9ac8b7c (pk: 1905)>,
u'pseudo_O': <UpfData: uuid: 5cccd0d9-7944-4c67-b3c7-a39a1f467906 (pk: 1658)>,
u'pseudo_Ti': <UpfData: uuid: e5744077-8615-4927-9f97-c5f7b36ba421 (pk: 1660)>,
u'settings': <ParameterData: uuid: a5a828b8-fdd8-4d75-b674-2e2d62792de0 (pk: 139167)>,
u'structure': <StructureData: uuid: 3096f83c-6385-48c4-8cb2-24a427ce11b1 (pk: 139001)>}

In [4]: c.get_outputs_dict()
Out[4]:
{u'output_parameters': <ParameterData: uuid: f7a3ca96-4594-497f-a128-9843a1f12f7f (pk: 139257)>,
u'output_parameters_139257': <ParameterData: uuid: f7a3ca96-4594-497f-a128-9843a1f12f7f (pk: 139257)>,
u'output_trajectory': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cf145c3 (pk: 139256)>,
u'output_trajectory_139256': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cf145c3 (pk: 139256)>,
u'remote_folder': <RemoteData: uuid: 17642a1c-8cac-4e7f-8bd0-1dcebe974aa4 (pk: 139169)>,
u'remote_folder_139169': <RemoteData: uuid: 17642a1c-8cac-4e7f-8bd0-1dcebe974aa4 (pk: 139169)>,
u'retrieved': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 139255)>,
u'retrieved_139255': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 139255)>}

Understanding link names

The nodes may have input and output links. Every input link of a node should have a unique name and this
unique name is mapped to a specific node. On the other hand, given a node c, many output nodes may
share the same output link name. To differentiate between the output nodes of c that have the same link
name, the pk of the output node is added next to the link name (please see the input & output nodes in the
above example).

Input/output related methods The input/output links of the node can be accessed by the following methods.

Methods to get the input data

• get_inputs_dict() returns a dictionary where the key is the label of the input link.

• get_inputs() returns the list of input nodes

• inp() returns a NodeInputManager() object that can be used to access the node’s parents.

• has_parents() returns true or false whether the node has parents

Methods to get the output data

• get_outputs_dict() returns a dictionary where the key is the label of the output link, and the
value is the output node.

• get_outputs() returns a list of output nodes.

• out() returns a NodeOutputManager() object that can be used to access the node’s children.

• has_children() returns true or false whether the node has children.

Navigating in the ‘‘node‘‘ graph

The user can easily use the NodeInputManager() and the NodeOutputManager() objects of a node
(provided by the inp() and out() respectively) to traverse the node graph and access other connected
nodes. inp() will give us access to the input nodes and out() to the output nodes. For example:

In [1]: # Let's load a node with a specific pk

3.1. Developer’s guide 157

AiiDA documentation, Release 0.7.0

In [2]: c = load_node(139168)

In [3]: c
Out[3]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

In [4]: # Let's traverse the inputs of this node.

In [5]: # By typing c.inp. we get all the input links

In [6]: c.inp.
c.inp.code c.inp.parent_calc_folder c.inp.pseudo_O c.inp.settings
c.inp.parameters c.inp.pseudo_Ba c.inp.pseudo_Ti c.inp.structure

In [7]: # We may follow any of these links to access other nodes. For example, let's follow the parent_calc_folder

In [8]: c.inp.parent_calc_folder
Out[8]: <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139118)>

In [9]: # Let's assign to r the node reached by the parent_calc_folder link

In [10]: r = c.inp.parent_calc_folder

In [11]: r.inp.__dir__()
Out[11]:
['__class__',
'__delattr__',
'__dict__',
'__dir__',
'__doc__',
'__format__',
'__getattr__',
'__getattribute__',
'__getitem__',
'__hash__',
'__init__',
'__iter__',
'__module__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__setattr__',
'__sizeof__',
'__str__',
'__subclasshook__',
'__weakref__',
u'remote_folder']

In [12]: r.out.
r.out.parent_calc_folder r.out.parent_calc_folder_139168

In [13]: # By following the same link from node r, you will get node c

In [14]: r.out.parent_calc_folder
Out[14]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

158 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Attributes related methods Each Node() object can have attributes which are properties that characterize
the node. Such properties can be the energy, the atom symbols or the lattice vectors. The following methods
can be used for the management of the attributes.

• _set_attr() adds a new attribute to the node. The key of the attribute is the property name (e.g.
energy, lattice_vectors etc) and the value of the attribute is the value of that property.

• _del_attr() & _del_all_attrs() delete a specific or all attributes.

• get_attr() returns a specific attribute.

• iterattrs() returns an iterator over the attributes. The iterators returns tuples of key/value pairs.

• attrs() returns the keys of the attributes.

Extras related methods Extras are additional information that are added to the calculations. In contrast
to files and attributes, extras are information added by the user (user specific).

• set_extra() adds an extra to the database. To add a more extras at once, set_extras() can
be used.

• get_extra() and get_extras() return a specific extra or all the available extras respectively.
extras() returns the keys of the extras. iterextras() returns an iterator (returning key/value
tuples) of the extras.

• del_extra() deletes an extra.

Folder management Folder objects represent directories on the disk (virtual or not) where extra informa-
tion for the node are stored. These folders can be temporary or permanent.

• folder() returns the folder associated to the node.

• get_folder_list() returns the list of files that are in the path sub-folder of the repository folder.

• _repository_folder() returns the permanent repository folder.

• _get_folder_pathsubfolder() returns the path sub-folder in the repository.

• _get_temp_folder() returns the node folder in the temporary repository.

• remove_path() removes a file/directory from the repository.

• add_path() adds a file or directory to the repository folder.

• get_abs_path() returns the absolute path of the repository folder.

Store & deletion

• store_all() stores all the input nodes, then it stores the current node and in the end, it stores the
cached input links.

• _store_input_nodes() stores the input nodes.

• _check_are_parents_stored() checks that the parents are stored.

• _store_cached_input_links() stores the input links that are in memory.

• store() method checks that the node data is valid, then check if node‘s parents are stored, then
moves the contents of the temporary folder to the repository folder and in the end, it stores in the
database the information that are in the cache. The latter happens with a database transaction. In
case this transaction fails, then the data transfered to the repository folder are moved back to the
temporary folder.

3.1. Developer’s guide 159

AiiDA documentation, Release 0.7.0

• __del__() deletes temporary folder and it should be called when an in-memory object is deleted.

DbNode

The DbNode is the Django class that corresponds to the Node class allowing to store and retrieve the
needed information from and to the database. Other classes extending the Node class, like Data,
Calculation and Code use the DbNode code too to interact with the database. The main methods
are:

• get_aiida_class() which returns the corresponding AiiDA class instance.

• get_simple_name() which returns a string with the type of the class (by stripping the path before
the class name).

• attributes() which returns the all the attributes of the specific node as a dictionary.

• extras() which returns all the extras of the specific node as a dictionary.

Folders

AiiDA uses Folder and its subclasses to add an abstraction layer between the functions and methods
working directly on the file-system and AiiDA. This is particularly useful when we want to easily change
between different folder options (temporary, permanent etc) and storage options (plain local directories,
compressed files, remote files & directories etc).

Folder

This is the main class of the available Folder classes. Apart from the abstraction provided to the OS
operations needed by AiiDA, one of its main features is that it can restrict all the available operations within
a given folder limit. The available methods are:

• mode_dir() and mode_file() return the mode with which folders and files should be writable.

• get_subfolder() returns the subfolder matching the given name

• get_content_list() returns the contents matching a pattern.

• insert_path() adds a file/folder to a specific location and remove_path() removes a file/folder

• get_abs_path() returns the absolute path of a file/folder under a given folder and abspath()
returns the absolute path of the folder.

• create_symlink() creates a symlink pointing the given location inside the folder.

• create_file_from_filelike() creates a file from the given contents.

• open() opens a file in the folder.

• folder_limit() returns the limit under which the creation of files/folders is restrained.

• exists() returns true or false depending whether a folder exists or not.

• isfile() and py:meth:~aiida.common.folders.Folder.isdir return true or false depending on the ex-
istence of the given file/folder.

• create() creates the folder, erase() deletes the folder and replace_with_folder()
copies/moves a given folder.

160 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

RepositoryFolder

Objects of this class correspond to the repository folders. The RepositoryFolder specific methods are:

• __init__() initializes the object with the necessary folder names and limits.

• get_topdir() returns the top directory.

• section() returns the section to which the folder belongs. This can be for the moment a
workflow or node.

• subfolder() returns the subfolder within the section/uuid folder.

• uuid() the UUID of the corresponding node or workflow.

SandboxFolder

SandboxFolder objects correspond to temporary (“sandbox”) folders. The main methods are:

• __init__() creates a new temporary folder

• __exit__() destroys the folder on exit.

3.1.3 Developer calculation plugin tutorial - Integer summation

In this chapter we will give you some examples and a brief guide on how to write a plugin to support a new
code. We will focus here on a very simple code (that simply adds two numbers), so that we can focus only
on how AiiDA manages the calculation. At the end, you will have an overview of how a plugin is developed.
You will be able then to proceed to more complex plugin guides like the guide for the Quantum Espresso
plugin, or you can directly jump in and develop your own plugin!

Overview

Before analysing the different components of the plugin, it is important to understand which are these and
their interaction.

We should keep in mind that AiiDA is a tool allowing us to perform easily calculations and to maintain
data provenance. That said, it should be clear that AiiDA doesn’t perform the calculations but orchestrates
the calculation procedure following the user’s directives. Therefore, AiiDA executes (external) codes and it
needs to know:

• where the code is;

• how to prepare the input for the code. This is called an input plugin or a Calculation subclass;

• how to parse the output of the code. This is called an output plugin or a Parser subclass.

It is also useful, but not necessary, to have a script that prepares the calculation for AiiDA with the necessary
parameters and submits it. Let’s start to see how to prepare these components.

Code

The code is an external program that does a useful calculation for us. For detailed information on how to
setup the new codes, you can have a look at the respective documentation page.

Imagine that we have the following python code that we want to install. It does the simple task of adding
two numbers that are found in a JSON file, whose name is given as a command-line parameter:

3.1. Developer’s guide 161

AiiDA documentation, Release 0.7.0

#!/usr/bin/env python
-*- coding: utf-8 -*-

import json
import sys

in_file = sys.argv[1]
out_file = sys.argv[2]

with open(in_file) as f:
in_dict = json.load(f)

out_dict = { 'sum':in_dict['x1']+in_dict['x2'] }

with open(out_file,'w') as f:
json.dump(out_dict,f)

The result will be stored in JSON format in a file which name is also passed as parameter. The resulting
file from the script will be handled by AiiDA. The code can be downloaded from here. We will now proceed
to prepare an AiiDA input plugin for this code.

Input plugin

In abstract term, this plugin must contain the following two pieces of information:

• what are the input data objects of the calculation;

• how to convert the input data object in the actual input file required by the external code.

Let’s have a look at the input plugin developed for the aforementioned summation code (a detailed descrip-
tion of the different sections follows):

-*- coding: utf-8 -*-

from aiida.orm import JobCalculation
from aiida.orm.data.parameter import ParameterData
from aiida.common.utils import classproperty
from aiida.common.exceptions import InputValidationError
from aiida.common.exceptions import ValidationError
from aiida.common.datastructures import CalcInfo, CodeInfo
import json

class SumCalculation(JobCalculation):
"""
A generic plugin for adding two numbers.
"""

def _init_internal_params(self):
super(SumCalculation, self)._init_internal_params()

self._INPUT_FILE_NAME = 'in.json'
self._OUTPUT_FILE_NAME = 'out.json'
self._default_parser = 'sum'

@classproperty
def _use_methods(cls):

"""

162 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Additional use_* methods for the namelists class.
"""
retdict = JobCalculation._use_methods
retdict.update({

"parameters": {
'valid_types': ParameterData,
'additional_parameter': None,
'linkname': 'parameters',
'docstring': ("Use a node that specifies the input parameters "

"for the namelists"),
},

})
return retdict

def _prepare_for_submission(self,tempfolder, inputdict):
"""
This is the routine to be called when you want to create
the input files and related stuff with a plugin.

:param tempfolder: a aiida.common.folders.Folder subclass where
the plugin should put all its files.

:param inputdict: a dictionary with the input nodes, as they would
be returned by get_inputs_dict (with the Code!)

"""
try:

parameters = inputdict.pop(self.get_linkname('parameters'))
except KeyError:

raise InputValidationError("No parameters specified for this "
"calculation")

if not isinstance(parameters, ParameterData):
raise InputValidationError("parameters is not of type "

"ParameterData")
try:

code = inputdict.pop(self.get_linkname('code'))
except KeyError:

raise InputValidationError("No code specified for this "
"calculation")

if inputdict:
raise ValidationError("Cannot add other nodes beside parameters")

##############################
END OF INITIAL INPUT CHECK
##############################

input_json = parameters.get_dict()

write all the input to a file
input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
with open(input_filename, 'w') as infile:

json.dump(input_json, infile)

============================ calcinfo ================================

calcinfo = CalcInfo()
calcinfo.uuid = self.uuid
calcinfo.local_copy_list = []
calcinfo.remote_copy_list = []
calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME]

3.1. Developer’s guide 163

AiiDA documentation, Release 0.7.0

codeinfo = CodeInfo()
codeinfo.cmdline_params = [self._INPUT_FILE_NAME,self._OUTPUT_FILE_NAME]
codeinfo.code_uuid = code.uuid
calcinfo.codes_info = [codeinfo]

return calcinfo

The above input plugin can be downloaded from (here) and should be placed at
aiida/orm/calculation/job/sum.py.

In order the plugin to be automatically discoverable by AiiDA, it is important to:

• give the right name to the file. This should be the name of your input plugin (all lowercase);

• place the plugin under aiida/orm/calculation/job;

• name the class inside the plugin as PluginnameCalculation. For example, the class name of the
summation input plugin is, as you see above, SumCalculation. The first letter must be capitalized,
the other letters must be lowercase;

• inherit the class from JobCalculation.

By doing the above, your plugin will be discoverable and loadable using CalculationFactory.

Note: The base Calculation class should only be used as the abstract base class. Any calculation that
needs to run on a remote scheduler must inherit from JobCalculation, that contains all the methods to
run on a remote scheduler, get the calculation state, copy files remotely and retrieve them, ...

Defining the accepted input Data nodes

The input data nodes that the input plugin expects are those returned by the _use_methods class property.
It is important to always extend the dictionary returned by the parent class, starting this method with:

retdict = JobCalculation._use_methods

(or the correct parent class, instead of JobCalculation, if you are inheriting from a subclass).

The specific parameters needed by the plugin are defined by the following code snippet:

retdict.update({
"parameters": {

'valid_types': ParameterData,
'additional_parameter': None,
'linkname': 'parameters',
'docstring': ("Use a node that specifies the input parameters "

"for the namelists"),
},

})

This means that this specific summation plugin expects only one input data node, which is of the type
ParameterData and with link name parameters.

164 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

The main plugin logic

The main logic of the plugin (called by AiiDA just before submission, in order to read the AiiDA in-
put data nodes and create the actual input files for the extenal code) must be defined inside a method
_prepare_for_submission, that will receive (beside self) two parameters, a temporary folder
tempfolder in which content can be written, and a dictionary containing all the input nodes that AiiDA
will retrieve from the database (in this way, the plugin does not need to browse the database).

The input data node with the parameter is retrieved using its link name parameters specified above:

parameters = inputdict.pop(self.get_linkname('parameters'))

A few additional checks are performed to retrieve also the input code (the AiiDA node representing the code
executable, that we are going to setup in the next section) and verify that there are no unexpected additional
input nodes.

The following lines do the actual job, and prepare the input file for the external code, creating a suitable
JSON file:

input_json = parameters.get_dict()

write all the input to a file
input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
with open(input_filename, 'w') as infile:

json.dump(input_json, infile)

The last step: the calcinfo

We can now create the calculation info: an object containing some additional information that AiiDA needs
(beside the files you generated in the folder) in order to submit the claculation. In the calcinfo object, you
need to store the calculation UUID:

calcinfo.uuid = self.uuid

You should also define a list of output files that will be retrieved automatically after the code execution, and
that will be stored permanently into the AiiDA database:

calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME]

For the time being, just define also the following variables as empty lists (we will describe them in the next
sections):

calcinfo.local_copy_list = []
calcinfo.remote_copy_list = []

Finally, you need to specify which code executable(s) need to be called link the code to the codeinfo
object. For each code, you need to create a CodeInfo object, specify the code UUID, and define the
command line parameters that should be passed to the code as a list of strings (only paramters after the
executable name must be specified. Moreover, AiiDA takes care of escaping spaces and other symbols). In
our case, our code requires the name of the input file, followed by the name of the output file, so we write:

codeinfo.cmdline_params = [self._INPUT_FILE_NAME,self._OUTPUT_FILE_NAME]

Finally, we link the just created codeinfo to the calcinfo, and return it:

3.1. Developer’s guide 165

AiiDA documentation, Release 0.7.0

calcinfo.codes_info = [codeinfo]

return calcinfo

Note: calcinfo.codes_info is a list of CodeInfo objects. This allows to support the execution of
more than one code, and will be described later.

Note: All content stored in the tempfolder will be then stored into the AiiDA database, potentially forever.
Therefore, before generating huge files, you should carefully think at how to design your plugin interface.
In particular, give a look to the local_copy_list and remote_copy_list attributes of calcinfo,
described in more detail in the Quantum ESPRESSO developer plugin tutorial.

By doing all the above, we have clarified what parameters should be passed to which code, we have
prepared the input file that the code will access and we let also AiiDA know the name of the output file: our
first input plugin is ready!

Note: A few class internal parameters can (or should) be defined inside the _init_internal_params
method:

def _init_internal_params(self):
super(SumCalculation, self)._init_internal_params()

self._INPUT_FILE_NAME = 'in.json'
self._OUTPUT_FILE_NAME = 'out.json'
self._default_parser = 'sum'

In particular, it is good practice to define a _INPUT_FILE_NAME and _OUTPUT_FILE_NAME attributes
(pointing to the default input and output file name – these variables are then used by some verdi com-
mands, such as verdi calculation outputcat). Also, you need to define the name of the default
parser that will be invoked when the calculation completes in _default_parser. In the example above,
we choose the ‘sum’ plugin (that we are going to define later on). If you don’t want to call any parser, set
this variable to None.

As a final step, after copying the file in the location specified above, we can check if AiiDA recognised the
plugin, by running the command verdi calculation plugins and veryfing that our new sum plugin is
now listed.

Setup of the code

Now that we know the executable that we want to run, and we have setup the input plugin, we can proceed
to configure AiiDA by setting up a new code to execute:

verdi code setup

During the setup phase, you can either configure a remote code (meaning that you are going to place the
python executable in the right folder of the remote computer, and then just instruct AiiDA on the location),
or as a local folder, meaning that you are going to store (during the setup phase) the python executable
into the AiiDA DB, and AiiDA will copy it to the remote computer when needed. In this second case, put the
sum_executable.py in an empty folder and pass this folder in the setup phase.

166 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Note: In both cases, remember to set the executable flag to the code by running chmod +x
sum_executable.py.

After defining the code, we should be able to see it in the list of our installed codes by typing:

verdi code list

A typical output of the above command is:

$ verdi code list
List of configured codes:
(use 'verdi code show CODEID' to see the details)

* Id 73: sum

Where we can see the already installed summation code. We can further see the specific parameters that
we gave when we set-up the code by typing:

verdi code show 73

Which will give us an output similar to the following:

$ verdi code show 73

* PK: 73

* UUID: 34b44d33-86c1-478b-88ff-baadfb6f30bf

* Label: sum

* Description: A simple sum executable

* Default plugin: sum

* Used by: 0 calculations

* Type: local

* Exec name: ./sum_executable.py

* List of files/folders:

* [file] sum_executable.py

* prepend text:
No prepend text.

* append text:
No append text.

What is important to keep from the above is that we have informed AiiDA for the existence of a code that
resides at a specific location and we have also specified the default (input) plugin that will be used.

Output plugin: the parser

In general, it is useful to parse files generated by the code to import relevant data into the database. This
has two advantages:

• we can store information in specific data classes to facilitate their use (e.g. crystal structures, param-
eters, ...)

• we can then make use of efficient database queries if, e.g., output quantities are stored as integers or
floats rather than as strings in a long text file.

The following is a sample output plugin for the summation code, described in detail later:

3.1. Developer’s guide 167

AiiDA documentation, Release 0.7.0

-*- coding: utf-8 -*-

from aiida.orm.calculation.job.sum import SumCalculation
from aiida.parsers.parser import Parser
from aiida.parsers.exceptions import OutputParsingError
from aiida.orm.data.parameter import ParameterData

import json

class SumParser(Parser):
"""
This class is the implementation of the Parser class for Sum.
"""
def parse_with_retrieved(self, retrieved):

"""
Parses the datafolder, stores results.
This parser for this simple code does simply store in the DB a node
representing the file of forces in real space
"""

successful = True
select the folder object
Check that the retrieved folder is there
try:

out_folder = retrieved[self._calc._get_linkname_retrieved()]
except KeyError:

self.logger.error("No retrieved folder found")
return False, ()

check what is inside the folder
list_of_files = out_folder.get_folder_list()
at least the stdout should exist
if self._calc._OUTPUT_FILE_NAME not in list_of_files:

successful = False
self.logger.error("Output json not found")
return successful,()

try:
with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:

out_dict = json.load(f)
except ValueError:

successful=False
self.logger.error("Error parsing the output json")
return successful,()

save the arrays
output_data = ParameterData(dict=out_dict)
link_name = self.get_linkname_outparams()
new_nodes_list = [(link_name, output_data)]

return successful,new_nodes_list

As mentioned above the output plugin will parse the output of the executed code at the remote computer
and it will store the results to the AiiDA database.

All the parsing code is enclosed in a single method parse_with_retrieved, that will receive as a single
parameter retrieved, a dictionary of retrieved nodes. The default behavior is to create a single Folder-
Data node, that can be retrieved using:

168 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

out_folder = retrieved[self._calc._get_linkname_retrieved()]

We then read and parse the output file that will contain the result:

with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:
out_dict = json.load(f)

Note: all parsers have a self._calc attribute that points to the calculation being parsed. This is auto-
matically set in the parent Parser class.

After loading the code result data to the dictionary out_dict, we construct a ParameterData object
(ParameterData(dict=out_dict)) that will be linked to the calculation in the AiiDA graph to be later in
the database:

output_data = ParameterData(dict=out_dict)
link_name = self.get_linkname_outparams()
new_nodes_list = [(link_name, output_data)]

return successful,new_nodes_list

Note: Parsers should not store nodes manually. Instead, they should return a list of output unstored nodes
(together with a link name string, as shown above). AiiDA will then take care of storing the node, and
creating the appropriate links in the DB.

Note: the self.get_linkname_outparams() is a string automatically defined in all Parser classes
and subclasses. In general, you can have multiple output nodes with any name, but it is good pratice
so have also one of the output nodes with link name self.get_linkname_outparams() and of type
ParameterData. The reason is that this node is the one exposed with the calc.res interface (for in-
stance, later we will be able to get the results using print calc.res.sum.

The above output plugin can be downloaded from here and should be placed at
aiida/parsers/plugins/sum.py.

Note: Before continuing, it is important to restart the daemon, so that it can recognize the new files added
into the aiida code and use the new plugins. To do so, run now:

verdi daemon restart

Submission script

It’s time to calculate how much 2+3 is! We need to submit a new calculation. To this aim, we don’t necessar-
ily need a submission script, but it definitely facilitates the calculation submission. A very minimal sample
script follows (other examples can be found in the aiida/examples/submission folder):

#!/usr/bin/env runaiida
-*- coding: utf-8 -*-
import sys

3.1. Developer’s guide 169

AiiDA documentation, Release 0.7.0

import os

from aiida.common.exceptions import NotExistent
ParameterData = DataFactory('parameter')

The name of the code setup in AiiDA
codename = 'sum'
computer_name = 'localhost'

##
try:

dontsend = sys.argv[1]
if dontsend == "--dont-send":

submit_test = True
elif dontsend == "--send":

submit_test = False
else:

raise IndexError
except IndexError:

print >> sys.stderr, ("The first parameter can only be either "
"--send or --dont-send")

sys.exit(1)

code = Code.get_from_string(codename)
The following line is only needed for local codes, otherwise the
computer is automatically set from the code
computer = Computer.get(computer_name)

These are the two numbers to sum
parameters = ParameterData(dict={'x1':2,'x2':3})

calc = code.new_calc()
calc.label = "Test sum"
calc.description = "Test calculation with the sum code"
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_computer(computer)
calc.set_withmpi(False)
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)

if submit_test:
subfolder, script_filename = calc.submit_test()
print "Test submit file in {}".format(os.path.join(

os.path.relpath(subfolder.abspath),
script_filename
))

else:
calc.store_all()
calc.submit()
print "submitted calculation; calc=Calculation(uuid='{}') # ID={}".format(

calc.uuid,calc.dbnode.pk)

What is important to note in the script above is the definition of the code to be used:

codename = 'sum'
code = Code.get_from_string(codename)

170 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

and the definition of the parameters:

parameters = ParameterData(dict={'x1':2,'x2':3})
calc.use_parameters(parameters)

If everything is done correctly, by running the script a new calculation will be generated and submitted to
AiiDA (to run the script, remember to change its permissions with chmod +x filename first, and then run
it with ./scriptname.py). When the code finishes its execution, AiiDA will retrieve the results, parse and
store them back to the AiiDA database using the output plugin. You can download the submission script
from here.

Conclusion

We have just managed to write our first AiiDA plugin! What is important to remember is that:

• AiiDA doesn’t know how to execute your code. Therefore, you have to setup your code (with verdi
code setup) and let AiiDA know how to prepare the data that will be given to the code (input plugin
or calculation) and how to handle the result of the code (output plugin or parser).

• you need to do pass the actual data for the calculation you want to submit, either in the interactive
shell, or via a submission script.

As usual, we can see the executed calculations by doing a verdi calculation list. To see the
calculations of the last day:

$ verdi calculation list -a -p1
Last daemon state_updater check: 0h:00m:06s ago (at 20:10:31 on 2015-10-20)
Pk|State |Creation|Sched. state|Computer |Type
327 |FINISHED |4h ago |DONE |localhost |sum

and we can see the result of the sum by running in the verdi shell the following commands (change 327
with the correct calculation PK):

>>> calc = load_node(327)
>>> print calc.res.sum
<<< 5

So we verified that, indeed, 2+3=5.

3.1.4 Developer data plugin tutorial - Float summation

Now that you have writen your first AiiDA plugin, we can try to extend it to see how we can introduce different
type of parameters and how the plugins have to be modified to encompass these changes.

Introducing a new data type

We will start by describing what is a data plugin, and by creating a new one.

A data plugin is a subclass of Data. What you have to do is just to define a subclass with a suitable name in-
side the aiida/orm/data folder (with the same name convention of Calculation plugins: the class should
be called NameData (with Name being a name of your choice) and put in a aiida/orm/data/name.py
file. In the class, you should provide methods that the end user should use to store high-level objects (for
instance, for a crystal structure, there can be a method for setting the unit cell, one for adding an atom in a
given position, ...). Internally, you should choose where to store the content. There are two options:

3.1. Developer’s guide 171

AiiDA documentation, Release 0.7.0

• In the AiiDA database. This is useful for small amounts of data, that you plan to query. In this case,
use self._set_attr(attr_name, attr_value) to store the required value.

• In the AiiDA file repository (as a file on the disk). This is suitable for big files and quantities that
you do not want to query. In this case, access the folder using self.folder and use the methods
of self.folder to create files, subfolders, ...

Of course, it is also good practice to provide “getter” methods to retrieve the data in the database and return
it back to the user. The idea is that the user can operate directly only with the methods you provide, and
should not need to know how you decided to store the data inside the AiiDA database.

As a simple example that we will use for the exercise below, imagine that we want to introduce a new type
of data node that simply stores a float number. We will call it FloatData, and the class implementation
can look like this:

from aiida.orm.data import Data

class FloatData(Data):

@property
def value(self):

"""
The value of the Float
"""
return self.get_attr('number')

@value.setter
def value(self,value):

"""
Set the value of the Float

:raise ValueError:
"""
self._set_attr('number', float(value))

This file should be placed under aiida/orm/data/float.py and it should extend the class Data.

Exercise: Modifying the calculation plugin

Your exercise consists in creating a new code plugin (let’s call it for instance floatsum) that will also
perform the sum, but accept as input two FloatData node and return also a FloatData node containing
the sum.

Below, you will find some hints on the parts you need to modify with respect to the previous tutorial using
instead ParameterData both as inputs and outputs.

Note: remember to create copies of your files with a new name floatsum.py instead of sum.py, and to
change the class name accordingly.

Changes to the parser

The plugin should now return a FloatData instead of a ParameterData, therefore the parser code
should contain something like the following:

172 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

output_data = FloatData()
output_data.value = out_dict["sum"]
linkname = 'output_data'

Changes to the input plugin

To be able to run your new FloatsumParser, you will need the corresponding input plugin
(FloatsumCalculation). The first modification is then to link to the correct parser class:

self._default_parser = 'floatsum'

For consistency, we also want that the input plugin accepts two FloatData instead of a single
ParameterData. Therefore, you have to update the retdict object accordingly:

retdict.update({
"float_data_1": {

'valid_types': FloatData,
'additional_parameter': None,
'linkname': 'float_data_1',
'docstring': ("The first addend"),
},

"float_data_2": {
'valid_types': FloatData,
'additional_parameter': None,
'linkname': 'float_data_2',
'docstring': ("The second addend"),
},

})

You need then to change the main code to use the values obtained from the two nodes, rather than from a
single node as before. This should be easy, so we leave this task to you. Note that we plan to use the same
python code to actually perform the sum, so the JSON file to be generated should have the same format.

We also suggest that you add utility methods (to the benefit of the end user) to provide the addends to the
code, something like:

def set_addend1(self, value):
fl = FloatData()
fl.value = value
self.use_float_data_1(fl)

and similarly for the second addend.

The final input plugin should be placed at aiida/orm/calculation/job/floatsum.py.

Code

The python code that actually performs the calculation does not need to be modified. We can reuse the
same file, but we suggest to setup a new code in AiiDA, with a different name, using as default plugin the
floatsum plugin.

3.1. Developer’s guide 173

AiiDA documentation, Release 0.7.0

Submission script

Finally, adapt your submission script to create the correct input nodes, and try to perform a sum of two
numbers to verify that you did all correctly!

Note: After placing your files, do not forget to restart the daemon so that it will recognize the files! The
same should be done if you do any change to the plugin, otherwise the daemon may have cached the old
file and will keep using it.

3.1.5 Developer code plugin tutorial - Quantum Espresso

In this section we will focus on AiiDA’s Quantum Espresso plugin that we are going to analyse and show
how a physics oriented plugin is developed. It will be assumed that you have already tried to run an example
of Quantum Espresso, and you know more or less how the AiiDA interface works. We hope that in the end
you will be able to replicate the task for other codes.

In fact, when writing your own plugin, keep in mind that you need to satisfy multiple users, and the interface
needs to be simple (not the code below). But always try to follow the Zen of Python:

Simple is better than complex.

Complex is better than complicated.

Readability counts.

As demonstrated in previous sections, there will be two kinds of plugins: the input and the output. The
former has the purpose to convert python object in text inputs that can be executed by external software.
The latter will convert the text output of these software back into python dictionaries/objects that can be put
back in the database.

InputPlugin

Create a new file, which has the same name as the class you are creating (in this way, it will be possible to
load it with CalculationFactory). Save it in a subfolder at the path aiida/orm/calculation/job.

Step 1: inheritance

First define the class:

class SubclassCalculation(JobCalculation):

(Substitute Subclass with the name of your plugin). Take care of inheriting the JobCalculation class,
or the plugin will not work.

Now, you will likely need to define some variables that belong to SubclassCalculation. In order to be
sure that you don’t lose any variables belonging to the inherited class, every subclass of calculation needs
to have a method which is called _init_internal_params(). An example of it would look like:

def _init_internal_params(self):
super(SubclassCalculation, self)._init_internal_params()

self.A_NEW_VARIABLE = 'nabucco'

174 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

This function will be called by the __init__ method and will initialize the variable A_NEW_VARIABLE at
the moment of the instancing. The second line will call the _init_internal_params() of the parent class and
load other variables eventually defined there. Now you are able to access the variable A_NEW_VARIABLE
also in the rest of the class by calling self.A_NEW_VARIABLE.

Note: Even if you don’t need to define new variables, it is safer to define the method with the call to
super().

Note: It is not recommended to rewrite an __init__ by yourself: this method is inherited from the
classes Node and Calculation, and you shouldn’t alter it unless you really know the code down to the
lowest-level.

Note: The following is a list of relevant parameters you may want to (re)define in
_init_internal_params:

• self._default_parser: set to the string of the default parser to be used, in the form accepted by
the plugin loader (e.g., for the Quantum ESPRESSO plugin for phonons, this would be “quantume-
spresso.ph”, loaded from the aiida.parsers.plugins module).

• self._DEFAULT_INPUT_FILE: specify here the relative path to the filename of the default file that
should be shown by verdi calculation outputcat --default . If not specified, the default
value is None and verdi calculation outputcat will not accept the --default option, but it
will instead always ask for a specific path name.

• self._DEFAULT_OUTPUT_FILE: same of _DEFAULT_INPUT_FILE, but for the default output file.

Step 2: define input nodes

First, you need to specify what are the objects that are going to be accepted as input to the calculation
class. This is done by the class property _use_methods. An example is as follows:

from aiida.common.utils import classproperty

class SubclassCalculation(JobCalculation):

def _init_internal_params(self):
super(SubclassCalculation, self)._init_internal_params()

@classproperty
def _use_methods(cls):

retdict = JobCalculation._use_methods
retdict.update({

"settings": {
'valid_types': ParameterData,
'additional_parameter': None,
'linkname': 'settings',
'docstring': "Use an additional node for special settings",
},

"pseudo": {
'valid_types': UpfData,
'additional_parameter': 'kind',

3.1. Developer’s guide 175

AiiDA documentation, Release 0.7.0

'linkname': cls._get_pseudo_linkname,
'docstring': ("Use a remote folder as parent folder (for "

"restarts and similar"),
},

})
return retdict

@classmethod
def _get_pseudo_linkname(cls, kind):

"""
Return the linkname for a pseudopotential associated to a given
structure kind.
"""
return "pseudo_{}".format(kind)

After this piece of code is written, we now have defined two methods of the calculation that specify what DB
object could be set as input (and draw the graph in the DB). Specifically, here we will find the two methods:

calculation.use_settings(an_object)
calculation.use_pseudo(another_object,'object_kind')

What did we do?

1. We added implicitly the two new use_settings and use_pseudo methods (because the dictionary
returned by _use_methods now contains a settings and a pseudo key)

2. We did not lose the use_code call defined in the Calculation base class, because we are extend-
ing Calculation._use_methods. Therefore: don’t specify a code as input in the plugin!

3. use_settings will accept only one parameter, the node specifying the settings, since the
additional_parameter value is None.

4. use_pseudo will require two parameters instead, since additional_parameter value is not
None. If the second parameter is passed via kwargs, its name must be ‘kind’ (the value of
additional_parameters). That is, you can call use_pseudo in one of the two following ways:

use_pseudo(pseudo_node, 'He')
use_pseudo(pseudo_node, kind='He')

to associate the pseudopotential node pseudo_node (that you must have loaded before) to helium
(He) atoms.

5. The type of the node that you pass as first parameter will be checked against the type (or the tuple of
types) specified with valid_types (the check is internally done using the isinstance python call).

6. The name of the link is taken from the linkname value. Note that if additional_parameter is
None, this is simply a string; otherwise, it must be a callable that accepts one single parameter (the
further parameter passed to the use_XXX function) and returns a string with the proper name. This
functionality is provided to have a single use_XXX method to define more than one input node, as it
is the case for pseudopotentials, where one input pseudopotential node must be specified for each
atomic species or kind.

7. Finally, docstring will contain the documentation of the function, that the user can obtain by printing
e..g. use_pseudo.__doc__.

Note: The actual implementation of the use_pseudo method in the Quantum ESPRESSO tutorial is

176 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

slightly different, as it allows the user to specify a list of kinds that are associated with the same pseudopo-
tential file (while in the example above only one kind string can be passed).

Step 3: prepare a text input

How are the input nodes used internally? Every plugin class is required to have the following method:

def _prepare_for_submission(self,tempfolder,inputdict):

This function is called by the daemon when it is trying to create a new calculation.

There are two arguments:

1. tempfolder: is an object of kind SandboxFolder, which behaves exactly as a folder. In this place-
holder, you are going to write the input files. This tempfolder is gonna be copied to the remote cluster.

2. inputdict: contains all the input data nodes as a dictionary, in the same format that is returned by the
get_inputs_dict() method, i.e. a linkname as key, and the object as value.

Changed in version 0.5: inputdict should contain all input Data nodes, and the code. (this is what the
get_inputs_dict() method returns, by the way). In older versions, the code is not present.

In general, you simply want to do:

inputdict = self.get_inputs_dict()

right before calling _prepare_for_submission. The reason for having this explicitly passed is that the
plugin does not have to perform explicit database queries, and moreover this is useful to test for submission
without the need to store all nodes on the DB.

For the sake of clarity, it’s probably going to be easier looking at an im-
plemented example. Take a look at the NamelistsCalculation located in
aiida.orm.calculation.job.quantumespresso.namelists.

How does the method _prepare_for_submission work in practice?

1. You should start by checking if the input nodes passed in inputdict are logically sufficient to run
an actual calculation. Remember to raise an exception (for example InputValidationError) if
something is missing or if something unexpected is found. Ideally, it is better to discover now if
something is missing, rather than waiting the queue on the cluster and see that your job has crashed.
Also, if there are some nodes left unused, you are gonna leave a DB more complicated than what has
really been, and therefore is better to stop the calculation now.

2. create an input file (or more if needed). In the Namelist plugin is done like:

input_filename = tempfolder.get_abs_path(self.INPUT_FILE_NAME)
with open(input_filename,'w') as infile:

Here write the information of a ParameterData inside this
file

Note that here it all depends on how you decided the ParameterData to be written. In the namelists
plugin we decided the convention that a ParameterData of the format:

ParameterData(dict={"INPUT":{'smearing':2,
'cutoff':30}

})

3.1. Developer’s guide 177

AiiDA documentation, Release 0.7.0

is written in the input file as:

&INPUT
smearing = 2,
cutoff=30,

/

Of course, it’s up to you to decide a convention which defines how to convert the dictionary to the
input file. You can also impose some default values for simplicity. For example, the location of the
scratch directory, if needed, should be imposed by the plugin and not by the user, and similarly you
can/should decide the naming of output files.

Note: it is convenient to avoid hard coding of all the variables that your code has. The convention
stated above is sufficient for all inputs structured as fortran cards, without the need of knowing which
variables are accepted. Hard coding variable names implies that every time the external software
is updated, you need to modify the plugin: in practice the plugin will easily become obsolete if poor
maintained. Easyness of maintainance here win over user comfort!

3. copy inside this folder some auxiliary files that resides on your local machine, like for example pseu-
dopotentials.

4. return a CalcInfo object.

This object contains some accessory information. Here’s a template of what it may look like:

calcinfo = CalcInfo()

calcinfo.uuid = self.uuid
calcinfo.local_copy_list = local_copy_list
calcinfo.remote_copy_list = remote_copy_list

calcinfo.retrieve_list = []
Modify here !
calcinfo.retrieve_list.append('Every file/folder you want to store back locally')
Modify here!
calcinfo.retrieve_singlefile_list = []

Modify here and put a name for standard input/output files
codeinfo = CodeInfo()
codeinfo.cmdline_params = settings_dict.pop('CMDLINE', [])
codeinfo.stdin_name = self.INPUT_FILE_NAME
codeinfo.stdout_name = self.OUTPUT_FILE_NAME
codeinfo.withmpi = self.get_withmpi()
codeinfo.code_pk = code.pk

calcinfo.codes_info = [codeinfo]

return calcinfo

There are a couple of things to be set on calcinfo.

(a) retrieve_list: a list of relative file pathnames, that will be copied from the cluster to the aiida
server, after the calculation has run on cluster. Note that all the file names you need to modify
are not absolute path names (you don’t know the name of the folder where it will be created) but
rather the path relative to the scratch folder.

(b) local_copy_list: a list of length-two-tuples: (localabspath, relativedestpath). Files to be
copied from the aiida server to the cluster.

178 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

(c) remote_copy_list: a list of tuples: (remotemachinename, remoteabspath, relativedestpath).
Files/folders to be copied from a remote source to a remote destination, sitting both on the same
machine.

(d) retrieve_singlefile_list: a list of triplets, in the form ["linkname_from calc to
singlefile","subclass of singlefile","filename"]. If this is specified, at the end
of the calculation it will be created a SinglefileData-like object in the Database, children of the
calculation, if of course the file is found on the cluster.

(e) codes_info: a list of informations that needs to be passed on the command line to the code,
passed in the form of a list of CalcInfo objects (see later). Every element in this list corresponds
to a call to a code that will be executed in the same scheduling job. This can be useful if a
code needs to execute a short preprocessing. For long preprocessings, consider to develop a
separate plugin.

(f) codes_run_mode: a string, only necessary if you want to run more than one code
in the same scheduling job. Determines the order in which the multiple codes
are run (i.e. sequentially or all at the same time. It assumes one of the val-
ues of aiida.common.datastructures.code_run_modes, like code_run_modes.PARALLEL or
code_run_modes.SERIAL

A CodeInfo object, as said before, describes how a code has to be executed. The list of CodeInfo
objects passed to calcinfo will determined the ordered execution of one (or more) calls to executables.
The attributes that can be set to CodeInfo are:

(a) stdin_name: the name of the standard input.

(b) stdin_name: the name of the standard output.

(c) cmdline_params: like parallelization flags, that will be used when running the code.

(d) stderr_name: the name of the error output.

(e) withmpi: whether the code has to be called with mpi or not.

(f) code_pk: the pk of the code associated to the CodeInfo instance.

If you need to change other settings to make the plugin work, you likely need to add more information
to the calcinfo than what we showed here. For the full definition of CalcInfo() and CodeInfo(),
refer to the source aiida.common.datastructures.

That’s what is needed to write an input plugin. To test that everything is done properly, remember to use
the calculation.submit_test() method, which creates locally the folder to be sent on cluster, without
submitting the calculation on the cluster.

OutputPlugin

Well done! You were able to have a successful input plugin. Now we are going to
see what you need to do for an output plugin. First of all let’s create a new folder:
$path_to_aiida/aiida/parsers/plugins/the_name_of_new_code, and put there an empty
__init__.py file. Here you will write in a new python file the output parser class. It is actually a rather
simple class, performing only a few (but tedious) tasks.

After the calculation has been computed and retrieved from the cluster, that is, at the moment when the
parser is going to be called, the calculation has two children: a RemoteData and a FolderData. The
RemoteData is an object which represents the scratch folder on the cluster: you don’t need it for the parsing
phase. The FolderData is the folder in the AiiDA server which contains the files that have been retrieved
from the cluster. Moreover, if you specified a retrieve_singlefile_list, at this stage there is also going to be
some children of SinglefileData kind.

3.1. Developer’s guide 179

AiiDA documentation, Release 0.7.0

Let’s say that you copied the standard output in the FolderData. The parser than has just a couple of tasks:

1. open the files in the FolderData

2. read them

3. convert the information into objects that can be saved in the Database

4. return the objects and the linkname.

Note: The parser should not save any object in the DB, that is a task of the daemon: never use a .store()
method!

Basically, you just need to specify an __init__() method, and a function
parse_with_retrieved(calc, retrieved)__, which does the actual work.

The difficult and long part is the point 3, which is the actual parsing stage, which convert text into python
objects. Here, you should try to parse as much as you can from the output files. The more you will write,
the better it will be.

Note: You should not only parse physical values, a very important thing that could be used by workflows
are exceptions or others errors occurring in the calculation. You could save them in a dedicated key of the
dictionary (say ‘warnings’), later a workflow can easily read the exceptions from the results and perform a
dedicated correction!

In principle, you can save the information in an arbitrary number of objects. The most useful classes to
store the information back into the DB are:

1. ParameterData: This is the DB representation of a python dictionary. If you put everything in a
single ParameterData, then this could be easily accessed from the calculation with the .res method.
If you have to store arrays / large lists or matrices, consider using ArrayData instead.

2. ArrayData: If you need to store large arrays of values, for example, a list of points or a molecular
dynamic trajectory, we strongly encourage you to use this class. At variance with ParameterData, the
values are not stored in the DB, but are written to a file (mapped back in the DB). If instead you store
large arrays of numbers in the DB with ParameterData, you might soon realize that: a) the DB grows
large really rapidly; b) the time it takes to save an object in the DB gets very large.

3. StructureData: If your code relaxes an input structure, you can end up with an output structure.

Of course, you can create new classes to be stored in the DB, and use them at your own advantage.

A kind of template for writing such parser for the calculation class NewCalculation is as follows:

class NewParser(Parser):
"""
A doc string
"""

def __init__(self,calc):
"""
Initialize the instance of NewParser
"""
check for valid input
if not isinstance(calc,NewCalculation):

raise ParsingError("Input must calc must be a NewCalculation")

super(NewParser, self).__init__(calc)

180 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

def parse_with_retrieved(self, retrieved):
"""
Parses the calculation-output datafolder, and stores
results.

:param retrieved: a dictionary of retrieved nodes, where the keys
are the link names of retrieved nodes, and the values are the
nodes.

"""
check the calc status, not to overwrite anything
state = calc.get_state()
if state != calc_states.PARSING:

raise InvalidOperation("Calculation not in {} state"
.format(calc_states.PARSING))

retrieve the whole list of input links
calc_input_parameterdata = self._calc.get_inputs(node_type=ParameterData,

also_labels=True)

then look for parameterdata only
input_param_name = self._calc.get_linkname('parameters')
params = [i[1] for i in calc_input_parameterdata if i[0]==input_param_name]
if len(params) != 1:

Use self.logger to log errors, warnings, ...
This will also add an entry to the DbLog table associated
to the calculation that we are trying to parse, that can
be then seen using 'verdi calculation logshow'
self.logger.error("Found {} input_params instead of one"

.format(params))
successful = False
calc_input = params[0]

Check that the retrieved folder is there
try:

out_folder = retrieved[self._calc._get_linkname_retrieved()]
except KeyError:

self.logger.error("No retrieved folder found")
return False, ()

check what is inside the folder
list_of_files = out_folder.get_folder_list()
at least the stdout should exist
if not calc.OUTPUT_FILE_NAME in list_of_files:

raise QEOutputParsingError("Standard output not found")
get the path to the standard output
out_file = os.path.join(out_folder.get_abs_path('.'),

calc.OUTPUT_FILE_NAME)

read the file
with open(out_file) as f:

out_file_lines = f.readlines()

call the raw parsing function. Here it was thought to return a
dictionary with all keys and values parsed from the out_file (i.e. enery, forces, etc...)
and a boolean indicating whether the calculation is successfull or not
In practice, this is the function deciding the final status of the calculation
out_dict,successful = parse_raw_output(out_file_lines)

3.1. Developer’s guide 181

AiiDA documentation, Release 0.7.0

convert the dictionary into an AiiDA object, here a
ParameterData for instance
output_params = ParameterData(dict=out_dict)

prepare the list of output nodes to be returned
this must be a list of tuples having 2 elements each: the name of the
linkname in the database (the one below, self.get_linkname_outparams(),
is defined in the Parser class), and the object to be saved
new_nodes_list = [(self.get_linkname_outparams(),output_params)]

The calculation state will be set to failed if successful=False,
to finished otherwise
return successful, new_nodes_list

3.1.6 Parser warnings policy

As a rule of thumb, always include two keys in the output parameters of a calculation, warnings and
parser_warnings. These two keys contain a list of messages (strings) that are useful for debugging
problems in the execution of calculations. Below are the guidelines for the usage of the keys warnings
and parser_warnings in the output parameters of a calculation.

Warnings

These should be devoted to warnings or error messages relative to the execution of the code. As a
(non-exhaustive) list of examples, for Quantum-ESPRESSO, run-time messages such as

• Maximum CPU time exceeded.

• c_bands: 2 eigenvalues not converged

• Not enough space allocated for radial FFT

• The scf cycle did not reach convergence.

• The FFT is incommensurate: some symmetries may be lost.

• Error in routine [...]

should be put in the warnings. In the above cases the warning messages are directly copied from the output
of the code, but a warning can also be elaborated by the parser when it finds out that something strange
went on during the execution of the code. For QE an example is QE pw run did not reach the end
of the execution.

Among the code-based warnings, some can be identified as ‘’critical’‘, meaning that when present
the calculation should be set in FAILED state. There should be an internal list in the parser, e.g.
critical_messages, defining such critical warnings. Other non-critical warnings instead might be used
to signal the presence of some possible source of troubles, but that nevertheless did not prevent the calcu-
lation to be considered FINISHED.

Parser_warnings

These should be reserved to warnings occurring during parsing, i.e. when the parser does not find an
information it was looking for in the output files. For Quantum-ESPRESSO (PW), examples are

• Skipping the parsing of the xml file.

• Error while parsing for energy terms.

182 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

• etc.

Therefore, these warnings should be placed just to notify that the output was not found in the way the
developer had expected, and they signal the necessity of improving the parser code.

3.1.7 Automated parser tests

AiiDA testing facility can check for the proper functionality of parsers automatically. To facilitate the creation
of new tests, we provide a simple tool to create a new parser test from a calculation that you already run in
your AiiDA database, described below.

Test folders

Each folder inside the path aiida.backends.djsite/db/subtests/parser_tests constitutes a sin-
gle test. The naming convention for folders is the following:

• it should contain only digits, letters and underscores, otherwise the folder will be ignored when running
verdi devel tests db.parsers;

• the folder name should start with test_;

• the name should be followed by the parser plugin name, as returned by calcula-
tion.get_parser_name(), and with dots replaced with underscores;

• it should be followed by an underscore;

• finally it should be followed by a string that explains what is tested.

For instance, a valid name is test_quantumespresso_pw_vanderwaals. Note that the naming scheme
is only a convention, and that the parser to use for the test is selected automatically.

Creation of a test from an existing calculation

In order to create the folder, you can open verdi shell while being in the folder
aiida.backends.djsite/db/subtests/parser_tests, import the following function:

from aiida.backends.djsite.db.subtests.parsers import output_test

and then run it with the correct parameters. The documentation of the function can be found here.

An example call could be:

output_test(
pk=21,
testname='vanderwaals',
skip_uuids_from_inputs=[

'f579974c-6a9e-4eb4-9b41-e72486f86ac5',
'ee0df234-955e-4f99-9808-17e168e6a769']

)

where:

• 21 is the PK of the calculation that you want to export

• vanderwaals is the name of the test: if for instance the node with pk=21 is a Quantum ESPRESSO
pw.x calculation, the script will create a folder named test_quantumespresso_pw_vanderwaals

• the (optional) skip_uuids_from_inputs is a list of UUIDs of input nodes that will not be exported.

3.1. Developer’s guide 183

AiiDA documentation, Release 0.7.0

The script will create a new folder, containing the exported content of the calculation, its direct inputs (except
those listed in the skip_uuids_from_inputs list), and the output retrieved node. The format of the
exported data is the same of the export files of AiiDA, but the folder is not zipped.

Note: The skip_uuids_from_inputs parameter is typically useful for input nodes containing large
files that are not needed for parsing and would just create a large test; a typical example is given by
pseudopotential input nodes for Quantum ESPRESSO.

After having run the command, the existence of the folder will only test that the parser is able to parse the
calculation without errors. Typically, however, you will also want to check some parsed values.

In this case, you need to modify the _aiida_checks.json JSON file inside the folder. The syntax is the
following:

• each key represents an output node that should be generated by the parser;

• each value is a dictionary with multiple keys (an empty dictionary will just check for the existence of
the output node);

• each key of the subdictionary is an attribute to check for. The value is a list of dictionaries, one for
each test to perform on the given value; multiple tests are therefore possible. The dictionary should
have at least have one key: “comparison”, a string to specifies the type of comparison. The other keys
depend on the type of comparison, and typically there is at least a “value” key, the value to compare
with. An example:

{
"output_parameters": {

"energy": [
{
"comparison": "AlmostEqual",
"value": -3699.26590536037

}
],
"energy_units": [
{
"comparison": "Equal",
"value": "eV"

}
]

},
"output_array": {
}

}

The list of valid comparisons is hardcoded inside the aiida.backends.djsite.db.subtests.parsers
module; if you need new comparison types, add them directly to the module.

Running tests

Finally, in order to run all tests contained in the folder aiida.backends.djsite/db/subtests/parser_tests
one can use the following verdi command:

verdi devel tests db.parsers

If no fail message appears it means that the test was successful.

184 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

3.1.8 Workflow’s Guide For AiiDA

Creating new workflows

New user specific workflows should be put in aiida/workflows/user. If the workflow is gen-
eral enough to be of interest for the community, the best is to create a git repository (e.g. on Bit-
bucket) and clone the content of the repository in a subfolder of aiida/workflows/user, e.g. in
aiida/workflows/user/epfl_theos for workflows from the group THEOS at EPFL.

Put __init__.py files in all subdirectories of aiida/workflows/user to be able to import any work-
flows. Also, it may be a good idea to create a specific workflow factory to load easily workflows of
the subdirectory. To do so place in your __init__.py file in the main workflow directory (e.g. in
aiida/workflows/user/epfl_theos/__init__.py in the example above):

from aiida.orm.workflow import Workflow

def TheosWorkflowFactory(module):
"""
Return a suitable Workflow subclass for the workflows defined here.
"""
from aiida.common.pluginloader import BaseFactory

return BaseFactory(module, Workflow, "aiida.workflows.user.epfl_theos")

In this example, a workflow located in e.g. aiida/workflows/user/epfl_theos/quantumespresso/pw.py
can be loaded simply by typing:

TheosWorkflowFactory('quantumespresso.pw')

Note: The class name of the workflow should be compliant with the BaseFactory syntax. In the above
example, it should be called PwWorkflow otherwise the workflow factory won’t work.

You can also customize your verdi shell by adding this function to the modules to be loaded automatically –
see here for more information.

3.1.9 Developer Workflow tutorial

Creating new workflows

In this section we are going to write a very simple AiiDA workflow. Before starting this tutorial, we assume
that you have successfully completed the Developer calculation plugin tutorial and have your input and
output plugins ready to use with this tutorial.

This tutorial creates a workflow for the addition of three numbers. Number could be an integer or a float
value. All three numbers will be passed as parameters to the workflow in dictionary format (e.g. {"a":
1, "b": 2.2, "c":3}).

To demonstrate how a workflow works, we will perform the sum of three numbers in two steps:

1. Step 1: temp_value = a + b

2. Step 2: sum = temp_value + c

3.1. Developer’s guide 185

http://bitbucket.org
http://bitbucket.org

AiiDA documentation, Release 0.7.0

A workflow in AiiDA is a python script with several user defined functions called steps. All AiiDA functions
are available inside “steps” and calculations or sub-workflows can be launched and retrieved. The AiiDA
daemon executes a workflow and handles all the operations starting from script loading, error handling and
reporting, state monitoring and user interaction with the execution queue. The daemon works essentially
as an infinite loop, iterating several simple operations:

1. It checks the running step in all the active workflows, if there are new calculations attached to a step
it submits them.

2. It retrieves all the finished calculations. If one step of one workflow exists where all the calculations
are correctly finished it reloads the workflow and executes the next step as indicated in the script.

3. If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

Note: Since the daemon is aware only of the classes present at the time of its launch, make sure you
restart the daemon every time you add a new workflow, or modify an existing one. To restart a daemon, use
following command:

verdi daemon restart

Let’s start to write a workflow step by step. First we have to import some packages:

from aiida.common import aiidalogger
from aiida.orm.workflow import Workflow
from aiida.orm import Code, Computer
from aiida.orm.data.parameter import ParameterData
from aiida.common.exceptions import InputValidationError

In order to write a workflow, we must create a class by extending the Workflow class from
aiida.orm.workflow. This is a fundamental requirement, since the subclassing is the way AiiDA un-
derstand if a class inside the file is an AiiDA workflow or a simple utility class. In the class, you need to
re-define an __init__ method as shown below (in the current code version, this is a requirement). Create a
new file, which has the same name as the class you are creating (in this way, it will be possible to load it
with WorkflowFactory), in this case addnumbers.py, with the following content:

class AddnumbersWorkflow(Workflow):
"""
This workflow takes 3 numbers as an input and gives
its addition as an output.
Workflow steps:
passed parameters: a,b,c
1st step: a + b = step1_result
2nd step: step1_result + c = final_result
"""

def __init__(self, **kwargs):
super(AddnumbersWorkflow, self).__init__(**kwargs)

Once the class is defined a user can add methods to generate calculations, download structures or compute
new structures starting form a query in previous AiiDA calculations present in the DB. Here we will add
simple helper function to validate the input parameters which will be the dictionary with keys a, b and c. All
dictionary values should be of type integer or float.

def validate_input(self):
"""

186 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Check if the passed parameters are of type int or float
else raise exception
"""
get parameters passed to workflow when it was
initialised. These parameters can not be modified
during an execution
params = self.get_parameters()

for k in ['a','b','c']:
try:

check if value is int or float
if not (isinstance(params[k], int) or isinstance(params[k], float)):

raise InputValidationError("Value of {} is not of type int or float".format(k))
except KeyError:

raise InputValidationError("Missing input key {}".format(k))

add in report
self.append_to_report("Starting workflow with params: {0}".format(params))

In the above method we have used append_to_report workflow method. Once the workflow is launched, the
user interactions are limited to some events (stop, relaunch, list of the calculations). So most of the times it
is very useful to have custom messages during the execution. Hence, workflow is equipped with a reporting
facility self.append_to_report(string), where the user can fill with any text and can retrieve both
live and at the end of the execution.

Now we will add the method to launch the actual calculations. We have already done this as part of plugin
exercise and hence we do not discuss it in detail here.

def get_calculation_sum(self, a, b):
"""
launch new calculation
:param a: number
:param b: number
:return: calculation object, already stored
"""
get code/executable file
codename = 'sum'
code = Code.get_from_string(codename)

computer_name = 'localhost'
computer = Computer.get(computer_name)

create new calculation
calc = code.new_calc()
calc.set_computer(computer)
calc.label = "Add two numbers"
calc.description = "Calculation step in a workflow to add more than two numbers"
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_withmpi(False)
calc.set_resources({"num_machines": 1})

pass input to the calculation
parameters = ParameterData(dict={'x1': a,'x2':b,})
calc.use_parameters(parameters)

store calculation in database
calc.store_all()
return calc

3.1. Developer’s guide 187

AiiDA documentation, Release 0.7.0

Now we will write the first step which is one of the main components in the workflow. In the example below,
the start method is decorated with Workflow.step making it a very unique kind of method, automatically
stored in the database as a container of calculations and sub-workflows.

@Workflow.step
def start(self):

"""
Addition for first two parameters passed to workflow
when it was initialised
"""

try:
self.validate_input()

except InputValidationError:
self.next(self.exit)
return

get first parameter passed to workflow when it was initialised.
a = self.get_parameter("a")
get second parameter passed to workflow when it was initialised.
b = self.get_parameter("b")

start first calculation
calc = self.get_calculation_sum(a, b)

add in report
self.append_to_report("First step calculation is running...")

attach calculation in workflow to access in next steps
self.attach_calculation(calc)

go to next step
self.next(self.stage2)

Several functions are available to the user when coding a workflow step, and in the above method we have
used basic ones discussed below:

• self.get_parameters(): with this method we can retrieve the parameters passed to the workflow
when it was initialized. Parameters cannot be modified during an execution, while attributes can be
added and removed.

• self.attach_calculation(calc): this is a key point in the workflow, and something possible
only inside a step method. Every JobCalculation, generated in the method itself or retrieved
from other utility methods, is attached to the workflow’s step. They are then launched and executed
completely by the daemon, without the need of user interaction. Any number of calculations can be
attached. The daemon will poll the servers until all the step calculations will be finished, and only after
that it will call the next step.

• self.next(Workflow.step): this is the final part of a step, where the user points the engine
about what to do after all the calculations in the steps (on possible sub-workflows, as we will see later)
are terminated. The argument of this function has to be a Workflow.step decorated method of the
same workflow class, or in case this is the last step to be executed, you can use the common method
self.exit which is always present in each Workflow subclass. Note that while this call typically
occurs at the end of the function, this is not required and you can call the next() method as soon
as you can decide which method should follow the current one. As it can be seen above, we can use
some python logic (if, ...) to decide what the next method is going to be (above, we directly point to
self.exit if the input is invalid).

188 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Note: remember to call self.next(self.stage2) and NOT
self.next(self.stage2())!! In the first case, we are correctly passing the method
stage2 to next. In the second case we are instead immediately running the stage2 method,
something we do not want to do (we need to wait for the current step to finish), and passing its
return value to self.next (which is wrong).

The above start step calls method validate_input() to validate the input parameters. When the work-
flow will be launched through the start method, the AiiDA daemon will load the workflow, execute the step,
launch all the calculations and monitor their state.

Now we will create a second step to retrieve the addition of first two numbers from the first step and then
we will add the third input number. Once all the calculations in the start step will be finished, the daemon
will load and execute the next step i.e. stage2, shown below:

@Workflow.step
def stage2(self):

"""
Get result from first calculation and add third value passed
to workflow when it was initialised
"""
get third parameter passed to workflow when it was initialised.
c = self.get_parameter("c")
get result from first calculation
start_calc = self.get_step_calculations(self.start)[0]

add in report
self.append_to_report("Result of first step calculation is {}".format(

start_calc.res.sum))

start second calculation
result_calc = self.get_calculation_sum(start_calc.res.sum, c)

add in report
self.append_to_report("Second step calculation is done..")

attach calculation in workflow to access in next steps
self.attach_calculation(result_calc)

go to next step
self.next(self.stage3)

The new feature used in the above step is:

• self.get_step_calculations(Workflow.step): anywhere after the first step we may need to
retrieve and analyze calculations executed in a previous steps. With this method we can have access
to the list of calculations of a specific workflows step, passed as an argument.

Now in the last step of the workflow we will retrieve the results from stage2 and exit the workflow by calling
self.next(self.exit) method:

@Workflow.step
def stage3(self):

"""
Get the result from second calculation and add it as final
result of this workflow
"""

3.1. Developer’s guide 189

AiiDA documentation, Release 0.7.0

get result from second calculation
second_calc = self.get_step_calculations(self.stage2)[0]

add in report
self.append_to_report("Result of second step calculation is {}".format(

second_calc.res.sum))

add workflow result
self.add_result('value',second_calc.res.sum)

add in report
self.append_to_report("Added value to workflow results")

Exit workflow
self.next(self.exit)

The new features used in the above step are:

• self.add_result(): When all calculations are done it is useful to tag some of them as results,
using custom string to be later searched and retrieved. Similarly to the get_step_calculations,
this method works on the entire workflow and not on a single step.

• self.next(self.exit): This is the final part of each workflow. Every workflow inheritate a ficti-
tious step called exit that can be set as a next to any step. As the names suggest, this implies the
workflow execution finished correctly.

Running a workflow

After saving the workflow inside a python file (i.e. addnumbers.py‘) located in the
‘‘aiida/workflows directory, we can launch the workflow simply invoking the specific workflow class
and executing the start() method inside the verdi shell or in a python script (with the AiiDA frame-
work loaded).

Note: Don’t forget to (re)start your daemon at this point!

In this case, let’s use the verdi shell. In the shell we execute:

AddnumbersWorkflow = WorkflowFactory("addnumbers")
params = {"a":2, "b": 1.4, "c": 1}
wobject = AddnumbersWorkflow(params=params)
wobject.store()
wobject.start()

In the above example we initialized the workflow with input parameters as a dictionary. The
WorkflowFactory will work only if you gave the correct name both the python file and to the class.
Otherwise, you can just substitute that line with a suitable import like:

from aiida.orm.workflows.addnumbers import AddnumbersWorkflow

We launched the workflow using start() method after storing it. Since start is a decorated workflow
step, the workflow is added to the workflow to the execution queue monitored by the AiiDA daemon.

We now need to know what is going on. There are basically two main ways to see the workflows
that are running: by printing the workflow list or a single workflow report.

190 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

• Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step and each calculation (and, when
present, each sub-workflow). It is the fastest way to have a snapshot of what your AiiDA workflow
daemon is working on. An example output right after the AddnumbersWorkflow submission should
be:

+ Workflow AddnumbersWorkflow (pk: 76) is RUNNING [0h:00m:14s ago]
|-* Step: start [->stage2] is RUNNING
| | Calculation ('Number sum', pk: 739) is TOSUBMIT
|

The pk number of each workflow is reported, a unique ID identifying that specific execution of the
workflow, something necessary to retrieve it at any other time in the future (as explained in the next
point).

• Workflow report

As explained, each workflow is equipped with a reporting facility the user can use to log any interme-
diate information, useful to debug the state or show some details. Moreover the report is also used
by AiiDA as an error reporting tool: in case of errors encountered during the execution, the AiiDA
daemon will copy the entire stack trace in the workflow report before halting its execution. To access
the report we need the specific pk of the workflow. From the command line you would run:

verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the get_report() method:

>> load_workflow(PK_NUMBER).get_report()

In both variants, PK_NUMBER is the pk number of the workflow we want the report of. The
load_workflow function loads a Workflow instance from its pk number, or from its uuid (given
as a string).

Once launched, the workflows will be handled by the daemon until the final step or until some error
occurs. In the last case, the workflow gets halted and the report can be checked to understand what
happened.

• Workflow result

As explained, when all the calculations are done it is useful to tag some nodes or quantities as results,
using a custom string to be later searched and retrieved. This method works on the entire workflow
and not on a single step.

To access the results we need the specific pk of the workflow. From the verdi shell, you can use the
get_report() method:

>> load_workflow(PK_NUMBER).get_results()

In both variants, PK_NUMBER is the pk number of the workflow we want the report of.

• Killing a workflow

A user can also kill a workflow while it is running. This can be done with the following verdi command:

3.1. Developer’s guide 191

AiiDA documentation, Release 0.7.0

>> verdi workflow kill PK_NUMBER_1 PK_NUMBER_2 PK_NUMBER_N

where several pk numbers can be given. A prompt will ask for a confirmation; this can be avoided by
using the -f option.

An alternative way to kill an individual workflow is to use the kill method. In the verdi shell type:

>> load_workflow(PK_NUMBER).kill()

Exercise

In the exercise you have to write a workflow for the addition of six numbers, using the workflow we just wrote
as subworkflows.

For this workflow use:

• Input parameters: params = {“w1”: {“a”: 2, “b”: 2.1, “c”: 1}, “w2”: {“a”: 2, “b”: 2.1, “c”: 4}}

• start step: Use two sub workflows (the ones developed above) for the addition of three numbers:

– Sub workflow with input w1 and calculate its sum (temp_result1)

– Sub workflow with input w2 and calculate its sum (temp_result2)

• stage2 step: final_result = temp_result1 + temp_result2 Add final_result to the
workflow results and exit the workflow.

Some notes and tips:

• You can attach a subworkflow similarly to how you attach a calculation: in the step, create the new
subworkflow, set its parameters using set_parameters, store it, call the start() method, and then
call self.attach_workflow(wobject) to attach it to the current step.

• If you want to pass intermediate data from one step to another, you can set the data as a work-
flow attibute: in a step, call self.set_attribute(attr_name, attr_value), and retrieve it
in another step using attr_value = self.get_attribute(attr_name). Values can be any
JSON-serializable value, or an AiiDA node.

3.1.10 Verdi command line plugins

AiiDA can be extended by adding custom means of use to interact with it via the command line, by extending
the ‘verdi’ commands.

We will describe in particular how to extend verdi data by adding a new subcommand.

Framework for verdi data

The code for each of the verdi data <datatype> <action> [--format <plugin>] commands is
placed in _<Datatype> class inside aiida.cmdline.commands.data.py. Standard actions, such as

• list

• show

• import

• export

are implemented in corresponding classes:

192 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

• Listable

• Visualizable

• Importable

• Exportable,

which are inherited by _<Datatype> classes (multiple inheritance is possible). Actions show, import and
export can be extended with new format plugins simply by adding additional methods in _<Datatype>
(these are automatically detected). Action list can be extended by overriding default methods of the
Listable.

Adding plugins for show, import, export and like

A plugin to show, import or export the data node can be added by inserting a method to _<Datatype>
class. Each new method is automatically detected, provided it starts with _<action>_ (that means _show_
for show, _import_ for import and _export_ for export). Node for each of such method is passed
using a parameter.

Note: plugins for show are passed a list of nodes, while plugins for import and export are passed a
single node.

As the --format option is optional, the default plugin can be specified by setting the value for
default<action>_plugin in the inheriting class, for example:

class _Parameter(VerdiCommandWithSubcommands, Visualizable):
"""
View and manipulate Parameter data classes.
"""

def __init__(self):
"""
A dictionary with valid commands and functions to be called.
"""
from aiida.orm.data.parameter import ParameterData
self.dataclass = ParameterData
self._default_show_format = 'json_date'
self.valid_subcommands = {

'show': (self.show, self.complete_visualizers),
}

def _show_json_date(self, exec_name, node_list):
"""
Show contents of ParameterData nodes.
"""

If the default plugin is not defined and there are more than one plugin, an exception will be raised upon
issuing verdi data <datatype> <action> to be caught and explained for the user.

Plugin-specific command line options Plugin-specific command line options can be appended in plugin-
specific methods _<action>_<plugin>_parameters(self,parser). All these methods are called
before parsing command line arguments, and are passed an argparse.ArgumentParser instance, to
which command line argument descriptions can be appended using parser.add_argument(). For ex-
ample:

3.1. Developer’s guide 193

AiiDA documentation, Release 0.7.0

def _show_jmol_parameters(self, parser):
"""
Describe command line parameters.
"""
parser.add_argument('--step',

help="ID of the trajectory step. If none is "
"supplied, all steps are exported.",

type=int, action='store')

Note: as all _<action>_<plugin>_parameters(self,parser) methods are called, it requires some
attention in order not to make conflicting command line argument names!

Note: it’s a good practice to set default=None for all command line arguments, since None-valued
arguments are excluded before passing the parsed argument dictionary to a desired plugin.

Implementing list

As listing of data nodes can be extended with filters, controllable using command line parameters, the code
of Listable is split into a few separate methods, that can be individually overridden:

• list: the main method, parsing the command line arguments and printing the data node information
to the standard output;

• query: takes the parsed command line arguments and performs a query on the database, returns
table of unformatted strings, representing the hits;

• append_list_cmdline_arguments: informs the command line argument parser about additional,
user-defined parameters, used to control the query function;

• get_column_names: returns the names of columns to be printed by list method.

Adding a verdi command

Here we will add a new verdi command for the FloatData datatype we created and used in Developer code
plugin tutorial exercise.

The new command will be:

>> verdi data float show <pk>

To create the above verdi command, we will write a _Float class inheriting from both
VerdiCommandWithSubcommands and Visualizable classes; this class will be added inside
aiida.cmdline.commands.data.py file. By inheriting from Visualizable, our class will have
a‘‘show()‘‘ method, that we can use as the default action for verdi data float show:

class _Float(VerdiCommandWithSubcommands, Visualizable):
"""
View and manipulate Float data classes.
"""

def __init__(self):
"""

194 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

A dictionary with valid commands and functions to be called.
"""
from aiida.orm.data.float import FloatData

self.dataclass = FloatData
self.valid_subcommands = {

'show': (self.show, self.complete_none),
}
self._default_show_format = 'simple'

The features used in init method are:

• self.dataclass: It is the data type for which the command is written. In this example it is
FloatData.

• self.valid_subcommands: It is the dictionary of valid subcommands and the two functions to be
called when the given command is called, or when bash completion is needed. Each key will be the
command for the defined data type. For FloatData we are therefore adding a show command, that
will call self.show() as method from base cass to be called on. We pass self.complete_none
as completion function to disable further bash completion after the command (this method is defined
in the VerdiCommandWithSubcommands base class). The self.show() method creates a list of
all methods of the current class with prefix _show_ in their name, and provides them as possible
formats.

• self._default_show_format: It is the default format to be displayed for the show’ com-
mand when no specific format is passed as an argument. For FloatData, we will show data in a
simple format by default. To display node in simple format, we will simply add a method called
_show_simple() in the _Float class. Please note that the method name should follow the con-
vention _show_ + format_name.

The _show_simple() method will be:

def _show_simple(self, exec_name, node_list):
"""
Show contents of FloatData nodes.
"""
from aiida.cmdline import print_dictionary

for node in node_list:
print node.value

In this method we have passed the executable name and the list of nodes. To print FloatData in simple
format we are just printing the corresponding value on screen.

Once the _Float class is added, make sure to add entry in self.routed_subcommands dictionary in
the __init__ method of the Data class in aiida.cmdline.commands.data.py file as shown below.

class Data(VerdiCommandRouter):
"""
Setup and manage data specific types

There is a list of subcommands for managing specific types of data.
For instance, 'data upf' manages pseudopotentials in the UPF format.
"""

def __init__(self):
"""
A dictionary with valid commands and functions to be called.

3.1. Developer’s guide 195

AiiDA documentation, Release 0.7.0

"""
Add here the classes to be supported.
self.routed_subcommands = {

.

.
other entries
'float': _Float,

}

The new verdi command float, is now ready!

Try experimenting by adding other formats for show command or by adding other commands like list,
import and export for FloatData data type.

3.1.11 Exporting structures to TCOD

Export of StructureData and CifData (or any other data type, which can be converted to them) to the
Theoretical Crystallography Open Database (TCOD) can be divided into following workflow steps:

No. Description Input Output Type Imple-
mented?

0 Conversion of the StructureData to
CifData

StructureData CifData In-
line

+

1 Detection of the symmetry and reduction
to the unit cell

CifData CifData In-
line

+

2 Niggli reduction of the unit cell CifData CifData In-
line

—

3 Addition of structure properties (total
energy, residual forces)

CifData,
ParameterData

CifData In-
line

PW and
CP

4 Addition of the metadata for reproduction
of the results

CifData CifData In-
line

~

5 Depostition to the TCOD CifData ParameterDataJob +

Type of each step’s calculation (InlineCalculation or JobCalculation) defined in column Type.
Each step is described in more detail below:

• Conversion of the StructureData to CifData Conversion between the StructureData and CifData
is done via ASE atoms object.

• Detection of the symmetry and reduction to the unit cell Detection of the symmetry and reduction to
the unit cell is performed using pyspglib.spglib.refine_cell() function.

• Niggli reduction of the unit cell Reduction of the unit cell to Niggli cell is a nice to have feature, as it
would allow to represent structure as an unambiguously selected unit cell.

• Addition of structure properties (energy, remaining forces) The structure properties from the calcula-
tions, such as total energy and residual forces can be extracted from ParameterData nodes
and put into related TCOD CIF dictionaries tags using calculation-specific parameter translator,
derived from BaseTcodtranslator.

• Addition of the metadata for reproduction of the results Current metadata, added for reproducibility,
includes scripts for re-running of calculations, outputs from the calculations and exported subset
of AiiDA database. It’s not quite clear what/how to record the metadata for calculations of type
InlineCalculation.

• Depostition to the TCOD Deposition of the final CifData to the TCOD is performed using
cif_cod_deposit script from cod-tools package.

196 Chapter 3. Developer’s guide

http://www.crystallography.net/tcod/
http://spglib.sourceforge.net/api.html#spg-refine-cell
http://www.crystallography.net/tcod/cif/dictionaries/

AiiDA documentation, Release 0.7.0

3.1.12 GIT cheatsheet

Excellent and thorough documentation on how to use GIT can be found online on the official GIT documen-
tation or by searching on Google. We summarize here only a set of commands that may be useful.

Interesting online resources

• Atlassian forking-workflow guide

• Gitflow model

Set the push default behavior to push only the current branch

The default push behavior may not be what you expect: if a branch you are not working on changes, you
may not be able to push your own branch, because git tries to check them all. To avoid this, use:

git config push.default upstream

to set the default push.default behaviour to push the current branch to its upstream branch. Note the actual
string to set depends on the version of git; newer versions allow to use:

git config push.default simple

which is better; see also discussion on this stackoverflow page.

View commits that would be pushed

If you want to see which commits would be sent to the remote repository upon a git push command, you
can use (e.g. if you want to compare with the origin/develop remote branch):

git log origin/develop..HEAD

to see the logs of the commits, or:

git diff origin/develop..HEAD

to see also the differences among the current HEAD and the version on origin/develop.

Switch to another branch

You can switch to another branch with:

git checkout newbranchname

and you can see the list of checked-out branches, and the one you are in, with:

git branch

(or git branch -a to see also the list of remote branches).

3.1. Developer’s guide 197

https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
http://nvie.com/posts/a-successful-git-branching-model/
http://stackoverflow.com/questions/948354/default-behavior-of-git-push-without-a-branch-specified

AiiDA documentation, Release 0.7.0

Associate a local and remote branch

To tell GIT to always push a local branch (checked-out) to a remote branch called remotebranchname,
check out the correct local branch and then do:

git push --set-upstream origin remotebranchname

From now on, you will just need to run git push. This will create a new entry in .git/config similar to:

[branch "localbranchname"]
remote = origin
merge = refs/heads/remotebranchname

Branch renaming

To rename a branch locally, from oldname to newname:

git checkout oldname
git branch -m oldname newname

If you want also to rename it remotely, you have to create a new branch and then delete the old one. One
way to do it, is first editing ~/.git/config so that the branch points to the new remote name, changing
refs/heads/oldname to refs/heads/newname in the correct section:

[branch "newname"]
remote = origin
merge = refs/heads/newname

Then, do a:

git push origin newname

to create the new branch, and finally delete the old one with:

git push origin :oldname

(notice the : symbol). Note that if you are working e.g. on BitBucket, there may be a filter to disallow the
deletion of branches (check in the repository settings, and then under “Branch management”). Moreover,
the “Main branch” (set in the repository settings, under “Repository details”) cannot be deleted.

Create a new (lightweight) tag

If you want to create a new tag, e.g. for a new version, and you have checked out the commit that you want
to tag, simply run:

git tag TAGNAME

(e.g., git tag v0.2.0). Afterwards, remember to push the tag to the remote repository (otherwise it will
remain only local):

git push --tags

198 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Create a new branch from a given tag

This will create a new newbranchname branch starting from tag v0.2.0:

git checkout -b newbranchname v0.2.0

Then, if you want to push the branch remotely and have git remember the association:

git push --set-upstream origin remotebranchname

(for the meaning of –set-upsteam see the section Associate a local and remote branch above).

Disallow a branch deletion, or committing to a branch, on BitBucket

You can find these settings in the repository settings of the web interface, and then under “Branch manage-
ment”.

Note: if you commit to a branch (locally) and then discover that you cannot push (e.g. you mistakenly
committed to the master branch), you can remove your last commit using:

git reset --hard HEAD~1

(this removes one commit only, and you should have no local modifications; if you do it, be sure to avoid
losing your modifications!)

Merge from a different repository

It is possible to do a pull request of a forked repository from the BitBucket web interface. However, if one
just wants to keep in sync, e.g., the main AiiDA repository with a fork you are working into without creating
a pull request (e.g., for daily merge of your fork’s develop into the main repo’s develop), you can:

• commit and pull all your changes in your fork

• from the BitBucket web interface, sync your fork with the main repository, if needed

• go in a local cloned version of the main repository

• [only the first time] add a remote pointing to the new repository, with the name you prefer (here:
myfork):

git remote add myfork git@bitbucket.org:BUTBUCKETUSER/FORKEDREPO.git

• checkout to the correct branch you want to merge into (git checkout develop)

• do a git pull (just in case)

• Fetch the correct branch of the other repository (e.g., the develop branch):

git fetch myfork develop

(this will fetch that branch into a temporary location called FETCH_HEAD).

• Merge the modifications:

3.1. Developer’s guide 199

AiiDA documentation, Release 0.7.0

git merge FETCH_HEAD

• Fix any merge conflicts (if any) and commit.

• Finally, push the merged result into the main repository:

git push

(or, if you did not use the default remote with --set-upstream, specify the correct remote branch,
e.g. git push origin develop).

Note: If you want to fetch and transfer also tags, use instead:

git fetch -t myfork develop
git merge FETCH_HEAD
git push --tags

to get the tags from myfork and then push them in the current repository.

3.1.13 Sphinx cheatsheet

A brief overview of some of the main functions of Sphinx as used in the aiida documentation. View This
Page to see how this page was formatted. This is only a brief outline for more please see the Sphinx
documentation

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting

Words can be written in italics or in bold. Text describing a specific computer_thing can be formatted
as well.

Paragraph and Indentation

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will appear on the same line.

While this sentence will appear differently because there is an indent.

200 Chapter 3. Developer’s guide

http://sphinx-doc.org/contents.html
http://sphinx-doc.org/contents.html

AiiDA documentation, Release 0.7.0

Terminal and Code Formatting

Something to be run in command line can be formatted like this:

>> Some command

As can be seen above, while snippets of python on code can be done like this:

import module
print('hello world')

Notes

Note: Notes can be added like this.

Bullet Points and Lists

• Bullet points can be added

• Just like this * With sub-bullets like this

1. While numerical bullets

2. Can be added

3. Like this

Links, Code Display, Cross References

External Links

Can be done like here for AiiDA

Code Download

Code can be downloaded like this.

Download: this example script

Code Display

Can be done like this. This entire document can be seen unformated below using this method.

#!/usr/bin/env python
-*- coding: utf-8 -*-
import json
import sys

in_file = sys.argv[1]

3.1. Developer’s guide 201

AiiDA documentation, Release 0.7.0

out_file = sys.argv[2]

print "Some output from the code"

with open(in_file) as f:
in_dict = json.load(f)

out_dict = { 'sum':in_dict['x1']+in_dict['x2'] }

with open(out_file,'w') as f:
json.dump(out_dict,f)

Cross Reference Docs

Here is an example of a reference to the StructureData tutorial which is on another page

Here is an example of a reference to something on the same page, Cross Reference Docs

Note: References within the same document need a reference label, see .. _self-reference: used in this
section for an example. Hidden in formatted page, can only be seen in the input text.

Cross Reference Classes and Methods

Any class can be referenced for example StructureData references the StructureData data class.

Similarily any method can be referenced for example append_atom() shows the StructureData class’
append atom method.

Table of Contents Docs and Code

Table of Contents for Docs

An example of the table of contents syntax for the GIT cheatsheet can be seen here note that these are
especially important in the global structure of the document, as found in index.rst files.

Note: The maxdepth parameter can be used to change how deep the title indexing goes. See This Page.

Table of Contents for Code

Table of contents, that cross reference code, can be done very similarly to how it is done for documents.
For example the parser docs can be indexed like this

ORM documentation: generic aiida.orm This section describes the aiida object-relational mapping.

Some generic methods of the module aiida.orm.utils

aiida.orm.utils.CalculationFactory(module, from_abstract=False)
Return a suitable JobCalculation subclass.

202 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Parameters

• module – a valid string recognized as a Calculation plugin

• from_abstract – A boolean. If False (default), actually look only to sub-
classes to JobCalculation, not to the base Calculation class. If True, check for
valid strings for plugins of the Calculation base class.

aiida.orm.utils.DataFactory(module)
Return a suitable Data subclass.

aiida.orm.utils.WorkflowFactory(module)
Return a suitable Workflow subclass.

aiida.orm.utils.load_node(node_id=None, pk=None, uuid=None, parent_class=None)
Return an AiiDA node given PK or UUID.

Parameters

• node_id – PK (integer) or UUID (string) or a node

• pk – PK of a node

• uuid – UUID of a node

• parent_class – if specified, checks whether the node loaded is a subclass
of parent_class

Returns an AiiDA node
Raises

• ValueError – if none or more than one of parameters is supplied or type of
node_id is neither string nor integer.

• NotExistent – if the parent_class is specified and no matching Node is
found.

aiida.orm.utils.load_workflow(wf_id=None, pk=None, uuid=None)
Return an AiiDA workflow given PK or UUID.

Parameters

• wf_id – PK (integer) or UUID (string) or a workflow

• pk – PK of a workflow

• uuid – UUID of a workflow
Returns an AiiDA workflow
Raises ValueError if none or more than one of parameters is supplied or type of wf_id is

neither string nor integer

Computer
class aiida.orm.implementation.general.computer.AbstractComputer(**kwargs)

Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). Af-
ter the call to store(), in general attributes cannot be changed, except for those listed in the
self._updatable_attributes tuple (empty for this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) metadata can be modified and in this case they are
directly set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

3.1. Developer’s guide 203

AiiDA documentation, Release 0.7.0

copy()
Return a copy of the current object to work with, not stored yet.

full_text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get(computer)
Return a computer from its name (or from another Computer or DbComputer instance)

get_dbauthinfo(user)
Return the aiida.backends.djsite.db.models.DbAuthInfo instance for the given user on this com-
puter, if the computer is not configured for the given user.

Parameters user – a DbUser instance.

Returns a aiida.backends.djsite.db.models.DbAuthInfo instance

Raises NotExistent – if the computer is not configured for the given user.

get_default_mpiprocs_per_machine()
Return the default number of CPUs per machine (node) for this computer, or None if it was not
set.

get_mpirun_command()
Return the mpirun command. Must be a list of strings, that will be then joined with spaces when
submitting.

I also provide a sensible default that may be ok in many cases.

id
Return the principal key in the DB.

is_user_configured(user)
Return True if the computer is configured for the given user, False otherwise.

Parameters user – a DbUser instance.

Returns a boolean.

is_user_enabled(user)
Return True if the computer is enabled for the given user (looking only at the per-user setting:
the computer could still be globally disabled).

Note Return False also if the user is not configured for the computer.

Parameters user – a DbUser instance.

Returns a boolean.

classmethod list_names()
Return a list with all the names of the computers in the DB.

pk
Return the principal key in the DB.

set_default_mpiprocs_per_machine(def_cpus_per_machine)
Set the default number of CPUs per machine (node) for this computer. Accepts None if you do
not want to set this value.

set_mpirun_command(val)
Set the mpirun command. It must be a list of strings (you can use string.split() if you have a
single, space-separated string).

store()
Store the computer in the DB.

204 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Differently from Nodes, a computer can be re-stored if its properties are to be changed (e.g. a
new mpirun command, etc.)

uuid
Return the UUID in the DB.

validate()
Check if the attributes and files retrieved from the DB are valid. Raise a ValidationError if some-
thing is wrong.

Must be able to work even before storing: therefore, use the get_attr and similar methods that
automatically read either from the DB or from the internal attribute cache.

For the base class, this is always valid. Subclasses will reimplement this. In the subclass, always
call the super().validate() method first!

Node
class aiida.orm.implementation.general.node.AbstractNode(**kwargs)

Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store(). Af-
ter the call to store(), in general attributes cannot be changed, except for those listed in the
self._updatable_attributes tuple (empty for this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) extras can be modified and in this case they are directly
set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

__init__(**kwargs)
Initialize the object Node.

Parameters uuid (optional) – if present, the Node with given uuid is loaded from
the database. (It is not possible to assign a uuid to a new Node.)

add_comment(content, user=None)
Add a new comment.

Parameters content – string with comment

add_link_from(src, label=None, link_type=<LinkType.UNSPECIFIED: ‘unspecified’>)
Add a link to the current node from the ‘src’ node. Both nodes must be a Node instance (or
a subclass of Node) :note: In subclasses, change only this. Moreover, remember to call the
super() method in order to properly use the caching logic!

Parameters

• src – the source object

• label (str) – the name of the label to set the link from src. Default =
None.

• link_type – The type of link, must be one of the enum values from
LinkType

add_path(src_abs, dst_path)
Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders
will be created.

Copy to a cache directory if the entry has not been saved yet.
Parameters

• src_abs (str) – the absolute path of the file to copy.

3.1. Developer’s guide 205

AiiDA documentation, Release 0.7.0

• dst_filename (str) – the (relative) path on which to copy.

Todo in the future, add an add_attachment() that has the same meaning of a extras
file. Decide also how to store. If in two separate subfolders, remember to reset
the limit.

attrs()
Returns the keys of the attributes.

Returns a list of strings

copy()
Return a copy of the current object to work with, not stored yet.

This is a completely new entry in the DB, with its own UUID. Works both on stored instances
and with not-stored ones.

Copies files and attributes, but not the extras. Does not store the Node to allow modification of
attributes.

Returns an object copy

ctime
Return the creation time of the node.

dbnode
Returns the corresponding DbNode object.

del_extra(key)
Delete a extra, acting directly on the DB! The action is immediately performed on the DB. Since
extras can be added only after storing the node, this function is meaningful to be called only
after the .store() method.

Parameters key (str) – key name

Raise AttributeError: if key starts with underscore

Raise ModificationNotAllowed: if the node is not stored yet

description
Get the description of the node.

Returns a string

extras()
Get the keys of the extras.

Returns a list of strings

folder
Get the folder associated with the node, whether it is in the temporary or the permanent reposi-
tory.

Returns the RepositoryFolder object.

get_abs_path(path=None, section=None)
Get the absolute path to the folder associated with the Node in the AiiDA repository.

Parameters

• path (str) – the name of the subfolder inside the section. If None returns
the abspath of the folder. Default = None.

• section – the name of the subfolder (‘path’ by default).

Returns a string with the absolute path
For the moment works only for one kind of files, ‘path’ (internal files)

get_attr(key, default=())
Get the attribute.

206 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Parameters

• key – name of the attribute

• default (optional) – if no attribute key is found, returns default

Returns attribute value

Raises AttributeError – If no attribute is found and there is no default

get_attrs()
Return a dictionary with all attributes of this node.

get_comments(pk=None)
Return a sorted list of comment values, one for each comment associated to the node.

Parameters pk – integer or list of integers. If it is specified, returns the comment
values with desired pks. (pk refers to DbComment.pk)

Returns the list of comments, sorted by pk; each element of the list is a dictionary,
containing (pk, email, ctime, mtime, content)

get_computer()
Get the computer associated to the node.

Returns the Computer object or None.

get_extra(key, *args)
Get the value of a extras, reading directly from the DB! Since extras can be added only after
storing the node, this function is meaningful to be called only after the .store() method.

Parameters

• key (str) – key name

• value (optional) – if no attribute key is found, returns value

Returns the key value

Raises ValueError – If more than two arguments are passed to get_extra

get_extras()
Get the value of extras, reading directly from the DB! Since extras can be added only after
storing the node, this function is meaningful to be called only after the .store() method.

Returns the dictionary of extras ({} if no extras)

get_folder_list(subfolder=’.’)
Get the the list of files/directory in the repository of the object.

Parameters subfolder (str,optional) – get the list of a subfolder

Returns a list of strings.

get_inputs(node_type=None, also_labels=False, only_in_db=False, link_type=None)
Return a list of nodes that enter (directly) in this node

Parameters

• node_type – If specified, should be a class, and it filters only elements
of that specific type (or a subclass of ‘type’)

• also_labels – If False (default) only return a list of input nodes. If True,
return a list of tuples, where each tuple has the following format: (‘label’,
Node), with ‘label’ the link label, and Node a Node instance or subclass

• only_in_db – Return only the inputs that are in the database, ignoring
those that are in the local cache. Otherwise, return all links.

3.1. Developer’s guide 207

AiiDA documentation, Release 0.7.0

• link_type – Only get inputs of this link type, if None then returns all
inputs of all link types.

get_inputs_dict(only_in_db=False, link_type=None)
Return a dictionary where the key is the label of the input link, and the value is the input node.

Parameters

• only_in_db – If true only get stored links, not cached

• link_type – Only get inputs of this link type, if None then returns all
inputs of all link types.

Returns a dictionary {label:object}

get_outputs(type=None, also_labels=False, link_type=None)
Return a list of nodes that exit (directly) from this node

Parameters

• type – if specified, should be a class, and it filters only elements of that
specific type (or a subclass of ‘type’)

• also_labels – if False (default) only return a list of input nodes. If True,
return a list of tuples, where each tuple has the following format: (‘label’,
Node), with ‘label’ the link label, and Node a Node instance or subclass

get_outputs_dict(link_type=None)
Return a dictionary where the key is the label of the output link, and the value is the input node.
As some Nodes (Datas in particular) can have more than one output with the same label, all
keys have the name of the link with appended the pk of the node in output. The key without pk
appended corresponds to the oldest node.

Returns a dictionary {linkname:object}

classmethod get_subclass_from_pk(pk)
Get a node object from the pk, with the proper subclass of Node. (integer primary key used in
this database), but loading the proper subclass where appropriate.

Parameters pk – a string with the pk of the object to be loaded.

Returns the object of the proper subclass.

Raise NotExistent: if there is no entry of the desired object kind with the given pk.

classmethod get_subclass_from_uuid(uuid)
Get a node object from the uuid, with the proper subclass of Node. (if Node(uuid=...) is called,
only the Node class is loaded).

Parameters uuid – a string with the uuid of the object to be loaded.

Returns the object of the proper subclass.

Raise NotExistent: if there is no entry of the desired object kind with the given uuid.

get_user()
Get the user.

Returns a Django DbUser model object

has_children
Property to understand if children are attached to the node :return: a boolean

has_parents
Property to understand if parents are attached to the node :return: a boolean

id
Returns the principal key (the ID) as an integer, or None if the node was not stored

yet

208 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

inp
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by
means of the linkname. Example: B = A.inp.parameters: returns the object (B), with link from B
to A, with linkname parameters C= A.inp: returns an InputManager, an object that is meant to
be accessed as the previous example

iterattrs()
Iterator over the attributes, returning tuples (key, value)

Todo optimize! At the moment, the call is very slow because it is also calling
attr.getvalue() for each attribute, that has to perform complicated queries to
rebuild the object.

Parameters also_updatable (bool) – if False, does not iterate over attributes that
are updatable

iterextras()
Iterator over the extras, returning tuples (key, value)

Todo verify that I am not creating a list internally

label
Get the label of the node.

Returns a string.

logger
Get the logger of the Node object.

Returns Logger object

mtime
Return the modification time of the node.

out
Traverse the graph of the database. Returns a databaseobject, linked to the current node, by
means of the linkname. Example: B = A.out.results: Returns the object B, with link from A to B,
with linkname parameters

pk
Returns the principal key (the ID) as an integer, or None if the node was not stored

yet

classmethod query(*args, **kwargs)
Map to the aiidaobjects manager of the DbNode, that returns Node objects (or their subclasses)
instead of DbNode entities.

TODO: VERY IMPORTANT: the recognition of a subclass from the type # does not work if the
modules defining the subclasses are not # put in subfolders. # In the future, fix it either to make
a cache and to store the # full dependency tree, or save also the path.

querybuild(*args, **kwargs)
Instantiates and :returns: a QueryBuilder instance.

The QueryBuilder’s path has one vertice so far, namely this class. Additional parameters (e.g.
filters or a label), can be passes as keyword arguments.

Parameters

• label – Label to give

• filters – filters to apply

• project – projections
This class is a comboclass (see combomethod()) therefore the method can be called as class
or instance method. If called as an instance method, adds a filter on the id.

3.1. Developer’s guide 209

AiiDA documentation, Release 0.7.0

remove_path(path)
Remove a file or directory from the repository directory. Can be called only before storing.

Parameters path (str) – relative path to file/directory.

set(**kwargs)
For each k=v pair passed as kwargs, call the corresponding set_k(v) method (e.g., calling
self.set(property=5, mass=2) will call self.set_property(5) and self.set_mass(2). Useful espe-
cially in the __init__.

Note it uses the _set_incompatibilities list of the class to check that we are not setting
methods that cannot be set at the same time. _set_incompatibilities must be
a list of tuples, and each tuple specifies the elements that cannot be set at the
same time. For instance, if _set_incompatibilities = [(‘property’, ‘mass’)], then
the call self.set(property=5, mass=2) will raise a ValueError. If a tuple has more
than two values, it raises ValueError if all keys are provided at the same time,
but it does not give any error if at least one of the keys is not present.

Note If one element of _set_incompatibilities is a tuple with only one element, this
element will not be settable using this function (and in particular,

Raises ValueError – if the corresponding set_k method does not exist in self, or if
the methods cannot be set at the same time.

set_computer(computer)
Set the computer to be used by the node.

Note that the computer makes sense only for some nodes: Calculation, RemoteData, ...
Parameters computer – the computer object

set_extra(key, value, exclusive=False)
Immediately sets an extra of a calculation, in the DB! No .store() to be called. Can be used only
after saving.

Parameters

• key (string) – key name

• value – key value

• exclusive – (default=False). If exclusive is True, it raises a Unique-
nessError if an Extra with the same name already exists in the DB (useful
e.g. to “lock” a node and avoid to run multiple times the same computation
on it).

Raises UniquenessError – if extra already exists and exclusive is True.

set_extras(the_dict)
Immediately sets several extras of a calculation, in the DB! No .store() to be called. Can be used
only after saving.

Parameters the_dict – a dictionary of key:value to be set as extras

store(with_transaction=True)
Store a new node in the DB, also saving its repository directory and attributes.

After being called attributes cannot be changed anymore! Instead, extras can be changed only
AFTER calling this store() function.

Note After successful storage, those links that are in the cache, and for which also
the parent node is already stored, will be automatically stored. The others will
remain unstored.

Parameters with_transaction – if False, no transaction is used. This is meant to
be used ONLY if the outer calling function has already a transaction open!

210 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

store_all(with_transaction=True)
Store the node, together with all input links, if cached, and also the linked nodes, if they were
not stored yet.

Parameters with_transaction – if False, no transaction is used. This is meant to
be used ONLY if the outer calling function has already a transaction open!

uuid
Returns a string with the uuid

class aiida.orm.implementation.general.node.AttributeManager(node)
An object used internally to return the attributes as a dictionary.

Note Important! It cannot be used to change variables, just to read them. To change
values (of unstored nodes), use the proper Node methods.

__init__(node)
Parameters node – the node object.

class aiida.orm.implementation.general.node.NodeInputManager(node)
To document

__init__(node)
Parameters node – the node object.

class aiida.orm.implementation.general.node.NodeOutputManager(node)
To document

__init__(node)
Parameters node – the node object.

Workflow
class aiida.orm.implementation.general.workflow.AbstractWorkflow(**kwargs)

Base class to represent a workflow. This is the superclass of any workflow implementations, and
provides all the methods necessary to interact with the database.

The typical use case are workflow stored in the aiida.workflow packages, that are initiated either by
the user in the shell or by some scripts, and that are monitored by the aiida daemon.

Workflow can have steps, and each step must contain some calculations to be executed. At the end
of the step’s calculations the workflow is reloaded in memory and the next methods is called.

add_attribute(_name, _value)
Add one attributes to the Workflow. If another attribute is present with the same name it will be
overwritten. :param name: a string with the attribute name to store :param value: a storable
object to store

add_attributes(_params)
Add a set of attributes to the Workflow. If another attribute is present with the same name it will
be overwritten. :param name: a string with the attribute name to store :param value: a storable
object to store

add_path(src_abs, dst_path)
Copy a file or folder from a local file inside the repository directory. If there is a subpath, folders
will be created.

Copy to a cache directory if the entry has not been saved yet. src_abs: the absolute path of the
file to copy. dst_filename: the (relative) path on which to copy.

add_result(_name, _value)
Add one result to the Workflow. If another result is present with the same name it will be over-
written. :param name: a string with the result name to store :param value: a storable object to
store

3.1. Developer’s guide 211

AiiDA documentation, Release 0.7.0

add_results(_params)
Add a set of results to the Workflow. If another result is present with the same name it will be
overwritten. :param name: a string with the result name to store :param value: a storable object
to store

append_to_report(text)
Adds text to the Workflow report.

Note Once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent append_to_report method; now instead this is not the case
anymore

attach_calculation(calc)
Adds a calculation to the caller step in the database. This is a lazy call, no calculations will
be launched until the next method gets called. For a step to be completed all the calculations
linked have to be in RETRIEVED state, after which the next method gets called from the workflow
manager. :param calc: a JobCalculation object :raise: AiidaException: in case the input is not
of JobCalculation type

attach_workflow(sub_wf)
Adds a workflow to the caller step in the database. This is a lazy call, no workflow will be started
until the next method gets called. For a step to be completed all the workflows linked have
to be in FINISHED state, after which the next method gets called from the workflow manager.
:param next_method: a Workflow object

clear_report()
Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this
method calls the parent clear_report method.

current_folder
Get the current repository folder, whether the temporary or the permanent.

Returns the RepositoryFolder object.

dbworkflowinstance
Get the DbWorkflow object stored in the super class.

Returns DbWorkflow object from the database

description
Get the description of the workflow.

Returns a string

exit()
This is the method to call in next to finish the Workflow. When exit is the next method, and no
errors are found, the Workflow is set to FINISHED and removed from the execution manager
duties.

get_abs_path(path, section=None)
TODO: For the moment works only for one kind of files, ‘path’ (internal files)

get_all_calcs(calc_class=<class ‘aiida.orm.implementation.django.calculation.job.JobCalculation’>,
calc_state=None, depth=15)

Get all calculations connected with this workflow and all its subworflows up to a given depth.
The list of calculations can be restricted to a given calculation type and state :param calc_class:
the calculation class to which the calculations should belong (default: JobCalculation)

Parameters

• calc_state – a specific state to filter the calculations to retrieve

• depth – the maximum depth level the recursion on sub-workflows will
try to reach (0 means we stay at the step level and don’t go into sub-

212 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

workflows, 1 means we go down to one step level of the sub-workflows,
etc.)

Returns a list of JobCalculation objects

get_attribute(_name)
Get one Workflow attribute :param name: a string with the attribute name to retrieve :return: a
dictionary of storable objects

get_attributes()
Get the Workflow attributes :return: a dictionary of storable objects

get_folder_list(subfolder=’.’)
Get the the list of files/directory in the repository of the object.

Parameters subfolder (str,optional) – get the list of a subfolder

Returns a list of strings.

get_parameter(_name)
Get one Workflow paramenter :param name: a string with the parameters name to retrieve
:return: a dictionary of storable objects

get_parameters()
Get the Workflow paramenters :return: a dictionary of storable objects

get_report()
Return the Workflow report.

Note once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent get_report method. This is not the case anymore.

Returns a list of strings

get_result(_name)
Get one Workflow result :param name: a string with the result name to retrieve :return: a dictio-
nary of storable objects

get_results()
Get the Workflow results :return: a dictionary of storable objects

get_state()
Get the Workflow’s state :return: a state from wf_states in aiida.common.datastructures

get_step(step_method)
Retrieves by name a step from the Workflow. :param step_method: a string with the name of
the step to retrieve or a method :raise: ObjectDoesNotExist: if there is no step with the specific
name. :return: a DbWorkflowStep object.

get_step_calculations(step_method, calc_state=None)
Retrieves all the calculations connected to a specific step in the database. If the step is not exis-
tent it returns None, useful for simpler grammatic in the workflow definition. :param next_method:
a Workflow step (decorated) method :param calc_state: a specific state to filter the calculations
to retrieve :return: a list of JobCalculations objects

get_step_workflows(step_method)
Retrieves all the workflows connected to a specific step in the database. If the step is not existent
it returns None, useful for simpler grammatic in the workflow definition. :param next_method: a
Workflow step (decorated) method

get_steps(state=None)
Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list to
a specific step’s state. :param state: a state from wf_states in aiida.common.datastructures
:return: a list of DbWorkflowStep objects.

3.1. Developer’s guide 213

AiiDA documentation, Release 0.7.0

classmethod get_subclass_from_dbnode(wf_db)
Loads the workflow object and reaoads the python script in memory with the importlib library,
the main class is searched and then loaded. :param wf_db: a specific DbWorkflowNode object
representing the Workflow :return: a Workflow subclass from the specific source code

classmethod get_subclass_from_pk(pk)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input pk.
:param pk: a primary key index for the DbWorkflowNode :return: a Workflow subclass from the
specific source code

classmethod get_subclass_from_uuid(uuid)
Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from the input uuid.
:param uuid: a uuid for the DbWorkflowNode :return: a Workflow subclass from the specific
source code

get_temp_folder()
Get the folder of the Node in the temporary repository.

Returns a SandboxFolder object mapping the node in the repository.

has_failed()
Returns True is the Workflow’s state is ERROR

has_finished_ok()
Returns True is the Workflow’s state is FINISHED

has_step(step_method)
Return if the Workflow has a step with a specific name. :param step_method: a string with the
name of the step to retrieve or a method

info()
Returns an array with all the informations about the modules, file, class to locate the workflow
source code

is_new()
Returns True is the Workflow’s state is CREATED

is_running()
Returns True is the Workflow’s state is RUNNING

is_subworkflow()
Return True is this is a subworkflow (i.e., if it has a parent), False otherwise.

kill(verbose=False)
Stop the Workflow execution and change its state to FINISHED.

This method calls the kill method for each Calculation and each subworkflow linked to each
RUNNING step.

Parameters verbose – True to print the pk of each subworkflow killed

Raises InvalidOperation – if some calculations cannot be killed (the workflow
will be also put to SLEEP so that it can be killed later on)

kill_step_calculations(step)
Calls the kill method for each Calculation linked to the step method passed as argument.
:param step: a Workflow step (decorated) method

label
Get the label of the workflow.

Returns a string

logger
Get the logger of the Workflow object, so that it also logs to the DB.

214 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ em-
bedded

next(next_method)
Adds the a new step to be called after the completion of the caller method’s calculations and
subworkflows.

This method must be called inside a Workflow step, otherwise an error is thrown. The code finds
the caller method and stores in the database the input next_method as the next method to be
called. At this point no execution in made, only configuration updates in the database.

If during the execution of the caller method the user launched calculations or subworkflows,
this method will add them to the database, making them available to the workflow manager to
be launched. In fact all the calculation and subworkflow submissions are lazy method, really
executed by this call.

Parameters next_method – a Workflow step method to execute after the caller
method

Raise AiidaException: in case the caller method cannot be found or validated

Returns the wrapped methods, decorated with the correct step name

pk
Returns the DbWorkflow pk

classmethod query(*args, **kwargs)
Map to the aiidaobjects manager of the DbWorkflow, that returns Workflow objects instead of
DbWorkflow entities.

remove_path(path)
Remove a file or directory from the repository directory.

Can be called only before storing.

repo_folder
Get the permanent repository folder. Use preferentially the current_folder method.

Returns the permanent RepositoryFolder object

set_params(params, force=False)
Adds parameters to the Workflow that are both stored and used every time the workflow engine
re-initialize the specific workflow to launch the new methods.

set_state(state)
Set the Workflow’s state :param name: a state from wf_states in aiida.common.datastructures

sleep()
Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated
method.

classmethod step(fun)
This method is used as a decorator for workflow steps, and handles the method’s execution, the
state updates and the eventual errors.

The decorator generates a wrapper around the input function to execute, adding with the correct
step name and a utility variable to make it distinguishable from non-step methods.

When a step is launched, the wrapper tries to run the function in case of error the state of
the workflow is moved to ERROR and the traceback is stored in the report. In general the
input method is a step obtained from the Workflow object, and the decorator simply handles
a controlled execution of the step allowing the code not to break in case of error in the step’s
source code.

3.1. Developer’s guide 215

AiiDA documentation, Release 0.7.0

The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state,
in this case all the calculations and subworkflows of the step are killed and a new execution is
allowed.

Parameters fun – a methods to wrap, making it a Workflow step

Raise AiidaException: in case the workflow state doesn’t allow the execution

Returns the wrapped methods,

store()
Stores the DbWorkflow object data in the database

uuid
Returns the DbWorkflow uuid

exception aiida.orm.implementation.general.workflow.WorkflowKillError(*args,
**kwargs)

An exception raised when a workflow failed to be killed. The error_message_list attribute contains the
error messages from all the subworkflows.

exception aiida.orm.implementation.general.workflow.WorkflowUnkillable
Raised when a workflow cannot be killed because it is in the FINISHED or ERROR state.

aiida.orm.implementation.general.workflow.get_workflow_info(w, tab_size=2,
short=False,
pre_string=’‘,
depth=16)

Return a string with all the information regarding the given workflow and all its calculations and sub-
workflows. This is a recursive function (to print all subworkflows info as well).

Parameters

• w – a DbWorkflow instance

• tab_size – number of spaces to use for the indentation

• short – if True, provide a shorter output (only total number of calculations,
rather than the state of each calculation)

• pre_string – string appended at the beginning of each line

• depth – the maximum depth level the recursion on sub-workflows will try to
reach (0 means we stay at the step level and don’t go into sub-workflows, 1
means we go down to one step level of the sub-workflows, etc.)

Return lines list of lines to be outputed

aiida.orm.implementation.general.workflow.kill_all()
Kills all the workflows not in FINISHED state running the kill_from_uuid method in a loop.

Parameters uuid – the UUID of the workflow to kill

aiida.orm.implementation.general.workflow.kill_from_pk()
Kills a workflow from its pk.

Parameters pk – the Pkof the workflow to kill

Code
class aiida.orm.implementation.general.code.AbstractCode(**kwargs)

A code entity. It can either be ‘local’, or ‘remote’.
•Local code: it is a collection of files/dirs (added using the add_path() method), where one file is
flagged as executable (using the set_local_executable() method).

•Remote code: it is a pair (remotecomputer, remotepath_of_executable) set using the
set_remote_computer_exec() method.

216 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

For both codes, one can set some code to be executed right before or right after the execution of the
code, using the set_preexec_code() and set_postexec_code() methods (e.g., the set_preexec_code()
can be used to load specific modules required for the code to be run).

can_run_on(computer)
Return True if this code can run on the given computer, False otherwise.

Local codes can run on any machine; remote codes can run only on the machine on which they
reside.

TODO: add filters to mask the remote machines on which a local code can run.

full_text_info
Return a (multiline) string with a human-readable detailed information on this computer.

classmethod get(label, computername=None, useremail=None)
Get a code from its label.

Parameters

• label – the code label

• computername – filter only codes on computers with this name

• useremail – filter only codes belonging to a user with this email

Raises

• NotExistent – if no matches are found

• MultipleObjectsError – if multiple matches are found. In this case
you may want to pass the additional parameters to filter the codes, or
relabel the codes.

get_append_text()
Return the postexec_code, or an empty string if no post-exec code was defined.

get_execname()
Return the executable string to be put in the script. For local codes, it is ./LO-
CAL_EXECUTABLE_NAME For remote codes, it is the absolute path to the executable.

classmethod get_from_string(code_string)
Get a Computer object with given identifier string, that can either be the numeric ID (pk), or the
label (if unique); the label can either be simply the label, or in the format label@machinename.
See the note below for details on the string detection algorithm.

Note: If a string that can be converted to an integer is given, the numeric ID is verified first
(therefore, is a code A with a label equal to the ID of another code B is present, code A cannot
be referenced by label). Similarly, the (leftmost) ‘@’ symbol is always used to split code and
computername. Therefore do not use ‘@’ in the code name if you want to use this function (‘@’
in the computer name are instead valid).

Parameters code_string – the code string identifying the code to load

Raises

• NotExistent – if no code identified by the given string is found

• MultipleObjectsError – if the string cannot identify uniquely a code

get_input_plugin_name()
Return the name of the default input plugin (or None if no input plugin was set.

3.1. Developer’s guide 217

mailto:label@machinename

AiiDA documentation, Release 0.7.0

get_prepend_text()
Return the code that will be put in the scheduler script before the execution, or an empty string
if no pre-exec code was defined.

is_local()
Return True if the code is ‘local’, False if it is ‘remote’ (see also documentation of the set_local
and set_remote functions).

classmethod list_for_plugin(plugin, labels=True)
Return a list of valid code strings for a given plugin.

Parameters

• plugin – The string of the plugin.

• labels – if True, return a list of code names, otherwise return the code
PKs (integers).

Returns a list of string, with the code names if labels is True, otherwise a list of
integers with the code PKs.

new_calc(*args, **kwargs)
Create and return a new Calculation object (unstored) with the correct plugin subclass, as ob-
tained by the self.get_input_plugin_name() method.

Parameters are passed to the calculation __init__ method.
Note it also directly creates the link to this code (that will of course be cached, since

the new node is not stored yet).

Raises

• MissingPluginError – if the specified plugin does not exist.

• ValueError – if no plugin was specified.

set_append_text(code)
Pass a string of code that will be put in the scheduler script after the execution of the code.

set_files(files)
Given a list of filenames (or a single filename string), add it to the path (all at level zero, i.e.
without folders). Therefore, be careful for files with the same name!

Todo decide whether to check if the Code must be a local executable to be able to
call this function.

set_input_plugin_name(input_plugin)
Set the name of the default input plugin, to be used for the automatic generation of a new
calculation.

set_local_executable(exec_name)
Set the filename of the local executable. Implicitly set the code as local.

set_prepend_text(code)
Pass a string of code that will be put in the scheduler script before the execution of the code.

set_remote_computer_exec(remote_computer_exec)
Set the code as remote, and pass the computer on which it resides and the absolute path on
that computer.
Args:

remote_computer_exec: a tuple (computer, remote_exec_path), where computer is a ai-
ida.orm.Computer or an aiida.backends.djsite.db.models.DbComputer object, and
remote_exec_path is the absolute path of the main executable on remote computer.

218 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

aiida.orm.implementation.general.code.delete_code(code)
Delete a code from the DB. Check before that there are no output nodes.

NOTE! Not thread safe... Do not use with many users accessing the DB at the same time.

Implemented as a function on purpose, otherwise complicated logic would be needed to set the inter-
nal state of the object after calling computer.delete().

ORM documentation: Data
class aiida.orm.data.Data(**kwargs)

This class is base class for all data objects.

Specifications of the Data class: AiiDA Data objects are subclasses of Node and should have

Multiple inheritance must be suppoted, i.e. Data should have methods for querying and be able to
inherit other library objects such as ASE for structures.

Architecture note: The code plugin is responsible for converting a raw data object produced by code
to AiiDA standard object format. The data object then validates itself according to its method. This is
done independently in order to allow cross-validation of plugins.

convert(object_format=None, *args)
Convert the AiiDA StructureData into another python object

Parameters object_format – Specify the output format

export(fname, fileformat=None)
Save a Data object to a file.

Parameters

• fname – string with file name. Can be an absolute or relative path.

• fileformat – kind of format to use for the export. If not present, it will
try to use the extension of the file name.

importfile(fname, fileformat=None)
Populate a Data object from a file.

Parameters

• fname – string with file name. Can be an absolute or relative path.

• fileformat – kind of format to use for the export. If not present, it will
try to use the extension of the file name.

importstring(inputstring, fileformat, **kwargs)
Converts a Data object to other text format.

Parameters fileformat – a string (the extension) to describe the file format.

Returns a string with the structure description.

set_source(source)
Sets the dictionary describing the source of Data object.

source
Gets the dictionary describing the source of Data object. Possible fields:

•db_name: name of the source database.
•db_uri: URI of the source database.
•uri: URI of the object’s source. Should be a permanent link.
•id: object’s source identifier in the source database.
•version: version of the object’s source.
•extras: a dictionary with other fields for source description.
•source_md5: MD5 checksum of object’s source.

3.1. Developer’s guide 219

AiiDA documentation, Release 0.7.0

•description: human-readable free form description of the object’s source.
•license: a string with a type of license.

Note: some limitations for setting the data source exist, see _validate().

Returns dictionary describing the source of Data object.

Structure This module defines the classes for structures and all related functions to operate on them.

class aiida.orm.data.structure.Kind(**kwargs)
This class contains the information about the species (kinds) of the system.

It can be a single atom, or an alloy, or even contain vacancies.

__init__(**kwargs)
Create a site. One can either pass:

Parameters

• raw – the raw python dictionary that will be converted to a Kind object.

• ase – an ase Atom object

• kind – a Kind object (to get a copy)
Or alternatively the following parameters:

Parameters

• symbols – a single string for the symbol of this site, or a list of symbol
strings

• (optional) (mass) – the weights for each atomic species of this site. If
only a single symbol is provided, then this value is optional and the weight
is set to 1.

• (optional) – the mass for this site in atomic mass units. If not provided,
the mass is set by the self.reset_mass() function.

• name – a string that uniquely identifies the kind, and that is used to identify
the sites.

compare_with(other_kind)
Compare with another Kind object to check if they are different.

Note: This does NOT check the ‘type’ attribute. Instead, it compares (with reasonable thresh-
olds, where applicable): the mass, and the list of symbols and of weights. Moreover, it compares
the _internal_tag, if defined (at the moment, defined automatically only when importing the
Kind from ASE, if the atom has a non-zero tag). Note that the _internal_tag is only used while
the class is loaded, but is not persisted on the database.

Returns A tuple with two elements. The first one is True if the two sites are ‘equiva-
lent’ (same mass, symbols and weights), False otherwise. The second element
of the tuple is a string, which is either None (if the first element was True), or
contains a ‘human-readable’ description of the first difference encountered be-
tween the two sites.

get_raw()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is
actually used to store each kind of the structure in the DB.

Returns a python dictionary with the kind.

220 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

get_symbols_string()
Return a string that tries to match as good as possible the symbols of this kind. If there is only
one symbol (no alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups
the full string in curly brackets, and try to write also the composition (with 2 precision only).

Note: If there is a vacancy (sum of weights<1), we indicate it with the X symbol followed by
1-sum(weights) (still with 2 digits precision, so it can be 0.00)

Note: Note the difference with respect to the symbols and the symbol properties!

has_vacancies()
Returns True if the sum of the weights is less than one. It uses the internal variable
_sum_threshold as a threshold.

Returns a boolean

is_alloy()
To understand if kind is an alloy.

Returns True if the kind has more than one element (i.e., len(self.symbols) != 1),
False otherwise.

mass
The mass of this species kind.

Returns a float

name
Return the name of this kind. The name of a kind is used to identify the species of a site.

Returns a string

reset_mass()
Reset the mass to the automatic calculated value.

The mass can be set manually; by default, if not provided, it is the mass of the constituent
atoms, weighted with their weight (after the weight has been normalized to one to take correctly
into account vacancies).

This function uses the internal _symbols and _weights values and thus assumes that the values
are validated.

It sets the mass to None if the sum of weights is zero.

set_automatic_kind_name(tag=None)
Set the type to a string obtained with the symbols appended one after the other, without spaces,
in alphabetical order; if the site has a vacancy, a X is appended at the end too.

set_symbols_and_weights(symbols, weights)
Set the chemical symbols and the weights for the site.

Note: Note that the kind name remains unchanged.

symbol
If the kind has only one symbol, return it; otherwise, raise a ValueError.

symbols
List of symbols for this site. If the site is a single atom, pass a list of one element only, or simply
the string for that atom. For alloys, a list of elements.

3.1. Developer’s guide 221

AiiDA documentation, Release 0.7.0

Note: Note that if you change the list of symbols, the kind name remains unchanged.

weights
Weights for this species kind. Refer also to :func:validate_symbols_tuple for the validation rules
on the weights.

class aiida.orm.data.structure.Site(**kwargs)
This class contains the information about a given site of the system.

It can be a single atom, or an alloy, or even contain vacancies.

__init__(**kwargs)
Create a site.

Parameters

• kind_name – a string that identifies the kind (species) of this site. This
has to be found in the list of kinds of the StructureData object. Validation
will be done at the StructureData level.

• position – the absolute position (three floats) in angstrom

get_ase(kinds)
Return a ase.Atom object for this site.

Parameters kinds – the list of kinds from the StructureData object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase()
routine).

get_raw()
Return the raw version of the site, mapped to a suitable dictionary. This is the format that is
actually used to store each site of the structure in the DB.

Returns a python dictionary with the site.

kind_name
Return the kind name of this site (a string).

The type of a site is used to decide whether two sites are identical (same mass, symbols,
weights, ...) or not.

position
Return the position of this site in absolute coordinates, in angstrom.

class aiida.orm.data.structure.StructureData(**kwargs)
This class contains the information about a given structure, i.e. a collection of sites together with a
cell, the boundary conditions (whether they are periodic or not) and other related useful information.

append_atom(**kwargs)
Append an atom to the Structure, taking care of creating the corresponding kind.

Parameters

• ase – the ase Atom object from which we want to create a new atom (if
present, this must be the only parameter)

• position – the position of the atom (three numbers in angstrom)

• symbols, weights, name (..) – any further parameter is passed to
the constructor of the Kind object. For the ‘name’ parameter, see the note
below.

222 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Note: Note on the ‘name’ parameter (that is, the name of the kind):
•if specified, no checks are done on existing species. Simply, a new kind with that name
is created. If there is a name clash, a check is done: if the kinds are identical, no error
is issued; otherwise, an error is issued because you are trying to store two different kinds
with the same name.

•if not specified, the name is automatically generated. Before adding the kind, a check is
done. If other species with the same properties already exist, no new kinds are created, but
the site is added to the existing (identical) kind. (Actually, the first kind that is encountered).
Otherwise, the name is made unique first, by adding to the string containing the list of
chemical symbols a number starting from 1, until an unique name is found

Note: checks of equality of species are done using the compare_with() method.

append_kind(kind)
Append a kind to the StructureData. It makes a copy of the kind.

Parameters kind – the site to append, must be a Kind object.

append_site(site)
Append a site to the StructureData. It makes a copy of the site.

Parameters site – the site to append. It must be a Site object.

cell
Returns the cell shape.

Returns a 3x3 list of lists.

cell_angles
Get the angles between the cell lattice vectors in degrees.

cell_lengths
Get the lengths of cell lattice vectors in angstroms.

clear_kinds()
Removes all kinds for the StructureData object.

Note: Also clear all sites!

clear_sites()
Removes all sites for the StructureData object.

get_ase()
Get the ASE object. Requires to be able to import ase.

Returns an ASE object corresponding to this StructureData object.

Note: If any site is an alloy or has vacancies, a ValueError is raised (from the site.get_ase()
routine).

get_cell_volume()
Returns the cell volume in Angstrom^3.

Returns a float.

get_composition()
Returns the chemical composition of this structure as a dictionary, where each key is the kind
symbol (e.g. H, Li, Ba), and each value is the number of occurences of that element in this

3.1. Developer’s guide 223

AiiDA documentation, Release 0.7.0

structure. For BaZrO3 it would return {‘Ba’:1, ‘Zr’:1, ‘O’:3}. No reduction with smallest common
divisor!

Returns a dictionary with the composition

get_formula(mode=’hill’, separator=’‘)
Return a string with the chemical formula.

Parameters

• mode – a string to specify how to generate the formula, can assume one
of the following values:

– ‘hill’ (default): count the number of atoms of each species,
then use Hill notation, i.e. alphabetical order with C and
H first if one or several C atom(s) is (are) present, e.g.
[’C’,’H’,’H’,’H’,’O’,’C’,’H’,’H’,’H’] will return
’C2H6O’ [’S’,’O’,’O’,’H’,’O’,’H’,’O’] will return
’H2O4S’ From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494
(1900)

– ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
[’C’,’H’,’H’,’H’,’O’,’C’,’H’,’H’,’H’,’O’,’O’,’O’]
will return ’CH3O2’

– ‘reduce’: group repeated symbols e.g. [’Ba’, ’Ti’, ’O’, ’O’,
’O’, ’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’, ’Ti’, ’Ti’,
’O’, ’O’, ’O’] will return ’BaTiO3BaTiO3BaTi2O3’

– ‘group’: will try to group as much as possible parts of the
formula e.g. [’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’, ’Ti’,
’O’, ’O’, ’O’, ’Ba’, ’Ti’, ’Ti’, ’O’, ’O’, ’O’] will
return ’(BaTiO3)2BaTi2O3’

– ‘count’: same as hill (i.e. one just counts the number of
atoms of each species) without the re-ordering (take the order of
the atomic sites), e.g. [’Ba’, ’Ti’, ’O’, ’O’, ’O’,’Ba’,
’Ti’, ’O’, ’O’, ’O’] will return ’Ba2Ti2O6’

– ‘count_compact’: same as count but the number of atoms for
each species is divided by the greatest common divisor of all
of them, e.g. [’Ba’, ’Ti’, ’O’, ’O’, ’O’,’Ba’, ’Ti’,
’O’, ’O’, ’O’] will return ’BaTiO3’

• separator – a string used to concatenate symbols. Default empty.

Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms
were appended by the user is used to group and/or order the symbols in the formula

get_kind(kind_name)
Return the kind object associated with the given kind name.

Parameters kind_name – String, the name of the kind you want to get

Returns The Kind object associated with the given kind_name, if a Kind with the
given name is present in the structure.

Raise ValueError if the kind_name is not present.

224 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

get_kind_names()
Return a list of kind names (in the same order of the self.kinds property, but return the
names rather than Kind objects)

Note: This is NOT necessarily a list of chemical symbols! Use get_symbols_set for chemical
symbols

Returns a list of strings.

get_pymatgen()
Get pymatgen object. Returns Structure for structures with periodic boundary conditions (in
three dimensions) and Molecule otherwise.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

get_pymatgen_molecule()
Get the pymatgen Molecule object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

Returns a pymatgen Molecule object corresponding to this StructureData object.

get_pymatgen_structure()
Get the pymatgen Structure object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

Returns a pymatgen Structure object corresponding to this StructureData object.

Raises ValueError – if periodic boundary conditions do not hold in at least one
dimension of real space.

get_site_kindnames()
Return a list with length equal to the number of sites of this structure, where each element of
the list is the kind name of the corresponding site.

Note: This is NOT necessarily a list of chemical symbols! Use [
self.get_kind(s.kind_name).get_symbols_string() for s in self.sites]
for chemical symbols

Returns a list of strings

get_symbols_set()
Return a set containing the names of all elements involved in this structure (i.e., for it joins the
list of symbols for each kind k in the structure).

Returns a set of strings of element names.

has_vacancies()
To understand if there are vacancies in the structure.

3.1. Developer’s guide 225

AiiDA documentation, Release 0.7.0

Returns a boolean, True if at least one kind has a vacancy

is_alloy()
To understand if there are alloys in the structure.

Returns a boolean, True if at least one kind is an alloy

kinds
Returns a list of kinds.

pbc
Get the periodic boundary conditions.

Returns a tuple of three booleans, each one tells if there are periodic boundary
conditions for the i-th real-space direction (i=1,2,3)

reset_cell(new_cell)
Reset the cell of a structure not yet stored to a new value.

Parameters new_cell – list specifying the cell vectors

Raises ModificationNotAllowed: if object is already stored

reset_sites_positions(new_positions, conserve_particle=True)
Replace all the Site positions attached to the Structure

Parameters

• new_positions – list of (3D) positions for every sites.

• conserve_particle – if True, allows the possibility of removing a site.
currently not implemented.

Raises

• ModificationNotAllowed – if object is stored already

• ValueError – if positions are invalid

Note: it is assumed that the order of the new_positions is given in the same order of the one
it’s substituting, i.e. the kind of the site will not be checked.

set_ase(aseatoms)
Load the structure from a ASE object

set_pymatgen(obj, **kwargs)
Load the structure from a pymatgen object.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

set_pymatgen_molecule(mol, margin=5)
Load the structure from a pymatgen Molecule object.

Parameters margin – the margin to be added in all directions of the bounding box
of the molecule.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

set_pymatgen_structure(struct)
Load the structure from a pymatgen Structure object.

226 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Note: periodic boundary conditions are set to True in all three directions.

Note: Requires the pymatgen module (version >= 3.0.13, usage of earlier versions may cause
errors).

sites
Returns a list of sites.

aiida.orm.data.structure.ase_refine_cell(aseatoms, **kwargs)
Detect the symmetry of the structure, remove symmetric atoms and refine unit cell.

Parameters

• aseatoms – an ase.atoms.Atoms instance

• symprec – symmetry precision, used by pyspglib
Return newase refined cell with reduced set of atoms
Return symmetry a dictionary describing the symmetry space group

aiida.orm.data.structure.calc_cell_volume(cell)
Calculates the volume of a cell given the three lattice vectors.

It is calculated as cell[0] . (cell[1] x cell[2]), where . represents a dot product and x a cross product.
Parameters cell – the cell vectors; the must be a 3x3 list of lists of floats, no other checks

are done.
Returns the cell volume.

aiida.orm.data.structure.get_formula(symbol_list, mode=’hill’, separator=’‘)
Return a string with the chemical formula.

Parameters

• symbol_list – a list of symbols, e.g. [’H’,’H’,’O’]

• mode – a string to specify how to generate the formula, can assume one of the
following values:

– ‘hill’ (default): count the number of atoms of each species, then use Hill no-
tation, i.e. alphabetical order with C and H first if one or several C atom(s)
is (are) present, e.g. [’C’,’H’,’H’,’H’,’O’,’C’,’H’,’H’,’H’]
will return ’C2H6O’ [’S’,’O’,’O’,’H’,’O’,’H’,’O’] will return
’H2O4S’ From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

– ‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them,
e.g. [’C’,’H’,’H’,’H’,’O’,’C’,’H’,’H’,’H’,’O’,’O’,’O’]
will return ’CH3O2’

– ‘reduce’: group repeated symbols e.g. [’Ba’, ’Ti’, ’O’, ’O’,
’O’, ’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’, ’Ti’, ’Ti’,
’O’, ’O’, ’O’] will return ’BaTiO3BaTiO3BaTi2O3’

– ‘group’: will try to group as much as possible parts of the formula
e.g. [’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’, ’Ti’, ’O’,
’O’, ’O’, ’Ba’, ’Ti’, ’Ti’, ’O’, ’O’, ’O’] will return
’(BaTiO3)2BaTi2O3’

– ‘count’: same as hill (i.e. one just counts the number of atoms of
each species) without the re-ordering (take the order of the atomic

3.1. Developer’s guide 227

AiiDA documentation, Release 0.7.0

sites), e.g. [’Ba’, ’Ti’, ’O’, ’O’, ’O’,’Ba’, ’Ti’, ’O’,
’O’, ’O’] will return ’Ba2Ti2O6’

– ‘count_compact’: same as count but the number of atoms for each species
is divided by the greatest common divisor of all of them, e.g. [’Ba’,
’Ti’, ’O’, ’O’, ’O’,’Ba’, ’Ti’, ’O’, ’O’, ’O’] will return
’BaTiO3’

• separator – a string used to concatenate symbols. Default empty.
Returns a string with the formula

Note: in modes reduce, group, count and count_compact, the initial order in which the atoms were
appended by the user is used to group and/or order the symbols in the formula

aiida.orm.data.structure.get_formula_from_symbol_list(_list, separator=’‘)
Return a string with the formula obtained from the list of symbols. Examples: *
[[1,’Ba’],[1,’Ti’],[3,’O’]] will return ’BaTiO3’ * [[2, [[1, ’Ba’], [1, ’Ti’]]
]] will return ’(BaTi)2’

Parameters

• _list – a list of symbols and multiplicities as obtained from the function
group_symbols

• separator – a string used to concatenate symbols. Default empty.
Returns a string

aiida.orm.data.structure.get_formula_group(symbol_list, separator=’‘)
Return a string with the chemical formula from a list of chemical symbols. The formula is written in a
compact” way, i.e. trying to group as much as possible parts of the formula.

Note: it works for instance very well if structure was obtained from an ASE supercell.

Example of result: [’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’, ’Ti’, ’O’, ’O’, ’O’, ’Ba’,
’Ti’, ’Ti’, ’O’, ’O’, ’O’] will return ’(BaTiO3)2BaTi2O3’.

Parameters

• symbol_list – list of symbols (e.g. [’Ba’,’Ti’,’O’,’O’,’O’])

• separator – a string used to concatenate symbols. Default empty.
Returns a string with the chemical formula for the given structure.

aiida.orm.data.structure.get_pymatgen_version()
Returns string with pymatgen version, None if can not import.

aiida.orm.data.structure.get_structuredata_from_qeinput(filepath=None,
text=None)

Function that receives either :param filepath: the filepath storing or :param text: the string of a stan-
dard QE-input file. An instance of StructureData() is initialized with kinds, positions and cell as
defined in the input file. This function can deal with ibrav being set different from 0 and the cell being
defined with celldm(n) or A,B,C, cosAB etc.

aiida.orm.data.structure.get_symbols_string(symbols, weights)
Return a string that tries to match as good as possible the symbols and weights. If there is only
one symbol (no alloy) with 100% occupancy, just returns the symbol name. Otherwise, groups the
full string in curly brackets, and try to write also the composition (with 2 precision only). If (sum of
weights<1), we indicate it with the X symbol followed by 1-sum(weights) (still with 2 digits precision,
so it can be 0.00)

Parameters

228 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

• symbols – the symbols as obtained from <kind>._symbols

• weights – the weights as obtained from <kind>._weights

Note: Note the difference with respect to the symbols and the symbol properties!

aiida.orm.data.structure.get_valid_pbc(inputpbc)
Return a list of three booleans for the periodic boundary conditions, in a valid format from a generic
input.

Raises ValueError – if the format is not valid.

aiida.orm.data.structure.group_symbols(_list)
Group a list of symbols to a list containing the number of consecutive identical symbols, and the
symbol itself.

Examples:
•[’Ba’,’Ti’,’O’,’O’,’O’,’Ba’]will return [[1,’Ba’],[1,’Ti’],[3,’O’],[1,’Ba’]]
•[[[1,’Ba’],[1,’Ti’]],[[1,’Ba’],[1,’Ti’]]] will return [[2, [[1,
’Ba’], [1, ’Ti’]]]]

Parameters _list – a list of elements representing a chemical formula
Returns a list of length-2 lists of the form [multiplicity , element]

aiida.orm.data.structure.has_ase()
Returns True if the ase module can be imported, False otherwise.

aiida.orm.data.structure.has_pymatgen()
Returns True if the pymatgen module can be imported, False otherwise.

aiida.orm.data.structure.has_pyspglib()
Returns True if the pyspglib module can be imported, False otherwise.

aiida.orm.data.structure.has_vacancies(weights)
Returns True if the sum of the weights is less than one. It uses the internal variable _sum_threshold
as a threshold. :param weights: the weights :return: a boolean

aiida.orm.data.structure.is_ase_atoms(ase_atoms)
Check if the ase_atoms parameter is actually a ase.Atoms object.

Parameters ase_atoms – an object, expected to be an ase.Atoms.
Returns a boolean.

Requires the ability to import ase, by doing ‘import ase’.

aiida.orm.data.structure.is_valid_symbol(symbol)
Validates the chemical symbol name.

Returns True if the symbol is a valid chemical symbol (with correct capitalization), False
otherwise.

Recognized symbols are for elements from hydrogen (Z=1) to lawrencium (Z=103).

aiida.orm.data.structure.symop_fract_from_ortho(cell)
Creates a matrix for conversion from fractional to orthogonal coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell – array of cell parameters (three lengths and three angles)

aiida.orm.data.structure.symop_ortho_from_fract(cell)
Creates a matrix for conversion from orthogonal to fractional coordinates.

Taken from svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm, revision 850.
Parameters cell – array of cell parameters (three lengths and three angles)

3.1. Developer’s guide 229

AiiDA documentation, Release 0.7.0

aiida.orm.data.structure.validate_symbols_tuple(symbols_tuple)
Used to validate whether the chemical species are valid.

Parameters symbols_tuple – a tuple (or list) with the chemical symbols name.
Raises ValueError if any symbol in the tuple is not a valid chemical symbols (with correct

capitalization).
Refer also to the documentation of :func:is_valid_symbol

aiida.orm.data.structure.validate_weights_tuple(weights_tuple, threshold)
Validates the weight of the atomic kinds.

Raise ValueError if the weights_tuple is not valid.
Parameters

• weights_tuple – the tuple to validate. It must be a a tuple of floats (as
created by :func:_create_weights_tuple).

• threshold – a float number used as a threshold to check that the sum of the
weights is <= 1.

If the sum is less than one, it means that there are vacancies. Each element of the list must be >= 0,
and the sum must be <= 1.

Folder
class aiida.orm.data.folder.FolderData(**kwargs)

Stores a folder with subfolders and files.

No special attributes are set.

get_file_content(path)
Return the content of a path stored inside the folder as a string.

Raises NotExistent – if the path does not exist.

replace_with_folder(folder, overwrite=True)
Replace the data with another folder, always copying and not moving the original files.
Args: folder: the folder to copy from overwrite: if to overwrite the current content or not

Singlefile Implement subclass for a single file in the permanent repository files = [one_single_file] jsons =
{}

methods: * get_content * get_path * get_aiidaurl (?) * get_md5 * ...

To discuss: do we also need a simple directory class for full directories in the perm repo?

class aiida.orm.data.singlefile.SinglefileData(**kwargs)
Pass as input a file parameter with the (absolute) path of a file on the hard drive. It will get copied
inside the node.

Internally must have a single file, and stores as internal attribute the filename in the ‘filename’ attribute.

add_path(src_abs, dst_filename=None)
Add a single file

del_file(filename)
Remove a file from SingleFileData :param filename: name of the file stored in the DB

filename
Returns the name of the file stored

get_file_abs_path()
Return the absolute path to the file in the repository

230 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

set_file(filename)
Add a file to the singlefiledata :param filename: absolute path to the file

Upf This module manages the UPF pseudopotentials in the local repository.

class aiida.orm.data.upf.UpfData(**kwargs)
Function not yet documented.

classmethod from_md5(md5)
Return a list of all UPF pseudopotentials that match a given MD5 hash.

Note that the hash has to be stored in a _md5 attribute, otherwise the pseudo will not be found.

classmethod get_or_create(filename, use_first=False, store_upf=True)
Pass the same parameter of the init; if a file with the same md5 is found, that UpfData is returned.

Parameters

• filename – an absolute filename on disk

• use_first – if False (default), raise an exception if more than one poten-
tial is found. If it is True, instead, use the first available pseudopotential.

• store_upf (bool) – If false, the UpfData objects are not stored in the
database. default=True.

Return (upf, created) where upf is the UpfData object, and create is either True if the
object was created, or False if the object was retrieved from the DB.

get_upf_family_names()
Get the list of all upf family names to which the pseudo belongs

classmethod get_upf_group(group_name)
Return the UpfFamily group with the given name.

classmethod get_upf_groups(filter_elements=None, user=None)
Return all names of groups of type UpfFamily, possibly with some filters.

Parameters

• filter_elements – A string or a list of strings. If present, returns only
the groups that contains one Upf for every element present in the list.
Default=None, meaning that all families are returned.

• user – if None (default), return the groups for all users. If defined, it
should be either a DbUser instance, or a string for the username (that is,
the user email).

set_file(filename)
I pre-parse the file to store the attributes.

store(*args, **kwargs)
Store the node, reparsing the file so that the md5 and the element are correctly reset.

aiida.orm.data.upf.get_pseudos_from_structure(structure, family_name)
Given a family name (a UpfFamily group in the DB) and a AiiDA structure, return a dictionary associ-
ating each kind name with its UpfData object.

Raises

• MultipleObjectsError – if more than one UPF for the same element is
found in the group.

• NotExistent – if no UPF for an element in the group is found in the group.

3.1. Developer’s guide 231

AiiDA documentation, Release 0.7.0

aiida.orm.data.upf.parse_upf(fname, check_filename=True)
Try to get relevant information from the UPF. For the moment, only the element name. Note that even
UPF v.2 cannot be parsed with the XML minidom! (e.g. due to the & characters in the human-readable
section).

If check_filename is True, raise a ParsingError exception if the filename does not start with the element
name.

aiida.orm.data.upf.upload_upf_family(folder, group_name, group_description,
stop_if_existing=True)

Upload a set of UPF files in a given group.
Parameters

• folder – a path containing all UPF files to be added. Only files ending in .UPF
(case-insensitive) are considered.

• group_name – the name of the group to create. If it exists and is non-empty,
a UniquenessError is raised.

• group_description – a string to be set as the group description. Overwrites
previous descriptions, if the group was existing.

• stop_if_existing – if True, check for the md5 of the files and, if the file
already exists in the DB, raises a MultipleObjectsError. If False, simply adds
the existing UPFData node to the group.

Cif
class aiida.orm.data.cif.CifData(**kwargs)

Wrapper for Crystallographic Interchange File (CIF)

Note: the file (physical) is held as the authoritative source of information, so all conversions are done
through the physical file: when setting ase or values, a physical CIF file is generated first, the values
are updated from the physical CIF file.

ase
ASE object, representing the CIF.

Note: requires ASE module.

classmethod from_md5(md5)
Return a list of all CIF files that match a given MD5 hash.

Note: the hash has to be stored in a _md5 attribute, otherwise the CIF file will not be found.

generate_md5()
Generate MD5 hash of the file’s contents on-the-fly.

get_ase(**kwargs)
Returns ASE object, representing the CIF. This function differs from the property ase by the
possibility to pass the keyworded arguments (kwargs) to ase.io.cif.read_cif().

Note: requires ASE module.

232 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

get_formulae(mode=’sum’)
Get the formula.

classmethod get_or_create(filename, use_first=False, store_cif=True)
Pass the same parameter of the init; if a file with the same md5 is found, that CifData is returned.

Parameters

• filename – an absolute filename on disk

• use_first – if False (default), raise an exception if more than one CIF
file is found. If it is True, instead, use the first available CIF file.

• store_cif (bool) – If false, the CifData objects are not stored in the
database. default=True.

Return (cif, created) where cif is the CifData object, and create is either True if the
object was created, or False if the object was retrieved from the DB.

get_spacegroup_numbers()
Get the spacegroup international number.

has_attached_hydrogens()
Check if there are hydrogens without coordinates, specified as attached to the atoms of the
structure. :return: True if there are attached hydrogens, False otherwise.

has_partial_occupancies()
Check if there are float values in the atom occupancies. :return: True if there are partial occu-
pancies, False otherwise.

static read_cif(fileobj, index=-1, **kwargs)
A wrapper method that simulates the behaviour of the older versions of the read_cif. It behaves
similarly with the older and newer versions of ase.io.cif.read_cif.

set_file(filename)
Set the file. If the source is set and the MD5 checksum of new file is different from the source,
the source has to be deleted.

store(*args, **kwargs)
Store the node.

values
PyCifRW structure, representing the CIF datablocks.

Note: requires PyCifRW module.

aiida.orm.data.cif.cif_from_ase(ase, full_occupancies=False, add_fake_biso=False)
Construct a CIF datablock from the ASE structure. The code is taken from
https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif, as the original ASE code con-
tains a bug in printing the Hermann-Mauguin symmetry space group symbol.

Parameters ase – ASE “images”
Returns array of CIF datablocks

aiida.orm.data.cif.has_pycifrw()
Returns True if the PyCifRW module can be imported, False otherwise.

aiida.orm.data.cif.parse_formula(formula)
Parses the Hill formulae, written with spaces for separators.

aiida.orm.data.cif.pycifrw_from_cif(datablocks, loops={}, names=None)
Constructs PyCifRW’s CifFile from an array of CIF datablocks.

Parameters

3.1. Developer’s guide 233

https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif

AiiDA documentation, Release 0.7.0

• datablocks – an array of CIF datablocks

• loops – optional list of lists of CIF tag loops.

• names – optional list of datablock names
Returns CifFile

aiida.orm.data.cif.symop_string_from_symop_matrix_tr(matrix, tr=[0, 0, 0], eps=0)
Construct a CIF representation of symmetry operator plus translation. See International Tables for
Crystallography Vol. A. (2002) for definition.

Parameters

• matrix – 3x3 matrix, representing the symmetry operator

• tr – translation vector of length 3 (default [0, 0, 0])

• eps – epsilon parameter for fuzzy comparison x == 0
Returns CIF representation of symmetry operator

Parameter
class aiida.orm.data.parameter.ParameterData(**kwargs)

Pass as input in the init a dictionary, and it will get stored as internal attributes.

Usual rules for attribute names apply (in particular, keys cannot start with an underscore). If this is the
case, a ValueError will be raised.

You can then change/delete/add more attributes before storing with the usual methods of ai-
ida.orm.Node

dict
To be used to get direct access to the underlying dictionary with the syntax node.dict.key or
node.dict[’key’].

Returns an instance of the AttributeResultManager.

get_dict()
Return a dict with the parameters

keys()
Iterator of valid keys stored in the ParameterData object

set_dict(dict)
Replace the current dictionary with another one.

Parameters dict – The dictionary to set.

update_dict(dict)
Update the current dictionary with the keys provided in the dictionary.

Parameters dict – a dictionary with the keys to substitute. It works like dict.update(),
adding new keys and overwriting existing keys.

Remote
class aiida.orm.data.remote.RemoteData(**kwargs)

Store a link to a file or folder on a remote machine.

Remember to pass a computer!

add_path(src_abs, dst_filename=None)
Disable adding files or directories to a RemoteData

is_empty()
Check if remote folder is empty

234 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

ArrayData
class aiida.orm.data.array.ArrayData(*args, **kwargs)

Store a set of arrays on disk (rather than on the database) in an efficient way using numpy.save()
(therefore, this class requires numpy to be installed).

Each array is stored within the Node folder as a different .npy file.
Note Before storing, no caching is done: if you perform a get_array() call, the array

will be re-read from disk. If instead the ArrayData node has already been stored,
the array is cached in memory after the first read, and the cached array is used
thereafter. If too much RAM memory is used, you can clear the cache with the
clear_internal_cache() method.

arraynames()
Return a list of all arrays stored in the node, listing the files (and not relying on the properties).

Deprecated since version 0.7: Use get_arraynames() instead.

clear_internal_cache()
Clear the internal memory cache where the arrays are stored after being read from disk (used in
order to reduce at minimum the readings from disk). This function is useful if you want to keep
the node in memory, but you do not want to waste memory to cache the arrays in RAM.

delete_array(name)
Delete an array from the node. Can only be called before storing.

Parameters name – The name of the array to delete from the node.

get_array(name)
Return an array stored in the node

Parameters name – The name of the array to return.

get_arraynames()
Return a list of all arrays stored in the node, listing the files (and not relying on the properties).

New in version 0.7: Renamed from arraynames

get_shape(name)
Return the shape of an array (read from the value cached in the properties for efficiency rea-
sons).

Parameters name – The name of the array.

iterarrays()
Iterator that returns tuples (name, array) for each array stored in the node.

set_array(name, array)
Store a new numpy array inside the node. Possibly overwrite the array if it already existed.

Internally, it stores a name.npy file in numpy format.
Parameters

• name – The name of the array.

• array – The numpy array to store.

ArrayData subclasses The following are Data classes inheriting from ArrayData.

KpointsData This module defines the classes related to band structures or dispersions in a Brillouin zone,
and how to operate on them.

class aiida.orm.data.array.kpoints.KpointsData(*args, **kwargs)
Class to handle array of kpoints in the Brillouin zone. Provide methods to generate either user-defined
k-points or path of k-points along symmetry lines. Internally, all k-points are defined in terms of crystal

3.1. Developer’s guide 235

AiiDA documentation, Release 0.7.0

(fractional) coordinates. Cell and lattice vector coordinates are in Angstroms, reciprocal lattice vectors
in Angstrom^-1 . :note: The methods setting and using the Bravais lattice info assume the PRIMITIVE
unit cell is provided in input to the set_cell or set_cell_from_structure methods.

cell
The crystal unit cell. Rows are the crystal vectors in Angstroms. :return: a 3x3 numpy.array

get_kpoints(also_weights=False, cartesian=False)
Return the list of kpoints

Parameters

• also_weights – if True, returns also the list of weights. Default = False

• cartesian – if True, returns points in cartesian coordinates, otherwise,
returns in crystal coordinates. Default = False.

get_kpoints_mesh(print_list=False)
Get the mesh of kpoints.

Parameters print_list – default=False. If True, prints the mesh of kpoints as a
list

Raises AttributeError – if no mesh has been set

Return mesh,offset (if print_list=False) a list of 3 integers and a list of three floats
0<x<1, representing the mesh and the offset of kpoints

Return kpoints (if print_list = True) an explicit list of kpoints coordinates, similar to
what returned by get_kpoints()

labels
Labels associated with the list of kpoints. List of tuples with kpoint index and kpoint name:
[(0,’G’),(13,’M’),...]

pbc
The periodic boundary conditions along the vectors a1,a2,a3.

Returns a tuple of three booleans, each one tells if there are periodic boundary
conditions for the i-th real-space direction (i=1,2,3)

set_cell(cell, pbc=None)
Set a cell to be used for symmetry analysis. To set a cell from an AiiDA structure, use
“set_cell_from_structure”.

Parameters

• cell – 3x3 matrix of cell vectors. Orientation: each row represent a lattice
vector. Units are Angstroms.

• pbc – list of 3 booleans, True if in the nth crystal direction the structure is
periodic. Default = [True,True,True]

set_cell_from_structure(structuredata)
Set a cell to be used for symmetry analysis from an AiiDA structure. Inherits both the cell and
the pbc’s. To set manually a cell, use “set_cell”

Parameters structuredata – an instance of StructureData

set_kpoints(kpoints, cartesian=False, labels=None, weights=None, fill_values=0)
Set the list of kpoints. If a mesh has already been stored, raise a ModificationNotAllowed

Parameters

• kpoints – a list of kpoints, each kpoint being a list of one, two or three
coordinates, depending on self.pbc: if structure is 1D (only one True in
self.pbc) one allows singletons or scalars for each k-point, if it’s 2D it can
be a length-2 list, and in all cases it can be a length-3 list. Examples:

236 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

– [[0.,0.,0.],[0.1,0.1,0.1],...] for 1D, 2D or 3D

– [[0.,0.],[0.1,0.1,],...] for 1D or 2D

– [[0.],[0.1],...] for 1D

– [0., 0.1, ...] for 1D (list of scalars)

For 0D (all pbc are False), the list can be any of the above or empty - then
only Gamma point is set. The value of k for the non-periodic dimension(s)
is set by fill_values

• cartesian – if True, the coordinates given in input are treated as in
cartesian units. If False, the coordinates are crystal, i.e. in units of
b1,b2,b3. Default = False

• labels – optional, the list of labels to be set for some of the kpoints. See
labels for more info

• weights – optional, a list of floats with the weight associated to the kpoint
list

• fill_values – scalar to be set to all non-periodic dimensions (indicated
by False in self.pbc), or list of values for each of the non-periodic dimen-
sions.

set_kpoints_mesh(mesh, offset=[0.0, 0.0, 0.0])
Set KpointsData to represent a uniformily spaced mesh of kpoints in the Brillouin zone. This
excludes the possibility of set/get kpoints

Parameters

• mesh – a list of three integers, representing the size of the kpoint mesh
along b1,b2,b3.

• offset ((optional)) – a list of three floats between 0 and 1. [0.,0.,0.] is
Gamma centered mesh [0.5,0.5,0.5] is half shifted [1.,1.,1.] by periodicity
should be equivalent to [0.,0.,0.] Default = [0.,0.,0.].

set_kpoints_mesh_from_density(distance, offset=[0.0, 0.0, 0.0], force_parity=False)
Set a kpoints mesh using a kpoints density, expressed as the maximum distance between adja-
cent points along a reciprocal axis

Parameters

• distance – distance (in 1/Angstrom) between adjacent kpoints, i.e. the
number of kpoints along each reciprocal axis i is |𝑏𝑖|/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 where |𝑏𝑖|
is the norm of the reciprocal cell vector.

• offset ((optional)) – a list of three floats between 0 and 1. [0.,0.,0.]
is Gamma centered mesh [0.5,0.5,0.5] is half shifted Default = [0.,0.,0.].

• force_parity ((optional)) – if True, force each integer in the mesh
to be even (except for the non-periodic directions).

Note a cell should be defined first.

Note the number of kpoints along non-periodic axes is always 1.

TrajectoryData
class aiida.orm.data.array.trajectory.TrajectoryData(*args, **kwargs)

Stores a trajectory (a sequence of crystal structures with timestamps, and possibly with velocities).

3.1. Developer’s guide 237

AiiDA documentation, Release 0.7.0

get_cells()
Return the array of cells, if it has already been set.

Raises KeyError – if the trajectory has not been set yet.

get_index_from_stepid(stepid)
Given a value for the stepid (i.e., a value among those of the steps array), return the ar-
ray index of that stepid, that can be used in other methods such as get_step_data() or
get_step_structure().

New in version 0.7: Renamed from get_step_index

Note: Note that this function returns the first index found (i.e. if multiple steps are present with
the same value, only the index of the first one is returned).

Raises ValueError – if no step with the given value is found.

get_positions()
Return the array of positions, if it has already been set.

Raises KeyError – if the trajectory has not been set yet.

get_step_data(index)
Return a tuple with all information concerning the stepid with given index (0 is the first step, 1 the
second step and so on). If you know only the step value, use the get_index_from_stepid()
method to get the corresponding index.

If no velocities were specified, None is returned as the last element.
Returns A tuple in the format (stepid, time, cell, symbols, positions,

velocities), where stepid is an integer, time is a float, cell is a 3 × 3
matrix, symbols is an array of length n, positions is a 𝑛×3 array, and velocities
is either None or a 𝑛× 3 array

Parameters index – The index of the step that you want to retrieve, from 0 to
self.numsteps - 1.

Raises

• IndexError – if you require an index beyond the limits.

• KeyError – if you did not store the trajectory yet.

get_step_index(step)
Deprecated since version 0.7: Use get_index_from_stepid() instead.

get_step_structure(index, custom_kinds=None)
Return an AiiDA aiida.orm.data.structure.StructureData node (not stored yet!) with
the coordinates of the given step, identified by its index. If you know only the step value, use the
get_index_from_stepid() method to get the corresponding index.

Note: The periodic boundary conditions are always set to True.

New in version 0.7: Renamed from step_to_structure
Parameters

• index – The index of the step that you want to retrieve, from 0 to
self.numsteps- 1.

• custom_kinds – (Optional) If passed must be a list of
aiida.orm.data.structure.Kind objects. There must be one kind

238 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

object for each different string in the symbols array, with kind.name set
to this string. If this parameter is omitted, the automatic kind generation of
AiiDA aiida.orm.data.structure.StructureData nodes is used,
meaning that the strings in the symbols array must be valid chemical
symbols.

get_stepids()
Return the array of steps, if it has already been set.

New in version 0.7: Renamed from get_steps
Raises KeyError – if the trajectory has not been set yet.

get_steps()
Deprecated since version 0.7: Use get_stepids() instead.

get_symbols()
Return the array of symbols, if it has already been set.

Raises KeyError – if the trajectory has not been set yet.

get_times()
Return the array of times (in ps), if it has already been set.

Raises KeyError – if the trajectory has not been set yet.

get_velocities()
Return the array of velocities, if it has already been set.

Note: This function (differently from all other get_* functions, will not raise an exception if the
velocities are not set, but rather return None (both if no trajectory was not set yet, and if it the
trajectory was set but no velocities were specified).

numsites
Return the number of stored sites, or zero if nothing has been stored yet.

numsteps
Return the number of stored steps, or zero if nothing has been stored yet.

set_structurelist(structurelist)
Create trajectory from the list of aiida.orm.data.structure.StructureData instances.

Parameters structurelist – a list of aiida.orm.data.structure.StructureData
instances.

Raises ValueError – if symbol lists of supplied structures are different

set_trajectory(stepids, cells, symbols, positions, times=None, velocities=None)
Store the whole trajectory, after checking that types and dimensions are correct. Velocities are
optional, if they are not passed, nothing is stored.

Parameters

• stepids – integer array with dimension s, where s is the number of
steps. Typically represents an internal counter within the code. For in-
stance, if you want to store a trajectory with one step every 10, starting
from step 65, the array will be [65,75,85,...]. No checks are done
on duplicate elements or on the ordering, but anyway this array should be
sorted in ascending order, without duplicate elements. If your code does
not provide an internal counter, just provide for instance arange(s). It is
internally stored as an array named ‘steps’.

• cells – float array with dimension 𝑠 × 3 × 3, where s is the length of
the stepids array. Units are angstrom. In particular, cells[i,j,k] is

3.1. Developer’s guide 239

AiiDA documentation, Release 0.7.0

the k-th component of the j-th cell vector at the time step with index i
(identified by step number stepid[i] and with timestamp times[i]).

• symbols – string array with dimension n, where n is the number of
atoms (i.e., sites) in the structure. The same array is used for each step.
Normally, the string should be a valid chemical symbol, but actually any
unique string works and can be used as the name of the atomic kind (see
also the get_step_structure() method).

• positions – float array with dimension 𝑠 × 𝑛 × 3, where s is the length
of the stepids array and n is the length of the symbols array. Units
are angstrom. In particular, positions[i,j,k] is the k-th component
of the j-th atom (or site) in the structure at the time step with index i
(identified by step number step[i] and with timestamp times[i]).

• times – if specified, float array with dimension s, where s is the length of
the stepids array. Contains the timestamp of each step in picoseconds
(ps).

• velocities – if specified, must be a float array with the same dimen-
sions of the positions array. The array contains the velocities in the
atoms.

Todo

Choose suitable units for velocities

step_to_structure(index, custom_kinds=None)
Deprecated since version 0.7: Use get_step_structure() instead.

ORM documentation: Calculations
class aiida.orm.implementation.general.calculation.AbstractCalculation

This class provides the definition of an “abstract” AiiDA calculation. A calculation in this sense is any
computation that converts data into data.

You will typically use one of its subclasses, often a JobCalculation for calculations run via a scheduler.

add_link_from(src, label=None, link_type=<LinkType.INPUT: ‘inputlink’>)
Add a link with a code as destination.

You can use the parameters of the base Node class, in particular the label parameter to label
the link.

Parameters

• src – a node of the database. It cannot be a Calculation object.

• label (str) – Name of the link. Default=None

• link_type – The type of link, must be one of the enum values form
LinkType

get_code()
Return the code for this calculation, or None if the code was not set.

get_linkname(link, *args, **kwargs)
Return the linkname used for a given input link

Pass as parameter “NAME” if you would call the use_NAME method. If the use_NAME method
requires a further parameter, pass that parameter as the second parameter.

240 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

logger
Get the logger of the Calculation object, so that it also logs to the DB.

Returns LoggerAdapter object, that works like a logger, but also has the ‘extra’ em-
bedded

aiida.orm.calculation.inline.optional_inline(func)
optional_inline wrapper/decorator takes a function, which can be called either as wrapped in InlineCal-
culation or a simple function, depending on ‘store’ keyworded argument (True stands for InlineCal-
culation, False for simple function). The wrapped function has to adhere to the requirements by
make_inline wrapper/decorator.

Usage example:

@optional_inline
def copy_inline(source=None):
return {'copy': source.copy()}

Function copy_inline will be wrapped in InlineCalculation when invoked in following way:

copy_inline(source=node,store=True)

while it will be called as a simple function when invoked:

copy_inline(source=node)

In any way the copy_inline will return the same results.

class aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
This class provides the definition of an AiiDA calculation that is run remotely on a job scheduler.

add_link_from(src, label=None, link_type=<LinkType.INPUT: ‘inputlink’>)
Add a link with a code as destination. Add the additional contraint that this is only possible if the
calculation is in state NEW.

You can use the parameters of the base Node class, in particular the label parameter to label
the link.

Parameters

• src – a node of the database. It cannot be a Calculation object.

• label (str) – Name of the link. Default=None

• link_type – The type of link, must be one of the enum values form
LinkType

get_append_text()
Get the calculation-specific append text, which is going to be appended in the scheduler-job
script, just after the code execution.

get_custom_scheduler_commands()
Return a (possibly multiline) string with the commands that the user wants to manually set for
the scheduler. See also the documentation of the corresponding set_ method.

Returns the custom scheduler command, or an empty string if no custom command
was defined.

get_environment_variables()
Return a dictionary of the environment variables that are set for this calculation.

Return an empty dictionary if no special environment variables have to be set for this calculation.

3.1. Developer’s guide 241

AiiDA documentation, Release 0.7.0

get_import_sys_environment()
To check if it’s loading the system environment on the submission script.

Returns a boolean. If True the system environment will be load.

get_job_id()
Get the scheduler job id of the calculation.

Returns a string

get_max_memory_kb()
Get the memory (in KiloBytes) requested to the scheduler.

Returns an integer

get_max_wallclock_seconds()
Get the max wallclock time in seconds requested to the scheduler.

Returns an integer

get_mpirun_extra_params()
Return a list of strings, that are the extra params to pass to the mpirun (or equivalent) command
after the one provided in computer.mpirun_command. Example: mpirun -np 8 extra_params[0]
extra_params[1] ... exec.x

Return an empty list if no parameters have been defined.

get_parser_name()
Return a string locating the module that contains the output parser of this calculation, that will
be searched in the ‘aiida/parsers/plugins’ directory. None if no parser is needed/set.

Returns a string.

get_parserclass()
Return the output parser object for this calculation, or None if no parser is set.

Returns a Parser class.

Raise MissingPluginError from ParserFactory no plugin is found.

get_prepend_text()
Get the calculation-specific prepend text, which is going to be prepended in the scheduler-job
script, just before the code execution.

get_priority()
Get the priority, if set, of the job on the cluster.

Returns a string or None

get_queue_name()
Get the name of the queue on cluster.

Returns a string or None.

get_resources(full=False)
Returns the dictionary of the job resources set.

Parameters full – if True, also add the default values, e.g.
default_mpiprocs_per_machine

Returns a dictionary

get_retrieved_node()
Return the retrieved data folder, if present.

Returns the retrieved data folder object, or None if no such output node is found.

Raises MultipleObjectsError – if more than one output node is found.

get_scheduler_error()
Return the output of the scheduler error (a string) if the calculation has finished, and output node
is present, and the output of the scheduler was retrieved.

242 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Return None otherwise.

get_scheduler_output()
Return the output of the scheduler output (a string) if the calculation has finished, and output
node is present, and the output of the scheduler was retrieved.

Return None otherwise.

get_scheduler_state()
Return the status of the calculation according to the cluster scheduler.

Returns a string.

get_state(from_attribute=False)
Get the state of the calculation.

Note: the ‘most recent’ state is obtained using the logic in the
aiida.common.datastructures.sort_states function.

Todo

Understand if the state returned when no state entry is found in the DB is the best choice.

Parameters from_attribute – if set to True, read it from the attributes (the at-
tribute is also set with set_state, unless the state is set to IMPORTED; in this
way we can also see the state before storing).

Returns a string. If from_attribute is True and no attribute is found, return None. If
from_attribute is False and no entry is found in the DB, also return None.

get_withmpi()
Get whether the job is set with mpi execution.

Returns a boolean. Default=True.

has_failed()
Get whether the calculation is in a failed status, i.e. SUBMISSIONFAILED, RETRIEVALFAILED,
PARSINGFAILED or FAILED.

Returns a boolean

has_finished_ok()
Get whether the calculation is in the FINISHED status.

Returns a boolean

kill()
Kill a calculation on the cluster.

Can only be called if the calculation is in status WITHSCHEDULER.

The command tries to run the kill command as provided by the scheduler, and raises an excep-
tion is something goes wrong. No changes of calculation status are done (they will be done later
by the calculation manager).

res
To be used to get direct access to the parsed parameters.

Returns an instance of the CalculationResultManager.

Note a practical example on how it is meant to be used: let’s say that there is a key
‘energy’ in the dictionary of the parsed results which contains a list of floats.
The command calc.res.energy will return such a list.

3.1. Developer’s guide 243

AiiDA documentation, Release 0.7.0

set_append_text(val)
Set the calculation-specific append text, which is going to be appended in the scheduler-job
script, just after the code execution.

Parameters val – a (possibly multiline) string

set_custom_scheduler_commands(val)
Set a (possibly multiline) string with the commands that the user wants to manually set for the
scheduler.

The difference of this method with respect to the set_prepend_text is the position in the sched-
uler submission file where such text is inserted: with this method, the string is inserted before
any non-scheduler command.

set_environment_variables(env_vars_dict)
Set a dictionary of custom environment variables for this calculation.

Both keys and values must be strings.

In the remote-computer submission script, it’s going to export variables as export
’keys’=’values’

set_import_sys_environment(val)
If set to true, the submission script will load the system environment variables.

Parameters val (bool) – load the environment if True

set_max_memory_kb(val)
Set the maximum memory (in KiloBytes) to be asked to the scheduler.

Parameters val – an integer. Default=None

set_max_wallclock_seconds(val)
Set the wallclock in seconds asked to the scheduler.

Parameters val – An integer. Default=None

set_mpirun_extra_params(extra_params)
Set the extra params to pass to the mpirun (or equivalent) command after the one provided in
computer.mpirun_command. Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

Parameters extra_params – must be a list of strings, one for each extra parameter

set_parser_name(parser)
Set a string for the output parser Can be None if no output plugin is available or needed.

Parameters parser – a string identifying the module of the parser. Such module
must be located within the folder ‘aiida/parsers/plugins’

set_prepend_text(val)
Set the calculation-specific prepend text, which is going to be prepended in the scheduler-job
script, just before the code execution.

See also set_custom_scheduler_commands
Parameters val – a (possibly multiline) string

set_priority(val)
Set the priority of the job to be queued.

Parameters val – the values of priority as accepted by the cluster scheduler.

set_queue_name(val)
Set the name of the queue on the remote computer.

Parameters val (str) – the queue name

set_resources(resources_dict)
Set the dictionary of resources to be used by the scheduler plugin, like the number of nodes,

244 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

cpus, ... This dictionary is scheduler-plugin dependent. Look at the documentation of the sched-
uler. (scheduler type can be found with calc.get_computer().get_scheduler_type())

set_withmpi(val)
Set the calculation to use mpi.

Parameters val – A boolean. Default=True

store(*args, **kwargs)
Override the store() method to store also the calculation in the NEW state as soon as this is
stored for the first time.

submit()
Puts the calculation in the TOSUBMIT status.

Actual submission is performed by the daemon.

submit_test(folder=None, subfolder_name=None)
Test submission, creating the files in a local folder.

Note this submit_test function does not require any node (neither the calculation nor
the input links) to be stored yet.

Parameters

• folder – A Folder object, within which each calculation files are created;
if not passed, a subfolder ‘submit_test’ of the current folder is used.

• subfolder_name – the name of the subfolder to use for this calculation
(within Folder). If not passed, a unique string starting with the date and
time in the format yymmdd-HHMMSS- is used.

class aiida.orm.implementation.general.calculation.job.CalculationResultManager(calc)
An object used internally to interface the calculation object with the Parser and consequentially with
the ParameterData object result. It shouldn’t be used explicitely by a user.

__init__(calc)
Parameters calc – the calculation object.

Quantum ESPRESSO

Quantum Espresso - pw.x Plugin to create a Quantum Espresso pw.x file.

class aiida.orm.calculation.job.quantumespresso.pw.PwCalculation(**kwargs)
Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution. For more information, refer
to http://www.quantum-espresso.org/

classmethod input_helper(*args, **kwargs)
Validate if the keywords are valid Quantum ESPRESSO pw.x keywords, and also helps in
preparing the input parameter dictionary in a ‘standardized’ form (e.g., converts ints to floats
when required, or if the flag flat_mode is specified, puts the keywords in the right namelists).

This function calls aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(),
see its docstring for further information.

exception aiida.orm.calculation.job.quantumespresso.helpers.QEInputValidationError
This class is the exception that is generated by the parser when it encounters an error while creating
the input file of Quantum ESPRESSO.

3.1. Developer’s guide 245

http://www.quantum-espresso.org/

AiiDA documentation, Release 0.7.0

aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(input_params,
structure,
stop_at_first_error=False,
flat_mode=False,
ver-
sion=‘5.4.0’)

Validate if the input dictionary for Quantum ESPRESSO is valid. Return the dictionary (possibly
with small variations: e.g. convert integer to float where necessary, recreate the proper structure if
flat_mode is True, ...) to use as input parameters (use_parameters) for the pw.x calculation.

Parameters

• input_params –

If flat_mode is True, pass a dictionary with ‘key’ = value; use the correct type
(int, bool, ...) for value. If an array is required:

– if its length is fixed: pass a list of the required length

– if its length is ‘ntyp’: pass a dictionary, associating each specie to its
value.

– (other lengths are not supported)

Example:

{
'calculation': 'vc-relax',
'ecutwfc': 30.,
'hubbard_u': {'O': 1},
}

If instead flat_mode is False, pass a dictionary in the format expected by AiiDA
(keys are namelists, values are in the format specified above, i.e. key/value
pairs for all keywords in the given namelist). Example:

{
'CONTROL': {

'calculation': 'vc-relax'
},

'SYSTEM': {
'hubbard_u': {'O': 1.0},
'ecutwfc': 30.,
},

},

• structure – the StructureData object used as input for QE pw.x

• stop_at_first_error – if True, stops at the first error. Otherwise, when,
possible, continue and give a global error for all the issues encountered.

• flat_mode – if True, instead of passing the dictionary of namelists, and inside
the keywords, pass directly the keywords - this function will return the correct
dictionary to pass to the PwCalculation, with the keywords arranged in the
correct namelist.

• version – string with version number, used to find the correct XML file de-
scriptor. If not specified, uses the most recent version available in the validator.
It reads the definitions from the XML files in the same folder as this python mod-
ule. If the version is not recognised, the Exception message will also suggest
a close-by version.

246 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Raises QeInputValidationError – (subclass of InputValidationError) if the input is not
considered valid.

Quantum Espresso - Dos

Quantum Espresso - Projwfc

Quantum Espresso - PW immigrant Plugin to immigrate a Quantum Espresso pw.x job that was not run
using AiiDa.

class aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation(**kwargs)
Create a PwCalculation object that can be used to import old jobs.

This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation with slight modifications to
some of the class variables and additional methods that

1.parse the job’s input file to create the calculation’s input nodes that would exist if the calculation
were submitted using AiiDa,

2.bypass the functions of the daemon, and prepare the node’s attributes such that all the pro-
cesses (copying of the files to the repository, results parsing, ect.) can be performed

Note: The keyword arguments of PwCalculation are also available.

Parameters

• remote_workdir (str) – Absolute path to the directory where the job was
run. The transport of the computer you link ask input to the calculation is
the transport that will be used to retrieve the calculation’s files. Therefore,
remote_workdir should be the absolute path to the job’s directory on that
computer.

• input_file_name (str) – The file name of the job’s input file.

• output_file_name (str) – The file name of the job’s output file (i.e. the file
containing the stdout of QE).

create_input_nodes(open_transport, input_file_name=None, output_file_name=None, re-
mote_workdir=None)

Create calculation input nodes based on the job’s files.
Parameters open_transport (aiida.transport.plugins.local.LocalTransport

| aiida.transport.plugins.ssh.SshTransport) – An open instance
of the transport class of the calculation’s computer. See the tutorial for more
information.

This method parses the files in the job’s remote working directory to create the input nodes that
would exist if the calculation were submitted using AiiDa. These nodes are

•a ’parameters’ ParameterData node, based on the namelists and their variable-value
pairs;

•a ’kpoints’ KpointsData node, based on the K_POINTS card;
•a ’structure’ StructureData node, based on the ATOMIC_POSITIONS and
CELL_PARAMETERS cards;

•one ’pseudo_X’ UpfData node for the pseudopotential used for the atomic species with
name X, as specified in the ATOMIC_SPECIES card;

•a ’settings’ ParameterData node, if there are any fixed coordinates, or if the gamma
kpoint is used;

3.1. Developer’s guide 247

AiiDA documentation, Release 0.7.0

and can be retrieved as a dictionary using the get_inputs_dict() method. These input links
are cached-links; nothing is stored by this method (including the calculation node itself).

Note: QE stores the calculation’s pseudopotential files in the <outdir>/<prefix>.save/
subfolder of the job’s working directory, where outdir and prefix are QE CONTROL variables
(see pw input file description). This method uses these files to either get–if the a node already
exists for the pseudo–or create a UpfData node for each pseudopotential.

Keyword arguments

Note: These keyword arguments can also be set when instantiating the class or using the
set_ methods (e.g. set_remote_workdir). Offering to set them here simply offers the user
an additional place to set their values. Only the values that have not yet been set need to be
specified.

Parameters

• input_file_name (str) – The file name of the job’s input file.

• output_file_name (str) – The file name of the job’s output file (i.e.
the file containing the stdout of QE).

• remote_workdir (str) – Absolute path to the directory where the job
was run. The transport of the computer you link ask input to the calculation
is the transport that will be used to retrieve the calculation’s files. There-
fore, remote_workdir should be the absolute path to the job’s directory
on that computer.

Raises

• aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the computer’s.

• aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

• aiida.common.exceptions.InputValidationError – if
remote_workdir, input_file_name, and/or output_file_name
are not set prior to or during the call of this method.

• aiida.common.exceptions.FeatureNotAvailable – if the input
file uses anything other than ibrav = 0, which is not currently impli-
mented in aiida.

• aiida.common.exceptions.ParsingError – if there are issues
parsing the input file.

• IOError – if there are issues reading the input file.

prepare_for_retrieval_and_parsing(open_transport)
Tell the daemon that the calculation is computed and ready to be parsed.

Parameters open_transport (aiida.transport.plugins.local.LocalTransport
| aiida.transport.plugins.ssh.SshTransport) – An open instance
of the transport class of the calculation’s computer. See the tutorial for more
information.

The next time the daemon updates the status of calculations, it will see this job is in the ‘COM-
PUTED’ state and will retrieve its output files and parse the results.

248 Chapter 3. Developer’s guide

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.7.0

If the daemon is not currently running, nothing will happen until it is started again.

This method also stores the calculation and all input nodes. It also copies the original input file
to the calculation’s repository folder.

Raises

• aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the computer’s.

• aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

set_input_file_name(input_file_name)
Set the file name of the job’s input file (e.g. ’pw.in’).

Parameters input_file_name (str) – The file name of the job’s input file.

set_output_file_name(output_file_name)
Set the file name of the job’s output file (e.g. ’pw.out’).

Parameters output_file_name (str) – The file name of file containing the job’s
stdout.

set_output_subfolder(output_subfolder)
Manually set the job’s outdir variable (e.g. ’./out/’).

Note: The outdir variable is normally set automatically by
1.looking for the outdir CONTROL namelist variable
2.looking for the $ESPRESSO_TMPDIR environment variable on the calculation’s computer

(using the transport)
3.using the QE default, the calculation’s remote_workdir

but this method is made available to the user, in the event that they wish to set it manually.

Parameters output_subfolder (str) – The job’s outdir variable.

set_prefix(prefix)
Manually set the job’s prefix variable (e.g. ’pwscf’).

Note: The prefix variable is normally set automatically by
1.looking for the prefix CONTROL namelist variable
2.using the QE default, ’pwscf’

but this method is made available to the user, in the event that they wish to set it manually.

Parameters prefix (str) – The job’s prefix variable.

set_remote_workdir(remote_workdir)
Set the job’s remote working directory.

Parameters remote_workdir (str) – Absolute path of the job’s remote working
directory.

Wannier90 - Wannier90

TemplateReplacer This is a simple plugin that takes two node inputs, both of type ParameterData, with the
following labels: template and parameters. You can also add other SinglefileData nodes as input, that will
be copied according to what is written in ‘template’ (see below).

• parameters: a set of parameters that will be used for substitution.

3.1. Developer’s guide 249

AiiDA documentation, Release 0.7.0

• template: can contain the following parameters:

– input_file_template: a string with substitutions to be managed with the format() function of
python, i.e. if you want to substitute a variable called ‘varname’, you write {varname} in the
text. See http://www.python.org/dev/peps/pep-3101/ for more details. The replaced file will be
the input file.

– input_file_name: a string with the file name for the input. If it is not provided, no file will be
created.

– output_file_name: a string with the file name for the output. If it is not provided, no redirection
will be done and the output will go in the scheduler output file.

– cmdline_params: a list of strings, to be passed as command line parameters. Each one is
substituted with the same rule of input_file_template. Optional

– input_through_stdin: if True, the input file name is passed via stdin. Default is False if missing.

– files_to_copy: if defined, a list of tuple pairs, with format (‘link_name’, ‘dest_rel_path’); for each
tuple, an input link to this calculation is looked for, with link labeled ‘link_label’, and with file type
‘Singlefile’, and the content is copied to a remote file named ‘dest_rel_path’ Errors are raised in
the input links are non-existent, or of the wrong type, or if there are unused input files.

TODO: probably use Python’s Template strings instead?? TODO: catch exceptions

class aiida.orm.calculation.job.simpleplugins.templatereplacer.TemplatereplacerCalculation(**kwargs)
Simple stub of a plugin that can be used to replace some text in a given template. Can be used for
many different codes, or as a starting point to develop a new plugin.

Calculation parsers This section describes the different parsers classes for calculations.

Quantum ESPRESSO parsers
aiida.parsers.plugins.quantumespresso.convert_qe2aiida_structure(output_dict,

in-
put_structure=None)

Receives the dictionary cell parsed from quantum espresso Convert it into an AiiDA structure object

Basic Raw Cp Parser
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_text_output(data,

xml_data)
data must be a list of strings, one for each lines, as returned by readlines(). On output, a dictionary
with parsed values

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_traj_stanzas(num_elements,
split-
lines,
prepend_name,
rescale=1.0)

num_elements: Number of lines (with three elements) between lines with two only elements (contain-
ing step number and time in ps). num_elements is 3 for cell, and the number of atoms for coordinates
and positions.

splitlines: a list of lines of the file, already split in pieces using string.split

prepend_name: a string to be prepended to the name of keys returned in the return dictionary.

rescale: the values in each stanza are multiplied by this factor, for units conversion

250 Chapter 3. Developer’s guide

http://www.python.org/dev/peps/pep-3101/

AiiDA documentation, Release 0.7.0

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_counter_output(data)
Parse xml file print_counter.xml data must be a single string, as returned by file.read() (notice the
difference with parse_text_output!) On output, a dictionary with parsed values.

aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_output(data)
Parse xml data data must be a single string, as returned by file.read() (notice the difference with
parse_text_output!) On output, a dictionary with parsed values. Democratically, we have decided to
use picoseconds as units of time, eV for energies, Angstrom for lengths.

Basic Raw Pw Parser A collection of function that are used to parse the output of Quantum Espresso PW.
The function that needs to be called from outside is parse_raw_output(). The functions mostly work without
aiida specific functionalities. The parsing will try to convert whatever it can in some dictionary, which by
operative decision doesn’t have much structure encoded, [the values are simple]

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.cell_volume(a1,
a2,
a3)

returns the volume of the primitive cell: |a1.(a2xa3)|

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_list_to_matrix(in_matrix,
n_rows,
n_columns)

converts a list into a list of lists (a matrix like) with n_rows and n_columns

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_qe_time_to_sec(timestr)
Given the walltime string of Quantum Espresso, converts it in a number of seconds (float).

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_QE_errors(lines,
count,
warn-
ings)

Parse QE errors messages (those appearing between some lines with ’%%%%%%%%’)
Parameters

• lines – list of strings, the output text file as read by readlines() or as obtained
by data.split(‘n’) when data is the text file read by read()

• count – the line at which we identified some ’%%%%%%%%’

• warnings – the warnings already parsed in the file
Return messages a list of QE error messages

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_text_output(data,
xml_data=None,
struc-
ture_data=None,
in-
put_dict=None)

Parses the text output of QE-PWscf.
Parameters

• data – a string, the file as read by read()

• xml_data – the dictionary with the keys read from xml.

• structure_data – dictionary, coming from the xml, with info on the structure
Return parsed_data dictionary with key values, referring to quantities at the last scf step.
Return trajectory_data key,values referring to intermediate scf steps, as in the case of

vc-relax. Empty dictionary if no value is present.

3.1. Developer’s guide 251

AiiDA documentation, Release 0.7.0

Return critical_messages a list with critical messages. If any is found in
parsed_data[’warnings’], the calculation is FAILED!

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_xml_output(data,
dir_with_bands=None)

Parse the xml data of QE v5.0.x Input data must be a single string, as returned by file.read() Returns
a dictionary with parsed values

aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_raw_output(out_file,
in-
put_dict,
parser_opts=None,
xml_file=None,
dir_with_bands=None)

Parses the output of a calculation Receives in input the paths to the output file and the xml file.
Parameters

• out_file – path to pw std output

• input_dict – not used

• parser_opts – not used

• dir_with_bands – path to directory with all k-points (Kxxxxx) folders

• xml_file – path to QE data-file.xml
Returns out_dict a dictionary with parsed data
Return successful a boolean that is False in case of failed calculations
Raises

• QEOutputParsingError – for errors in the parsing,

• AssertionError – if two keys in the parsed dicts are found to be qual
3 different keys to check in output: parser_warnings, xml_warnings and warnings. On an upper level,
these flags MUST be checked. The first two are expected to be empty unless QE failures or unfinished
jobs.

Basic Pw Parser
class aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser(calc)

This class is the implementation of the Parser class for PWscf.

get_linkname_out_kpoints()
Returns the name of the link to the output_kpoints Node exists if cell has changed and no bands
are stored.

get_linkname_outarray()
Returns the name of the link to the output_array Node may exist in case of calculation=’scf’

get_linkname_outstructure()
Returns the name of the link to the output_structure Node exists if positions or cell changed.

get_linkname_outtrajectory()
Returns the name of the link to the output_trajectory. Node exists in case of calculation=’md’,
‘vc-md’, ‘relax’, ‘vc-relax’

get_parser_settings_key()
Return the name of the key to be used in the calculation settings, that contains the dictionary
with the parser_options

parse_with_retrieved(retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

252 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

Constants Physical or mathematical constants. Since every code has its own conversion units, this module
defines what QE understands as for an eV or other quantities. Whenever possible, we try to use the
constants defined in :py:mod:aiida.common.constants:, but if some constants are slightly different among
different codes (e.g., different standard definition), we define the constants in this file.

Cp Parser
class aiida.parsers.plugins.quantumespresso.cp.CpParser(calc)

This class is the implementation of the Parser class for Cp.

get_linkname_trajectory()
Returns the name of the link to the output_structure (None if not present)

parse_with_retrieved(retrieved)
Receives in input a dictionary of retrieved nodes. Does all the logic here.

Automodules Example

This module defines the main data structures used by the Calculation.

class aiida.common.datastructures.CalcInfo(init=None)
This object will store the data returned by the calculation plugin and to be passed to the ExecManager

class aiida.common.datastructures.CodeInfo(init=None)
This attribute-dictionary contains the information needed to execute a code. Possible attributes are:

•cmdline_params: a list of strings, containing parameters to be written on the command line
right after the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[1] ... < stdin > stdout

•stdin_name: (optional) the name of the standard input file. Note, it is only possible to use the
stdin with the syntax:

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be passed to the code. Note:
it is not possible to substitute/remove the ‘<’ if stdin_name is specified; if that is needed, avoid
stdin_name and use instead the cmdline_params to specify a suitable syntax.

•stdout_name: (optional) the name of the standard output file. Note, it is only possible to pass
output to stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string “> stdout_name” will not be passed to the code. Note:
it is not possible to substitute/remove the ‘>’ if stdout_name is specified; if that is needed, avoid
stdout_name and use instead the cmdline_params to specify a suitable syntax.

•stderr_name: (optional) a string, the name of the error file of the code.
•join_files: (optional) if True, redirects the error to the output file. If join_files=True, the code
will be called as:

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

3.1. Developer’s guide 253

AiiDA documentation, Release 0.7.0

code.x ... > stdout_name 2> stderr_name

•withmpi: if True, executes the code with mpirun (or another MPI installed on the remote com-
puter)

•code_uuid: the uuid of the code associated to the CodeInfo

aiida.common.datastructures.sort_states(list_states)
Given a list of state names, return a sorted list of states (the first is the most recent) sorted according
to their logical appearance in the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note: The order of the internal variable _sorted_datastates is used.

Parameters list_states – a list (or tuple) of state strings.
Returns a sorted list of the given data states.
Raises ValueError – if any of the given states is not a valid state.

Note: A :noindex: directive was added to avoid duplicate object description for this example. Do not put
the keyword in a real documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax
used here, a few extra examples of use would include:

:param parameters: some notes on input parameters

:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

Changing The Docs

If you are creating a new .rst file, make sure to add it in the relevant index.rst tree. This can be done by:

• Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/source/ folder and not
/doc/build)

• Making sure that all relevant .rst files are added to the relevant index.rst file

• Running make html in /aiida/docs/ folder

• Be sure to check for any warnings and correct if possible

This Page

Sphinx cheatsheet
+++++++++++++++++

A brief overview of some of the main functions of Sphinx
as used in the aiida documentation. View :ref:`this-page` to see
how this page was formatted. This is only a brief outline for more

254 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

please see `the Sphinx documentation <http://sphinx-doc.org/contents.html>`_

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this
============================

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting
==========================

Words can be written in *italics* or in **bold**. Text describing a specific
``computer_thing`` can be formatted as well.

Paragraph and Indentation
=========================

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will
appear on the same line.

While this sentence will appear
differently because there is an indent.

Terminal and Code Formatting
============================

Something to be run in command line can be formatted like this::

>> Some command

As can be seen above, while snippets of python on code can be done like this::

import module
print('hello world')

Notes
=====
.. note:: Notes can be added like this.

Bullet Points and Lists
=======================

* Bullet points can be added

* Just like this

* With sub-bullets like this

#. While numerical bullets

3.1. Developer’s guide 255

AiiDA documentation, Release 0.7.0

#. Can be added
#. Like this

Links, Code Display, Cross References

External Links
==============
Can be done like here for `AiiDA <www.aiida.net/>`_

Code Download
=============

Code can be downloaded like this.

Download: :download:`this example script <devel_tutorial/sum_executable.py>`

Code Display
============

Can be done like this. This entire document can be seen unformated below using this method.

.. literalinclude:: devel_tutorial/sum_executable.py

.. _self-reference:

Cross Reference Docs
====================

Here is an example of a reference to the :ref:`structure_tutorial` which is on *another page*

Here is an example of a reference to something on the same page, :ref:`self-reference`

.. note:: References within the same document need a reference label, see `.. _self-reference:`
used in this section for an example. *Hidden in formatted page, can only be seen in the
input text.*

Cross Reference Classes and Methods
===================================

Any class can be referenced for example :py:class:`~aiida.orm.data.structure.StructureData` references the
StructureData data class.

Similarily any method can be referenced for example :py:meth:`~aiida.orm.data.structure.StructureData.append_atom`
shows the StructureData class' append atom method.

Table of Contents Docs and Code

Table of Contents for Docs
==========================
An example of the table of contents syntax for the :ref:`git-cheatsheet` can be seen here
note that these are especially important in the global structure of the
document, as found in index.rst files.

.. toctree::
:maxdepth: 2

256 Chapter 3. Developer’s guide

AiiDA documentation, Release 0.7.0

git_cheatsheet

.. note:: The `maxdepth` parameter can be used to change how deep the title indexing goes. See :ref:`this-page`.

Table of Contents for Code
==========================

Table of contents, that cross reference code, can be done very similarly to how
it is done for documents. For example the parser docs can be indexed like this

.. toctree::
:maxdepth: 1

aiida.orm <../orm/dev>
../parsers/dev

Automodules Example
====================

.. toctree::
:maxdepth: 2

.. automodule:: aiida.common.datastructures
:members:
:noindex:

.. note:: A `:noindex:` directive was added to avoid duplicate object
description for this example. Do not put the keyword in a real
documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax used here,
a few extra examples of use would include::

:param parameters: some notes on input parameters

:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

Changing The Docs

If you are creating a new .rst file, make sure to add it in
the relevant index.rst tree. This can be done by:

* Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/source/ folder and not /doc/build)

* Making sure that all relevant .rst files are added
to the relevant index.rst file

* Running `make html` in /aiida/docs/ folder

3.1. Developer’s guide 257

AiiDA documentation, Release 0.7.0

* Be sure to check for any warnings and correct if possible

.. _this-page:

This Page
=========

.. literalinclude:: sphinx_cheatsheet.rst

3.1.14 Properties

Properties are configuration options that are stored in the config.json file (within the .aiida directory).
They can be accessed and modified thanks to verdi devel commands:

• delproperty: delete a given property.

• describeproperty: describe the content of a given property.

• getproperty: get the value of a given property.

• listproperties: list all user defined properties. With -a option, list all of them including those still at
the default values.

• setproperty: set a given property (usage: verdi devel setproperty PROPERTYNAME
PROPERTYVALUE).

For instance, modules to be loaded automatically in the verdi shell can be added by putting their paths
(separated by colons :) in the property verdishell.modules, e.g. by typing something like:

verdi devel setproperty verdishell.modules aiida.common.exceptions.NotExistent:aiida.orm.autogroup.Autogroup

More information can be found in the source code: see setup.py.

258 Chapter 3. Developer’s guide

CHAPTER 4

Modules provided with aiida

4.1 Modules

4.1.1 aiida.common documentation

Calculation datastructures

This module defines the main data structures used by the Calculation.

class aiida.common.datastructures.CalcInfo(init=None)
This object will store the data returned by the calculation plugin and to be passed to the ExecManager

class aiida.common.datastructures.CodeInfo(init=None)
This attribute-dictionary contains the information needed to execute a code. Possible attributes are:

•cmdline_params: a list of strings, containing parameters to be written on the command line
right after the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[1] ... < stdin > stdout

•stdin_name: (optional) the name of the standard input file. Note, it is only possible to use the
stdin with the syntax:

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be passed to the code. Note:
it is not possible to substitute/remove the ‘<’ if stdin_name is specified; if that is needed, avoid
stdin_name and use instead the cmdline_params to specify a suitable syntax.

•stdout_name: (optional) the name of the standard output file. Note, it is only possible to pass
output to stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string “> stdout_name” will not be passed to the code. Note:
it is not possible to substitute/remove the ‘>’ if stdout_name is specified; if that is needed, avoid
stdout_name and use instead the cmdline_params to specify a suitable syntax.

•stderr_name: (optional) a string, the name of the error file of the code.
•join_files: (optional) if True, redirects the error to the output file. If join_files=True, the code
will be called as:

259

AiiDA documentation, Release 0.7.0

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

code.x ... > stdout_name 2> stderr_name

•withmpi: if True, executes the code with mpirun (or another MPI installed on the remote com-
puter)

•code_uuid: the uuid of the code associated to the CodeInfo

aiida.common.datastructures.sort_states(list_states)
Given a list of state names, return a sorted list of states (the first is the most recent) sorted according
to their logical appearance in the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note: The order of the internal variable _sorted_datastates is used.

Parameters list_states – a list (or tuple) of state strings.
Returns a sorted list of the given data states.
Raises ValueError – if any of the given states is not a valid state.

Exceptions

exception aiida.common.exceptions.AiidaException
Base class for all AiiDA exceptions.

Each module will have its own subclass, inherited from this (e.g. ExecManagerException, Trans-
portException, ...)

exception aiida.common.exceptions.AuthenticationError
Raised when a user tries to access a resource for which it is not authenticated, e.g. an aiidauser tries
to access a computer for which there is no entry in the AuthInfo table.

exception aiida.common.exceptions.ConfigurationError
Error raised when there is a configuration error in AiiDA.

exception aiida.common.exceptions.ContentNotExistent
Raised when trying to access an attribute, a key or a file in the result nodes that is not present

exception aiida.common.exceptions.DbContentError
Raised when the content of the DB is not valid. This should never happen if the user does not play
directly with the DB.

exception aiida.common.exceptions.FailedError
Raised when accessing a calculation that is in the FAILED status

exception aiida.common.exceptions.FeatureDisabled
Raised when a feature is requested, but the user has chosen to disable it (e.g., for submissions on
disabled computers).

exception aiida.common.exceptions.FeatureNotAvailable
Raised when a feature is requested from a plugin, that is not available.

exception aiida.common.exceptions.InputValidationError
The input data for a calculation did not validate (e.g., missing required input data, wrong data, ...)

exception aiida.common.exceptions.InternalError
Error raised when there is an internal error of AiiDA.

260 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

exception aiida.common.exceptions.InvalidOperation
The allowed operation is not valid (e.g., when trying to add a non-internal attribute before saving the
entry), or deleting an entry that is protected (e.g., because it is referenced by foreign keys)

exception aiida.common.exceptions.LicensingException
Raised when requirements for data licensing are not met.

exception aiida.common.exceptions.LockPresent
Raised when a lock is requested, but cannot be acquired.

exception aiida.common.exceptions.MissingPluginError
Raised when the user tries to use a plugin that is not available or does not exist.

exception aiida.common.exceptions.ModificationNotAllowed
Raised when the user tries to modify a field, object, property, ... that should not be modified.

exception aiida.common.exceptions.MultipleObjectsError
Raised when more than one entity is found in the DB, but only one was expected.

exception aiida.common.exceptions.NotExistent
Raised when the required entity does not exist.

exception aiida.common.exceptions.ParsingError
Generic error raised when there is a parsing error

exception aiida.common.exceptions.PluginInternalError
Error raised when there is an internal error which is due to a plugin and not to the AiiDA infrastructure.

exception aiida.common.exceptions.ProfileConfigurationError
Configuration error raised when a wrong/inexistent profile is requested.

exception aiida.common.exceptions.RemoteOperationError
Raised when an error in a remote operation occurs, as in a failed kill() of a scheduler job.

exception aiida.common.exceptions.UniquenessError
Raised when the user tries to violate a uniqueness constraint (on the DB, for instance).

exception aiida.common.exceptions.ValidationError
Error raised when there is an error during the validation phase of a property.

exception aiida.common.exceptions.WorkflowInputValidationError
The input data for a workflow did not validate (e.g., missing required input data, wrong data, ...)

Extended dictionaries

class aiida.common.extendeddicts.AttributeDict(init=None)
This class internally stores values in a dictionary, but exposes the keys also as attributes, i.e. asking
for attrdict.key will return the value of attrdict[’key’] and so on.

Raises an AttributeError if the key does not exist, when called as an attribute, while the usual KeyError
if the key does not exist and the dictionary syntax is used.

copy()
Shallow copy.

class aiida.common.extendeddicts.DefaultFieldsAttributeDict(init=None)
A dictionary with access to the keys as attributes, and with an internal value storing the ‘default’ keys
to be distinguished from extra fields.

Extra methods defaultkeys() and extrakeys() divide the set returned by keys() in default keys (i.e. those
defined at definition time) and other keys. There is also a method get_default_fields() to return the
internal list.

4.1. Modules 261

AiiDA documentation, Release 0.7.0

Moreover, for undefined default keys, it returns None instead of raising a KeyError/AttributeError ex-
ception.

Remember to define the _default_fields in a subclass! E.g.:

class TestExample(DefaultFieldsAttributeDict):
_default_fields = ('a','b','c')

When the validate() method is called, it calls in turn all validate_KEY methods, where KEY is one of the
default keys. If the method is not present, the field is considered to be always valid. Each validate_KEY
method should accept a single argument ‘value’ that will contain the value to be checked.

It raises a ValidationError if any of the validate_KEY function raises an exception, otherwise it simply
returns. NOTE: the validate_ functions are called also for unset fields, so if the field can be empty on
validation, you have to start your validation function with something similar to:

if value is None:
return

Todo

Decide behavior if I set to None a field. Current behavior, if a is an instance and ‘def_field’ one of the
default fields, that is undefined, we get:

•a.get(’def_field’): None
•a.get(’def_field’,’whatever’): ‘whatever’
•Note that a.defaultkeys() does NOT contain ‘def_field’

if we do a.def_field = None, then the behavior becomes
•a.get(’def_field’): None
•a.get(’def_field’,’whatever’): None
•Note that a.defaultkeys() DOES contain ‘def_field’

See if we want that setting a default field to None means deleting it.

defaultkeys()
Return the default keys defined in the instance.

extrakeys()
Return the extra keys defined in the instance.

classmethod get_default_fields()
Return the list of default fields, either defined in the instance or not.

validate()
Validate the keys, if any validate_* method is available.

class aiida.common.extendeddicts.FixedFieldsAttributeDict(init=None)
A dictionary with access to the keys as attributes, and with filtering of valid attributes. This is only the
base class, without valid attributes; use a derived class to do the actual work. E.g.:

class TestExample(FixedFieldsAttributeDict):
_valid_fields = ('a','b','c')

classmethod get_valid_fields()
Return the list of valid fields.

262 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Folders

class aiida.common.folders.Folder(abspath, folder_limit=None)
A class to manage generic folders, avoiding to get out of specific given folder borders.

Todo

fix this, os.path.commonprefix of /a/b/c and /a/b2/c will give a/b, check if this is wanted or if we want to
put trailing slashes. (or if we want to use os.path.relpath and check for a string starting with os.pardir?)

Todo

rethink whether the folder_limit option is still useful. If not, remove it alltogether (it was a nice feature,
but unfortunately all the calls to os.path.abspath or normpath are quite slow).

abspath
The absolute path of the folder.

create()
Creates the folder, if it does not exist on the disk yet.

It will also create top directories, if absent.

It is always safe to call it, it will do nothing if the folder already exists.

create_file_from_filelike(src_filelike, dest_name)
Create a file from a file-like object.

Note if the current file position in src_filelike is not 0, only the contents from the
current file position to the end of the file will be copied in the new file.

Parameters

• src_filelike – the file-like object (e.g., if you have a string called s,
you can pass StringIO.StringIO(s))

• dest_name – the destination filename will have this file name.

create_symlink(src, name)
Create a symlink inside the folder to the location ‘src’.

Parameters

• src – the location to which the symlink must point. Can be either a relative
or an absolute path. Should, however, be relative to work properly also
when the repository is moved!

• name – the filename of the symlink to be created.

erase(create_empty_folder=False)
Erases the folder. Should be called only in very specific cases, in general folder should not be
erased!

Doesn’t complain if the folder does not exist.
Parameters create_empty_folder – if True, after erasing, creates an empty dir.

exists()
Return True if the folder exists, False otherwise.

folder_limit
The folder limit that cannot be crossed when creating files and folders.

4.1. Modules 263

AiiDA documentation, Release 0.7.0

get_abs_path(relpath, check_existence=False)
Return an absolute path for a file or folder in this folder.

The advantage of using this method is that it checks that filename is a valid filename within this
folder, and not something e.g. containing slashes.

Parameters

• filename – The file or directory.

• check_existence – if False, just return the file path. Otherwise, also
check if the file or directory actually exists. Raise OSError if it does not.

get_content_list(pattern=’*’, only_paths=True)
Return a list of files (and subfolders) in the folder, matching a given pattern.

Example: If you want to exclude files starting with a dot, you can call this method with
pattern=’[!.]*’

Parameters

• pattern – a pattern for the file/folder names, using Unix filename pattern
matching (see Python standard module fnmatch). By default, pattern is
‘*’, matching all files and folders.

• only_paths – if False (default), return pairs (name, is_file). if True, return
only a flat list.

Returns a list of tuples of two elements, the first is the file name and the second is
True if the element is a file, False if it is a directory.

get_subfolder(subfolder, create=False, reset_limit=False)
Return a Folder object pointing to a subfolder.

Parameters

• subfolder – a string with the relative path of the subfolder, relative to
the absolute path of this object. Note that this may also contain ‘..’ parts,
as far as this does not go beyond the folder_limit.

• create – if True, the new subfolder is created, if it does not exist.

• reset_limit – when doing b = a.get_subfolder(’xxx’,
reset_limit=False), the limit of b will be the same limit of a. if True,
the limit will be set to the boundaries of folder b.

Returns a Folder object pointing to the subfolder.

insert_path(src, dest_name=None, overwrite=True)
Copy a file to the folder.

Parameters

• src – the source filename to copy

• dest_name – if None, the same basename of src is used. Otherwise, the
destination filename will have this file name.

• overwrite – if False, raises an error on existing destination; otherwise,
delete it first.

isdir(relpath)
Return True if ‘relpath’ exists inside the folder and is a directory, False otherwise.

isfile(relpath)
Return True if ‘relpath’ exists inside the folder and is a file, False otherwise.

264 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

mode_dir
Return the mode with which the folders should be created

mode_file
Return the mode with which the files should be created

open(name, mode=’r’)
Open a file in the current folder and return the corresponding file object.

remove_path(filename)
Remove a file or folder from the folder.

Parameters filename – the relative path name to remove

replace_with_folder(srcdir, move=False, overwrite=False)
This routine copies or moves the source folder ‘srcdir’ to the local folder pointed by this Folder
object.

Parameters

• srcdir – the source folder on the disk; this must be a string with an
absolute path

• move – if True, the srcdir is moved to the repository. Otherwise, it is only
copied.

• overwrite – if True, the folder will be erased first. if False, a IOError is
raised if the folder already exists. Whatever the value of this flag, parent
directories will be created, if needed.

Raises OSError or IOError: in case of problems accessing or writing the files.

Raises ValueError: if the section is not recognized.

class aiida.common.folders.RepositoryFolder(section, uuid, subfolder=’.’)
A class to manage the local AiiDA repository folders.

get_topdir()
Returns the top directory, i.e., the section/uuid folder object.

section
The section to which this folder belongs.

subfolder
The subfolder within the section/uuid folder.

uuid
The uuid to which this folder belongs.

class aiida.common.folders.SandboxFolder
A class to manage the creation and management of a sandbox folder.

Note: this class must be used within a context manager, i.e.:
with SandboxFolder as f: ## do something with f
In this way, the sandbox folder is removed from disk (if it wasn’t removed already) when exiting the
‘with’ block.

Todo

Implement check of whether the folder has been removed.

4.1. Modules 265

AiiDA documentation, Release 0.7.0

Plugin loaders

aiida.common.pluginloader.BaseFactory(module, base_class, base_modname, suf-
fix=None)

Return a given subclass of Calculation, loading the correct plugin.
Example If module=’quantumespresso.pw’, base_class=JobCalculation, base_modname

= ‘aiida.orm.calculation.job’, and suffix=’Calculation’, the code will first look for a pw
subclass of JobCalculation inside the quantumespresso module. Lacking such a
class, it will try to look for a ‘PwCalculation’ inside the quantumespresso.pw module.
In the latter case, the plugin class must have a specific name and be located in
a specific file: if for instance plugin_name == ‘ssh’ and base_class.__name__ ==
‘Transport’, then there must be a class named ‘SshTransport’ which is a subclass of
base_class in a file ‘ssh.py’ in the plugins_module folder. To create the class name
to look for, the code will attach the string passed in the base_modname (after the last
dot) and the suffix parameter, if passed, with the proper CamelCase capitalization. If
suffix is not passed, the default suffix that is used is the base_class class name.

Parameters

• module – a string with the module of the plugin to load, e.g. ‘quantume-
spresso.pw’.

• base_class – a base class from which the returned class should inherit. e.g.:
JobCalculation

• base_modname – a basic module name, under which the module should be
found. E.g., ‘aiida.orm.calculation.job’.

• suffix – If specified, the suffix that the class name will have. By default, use
the name of the base_class.

aiida.common.pluginloader.existing_plugins(base_class, plugins_module_name,
max_depth=5, suffix=None)

Return a list of strings of valid plugins.
Parameters

• base_class – Identify all subclasses of the base_class

• plugins_module_name – a string with the full module name separated with
dots that points to the folder with plugins. It must be importable by python.

• max_depth – Maximum depth (of nested modules) to be used when looking
for plugins

• suffix – The suffix that is appended to the basename when looking for the
(sub)class name. If not provided (or None), use the base class name.

Returns a list of valid strings that can be used using a Factory or with load_plugin.

aiida.common.pluginloader.from_type_to_pluginclassname(typestr)
Return the string to pass to the load_plugin function, starting from the ‘type’ field of a Node.

aiida.common.pluginloader.get_class_typestring(type_string)
Given the type string, return three strings: the first one is one of the first-level classes that the Node
can be: “node”, “calculation”, “code”, “data”. The second string is the one that can be passed to the
DataFactory or CalculationFactory (or an empty string for nodes and codes); the third one is the name
of the python class that would be loaded.

aiida.common.pluginloader.get_query_type_string(plugin_type_string)
Receives a plugin_type_string, an attribute of subclasses of Node. Checks whether it is a valid
type_string and manipulates the string to return a string that in a query returns all instances of a
class and all instances of subclasses.

266 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Parameters plugin_type_string (str) – The plugin_type_string
Returns the query_type_string

aiida.common.pluginloader.load_plugin(base_class, plugins_module, plugin_type)
Load a specific plugin for the given base class.

This is general and works for any plugin used in AiiDA.
NOTE: actually, now plugins_module and plugin_type are joined with a dot, and the plugin is retrieved

splitting using the last dot of the resulting string.
TODO: understand if it is probably better to join the two parameters above to a single one.
Args:

base_class the abstract base class of the plugin.
plugins_module a string with the full module name separated with dots that points to the folder

with plugins. It must be importable by python.
plugin_type the name of the plugin.

Return: the class of the required plugin.
Raise: MissingPluginError if the plugin cannot be loaded
Example:

plugin_class = load_plugin(aiida.transport.Transport,’aiida.transport.plugins’,’ssh.SshTransport’)
and plugin_class will be the class ‘aiida.transport.plugins.ssh.SshTransport’

Utilities

class aiida.common.utils.ArrayCounter
A counter & a method that increments it and returns its value. It is used in various tests.

aiida.common.utils.are_dir_trees_equal(dir1, dir2)
Compare two directories recursively. Files in each directory are assumed to be equal if their names
and contents are equal.

@param dir1: First directory path @param dir2: Second directory path
@return: True if the directory trees are the same and there were no errors while accessing the direc-

tories or files, False otherwise.

aiida.common.utils.ask_question(question, reply_type, allow_none_as_answer)
This method asks a specific question, tries to parse the given reply and then it verifies the parsed
answer. :param question: The question to be asked. :param reply_type: The type of the expected
answer (int, datetime etc). It is needed for the parsing of the answer. :param allow_none_as_answer:
Allow empty answers? :return: The parsed reply.

class aiida.common.utils.classproperty(getter)
A class that, when used as a decorator, works as if the two decorators @property and @classmethod
where applied together (i.e., the object works as a property, both for the Class and for any of its
instance; and is called with the class cls rather than with the instance as its first argument).

class aiida.common.utils.combomethod(method)
A decorator that wraps a function that can be both a classmethod or instancemethod and behaves
accordingly:

class A():

@combomethod
def do(self, **kwargs):

isclass = kwargs.get('isclass')
if isclass:

print "I am a class", self
else:

4.1. Modules 267

AiiDA documentation, Release 0.7.0

print "I am an instance", self

A.do()
A().do()

>>> I am a class __main__.A
>>> I am an instance <__main__.A instance at 0x7f2efb116e60>

Attention: For ease of handling, pass keyword isclass equal to True if this was called as a classmethod
and False if this was called as an instance. The argument self is therefore ambiguous!

aiida.common.utils.conv_to_fortran(val)
Parameters val – the value to be read and converted to a Fortran-friendly string.

aiida.common.utils.create_display_name(field)
Given a string, creates the suitable “default” display name: replace underscores with spaces, and
capitalize each word.

Returns the converted string

aiida.common.utils.escape_for_bash(str_to_escape)
This function takes any string and escapes it in a way that bash will interpret it as a single string.

Explanation:

At the end, in the return statement, the string is put within single quotes. Therefore, the only thing that
I have to escape in bash is the single quote character. To do this, I substitute every single quote ‘ with
‘””” which means:

First single quote: exit from the enclosing single quotes

Second, third and fourth character: “”’ is a single quote character, escaped by double quotes

Last single quote: reopen the single quote to continue the string

Finally, note that for python I have to enclose the string ‘””” within triple quotes to make it work, getting
finally: the complicated string found below.

aiida.common.utils.export_shard_uuid(uuid)
Sharding of the UUID for the import/export

aiida.common.utils.flatten_list(value)
Flattens a list or a tuple In [2]: flatten_list([[[[[4],3]],[3],[’a’,[3]]]]) Out[2]: [4, 3, 3, ‘a’, 3]

Parameters value – A value, whether iterable or not
Returns a list of nesting level 1

aiida.common.utils.get_class_string(obj)
Return the string identifying the class of the object (module + object name, joined by dots).

It works both for classes and for class instances.

aiida.common.utils.get_configured_user_email()
Return the email (that is used as the username) configured during the first verdi install.

aiida.common.utils.get_extremas_from_positions(positions)
returns the minimum and maximum value for each dimension in the positions given

aiida.common.utils.get_fortfloat(key, txt, be_case_sensitive=True)
Matches a fortran compatible specification of a float behind a defined key in a string. :param key:
The key to look for :param txt: The string where to search for the key :param be_case_sensitive: An
optional boolean whether to search case-sensitive, defaults to True

If abc is a key, and f is a float, number, than this regex will match t and return f in the following cases:
•charsbefore, abc = f, charsafter

268 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

•charsbefore abc = f charsafter
•charsbefore, abc = f charsafter

and vice-versa. If no float is matched, returns None

Exampes of matchable floats are:
•0.1d2
•0.D-3
•.2e1
•-0.23
• 23.
•232

aiida.common.utils.get_new_uuid()
Return a new UUID (typically to be used for new nodes). It uses the UUID version specified in
aiida.backends.settings.AIIDANODES_UUID_VERSION

aiida.common.utils.get_object_from_string(string)
Given a string identifying an object (as returned by the get_class_string method) load and return the
actual object.

aiida.common.utils.get_repository_folder(subfolder=None)
Return the top folder of the local repository.

aiida.common.utils.get_suggestion(provided_string, allowed_strings)
Given a string and a list of allowed_strings, it returns a string to print on screen, with sensible text
depending on whether no suggestion is found, or one or more than one suggestions are found.
Args: provided_string: the string to compare allowed_strings: a list of valid strings
Returns: A string to print on output, to suggest to the user a possible valid value.

aiida.common.utils.get_unique_filename(filename, list_of_filenames)
Return a unique filename that can be added to the list_of_filenames.

If filename is not in list_of_filenames, it simply returns the filename string itself. Otherwise, it appends
a integer number to the filename (before the extension) until it finds a unique filename.

Parameters

• filename – the filename to add

• list_of_filenames – the list of filenames to which filename should be
added, without name duplicates

Returns Either filename or its modification, with a number appended between the name
and the extension.

aiida.common.utils.grouper(n, iterable)
Given an iterable, returns an iterable that returns tuples of groups of elements from iterable of length
n, except the last one that has the required length to exaust iterable (i.e., there is no filling applied).

Parameters

• n – length of each tuple (except the last one,that will have length <= n

• iterable – the iterable to divide in groups

aiida.common.utils.gunzip_string(string)
Gunzip string contents.

Parameters string – a gzipped string
Returns a string

aiida.common.utils.gzip_string(string)
Gzip string contents.

Parameters string – a string
Returns a gzipped string

4.1. Modules 269

AiiDA documentation, Release 0.7.0

aiida.common.utils.md5_file(filename, block_size_factor=128)
Open a file and return its md5sum (hexdigested).

Parameters

• filename – the filename of the file for which we want the md5sum

• block_size_factor – the file is read at chunks of size
block_size_factor * md5.block_size, where md5.block_size
is the block_size used internally by the hashlib module.

Returns a string with the hexdigest md5.
Raises No checks are done on the file, so if it doesn’t exists it may raise IOError.

aiida.common.utils.query_string(question, default)
Asks a question (with the option to have a default, predefined answer, and depending on the default
answer and the answer of the user the following options are available: - If the user replies (with a non
empty answer), then his answer is returned. - If the default answer is None then the user has to reply
with a non-empty answer. - If the default answer is not None, then it is returned if the user gives an
empty answer. In the case of empty default answer and empty reply from the user, None is returned.
:param question: The question that we want to ask the user. :param default: The default answer (if
there is any) to the question asked. :return: The returned reply.

aiida.common.utils.query_yes_no(question, default=’yes’)
Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user. “default” is the presumed answer if the user just
hits <Enter>. It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

The “answer” return value is True for “yes” or False for “no”.

aiida.common.utils.sha1_file(filename, block_size_factor=128)
Open a file and return its sha1sum (hexdigested).

Parameters

• filename – the filename of the file for which we want the sha1sum

• block_size_factor – the file is read at chunks of size
block_size_factor * sha1.block_size, where sha1.block_size
is the block_size used internally by the hashlib module.

Returns a string with the hexdigest sha1.
Raises No checks are done on the file, so if it doesn’t exists it may raise IOError.

aiida.common.utils.str_timedelta(dt, max_num_fields=3, short=False, nega-
tive_to_zero=False)

Given a dt in seconds, return it in a HH:MM:SS format.
Parameters

• dt – a TimeDelta object

• max_num_fields – maximum number of non-zero fields to show (for instance
if the number of days is non-zero, shows only days, hours and minutes, but not
seconds)

• short – if False, print always max_num_fields fields, even if they are zero.
If True, do not print the first fields, if they are zero.

• negative_to_zero – if True, set dt = 0 if dt < 0.

aiida.common.utils.validate_list_of_string_tuples(val, tuple_length)
Check that:

1.val is a list or tuple
2.each element of the list:

270 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

1.is a list or tuple
2.is of length equal to the parameter tuple_length
3.each of the two elements is a string

Return if valid, raise ValidationError if invalid

aiida.common.utils.xyz_parser_iterator(string)
Yields a tuple (natoms, comment, atomiter)‘for each frame in a XYZ file where ‘atomiter is an iterator
yielding a nested tuple (symbol, (x, y, z)) for each entry.

Parameters string – a string containing XYZ-structured text

4.1.2 aiida.transport documentation

This chapter describes the generic implementation of a transport plugin. The currently implemented are the
local and the ssh plugin. The local plugin makes use only of some standard python modules like os and
shutil. The ssh plugin is a wrapper to the library paramiko, that you installed with AiiDA.

A generic set of tests is contained in plugin_test.py, while plugin-specific tests are written separately.

Generic transport class

class aiida.transport.__init__.FileAttribute(init=None)
A class, resembling a dictionary, to describe the attributes of a file, that is returned by get_attribute().
Possible keys: st_size, st_uid, st_gid, st_mode, st_atime, st_mtime

class aiida.transport.__init__.Transport(*args, **kwargs)
Abstract class for a generic transport (ssh, local, ...) Contains the set of minimal methods

__enter__()
For transports that require opening a connection, opens all required channels (used in ‘with’
statements)

__exit__(type, value, traceback)
Closes connections, if needed (used in ‘with’ statements).

chdir(path)
Change directory to ‘path’

Parameters path (str) – path to change working directory into.

Raises IOError, if the requested path does not exist

Return type string

chmod(path, mode)
Change permissions of a path.

Parameters

• path (str) – path to file

• mode (int) – new permissions

chown(path, uid, gid)
Change the owner (uid) and group (gid) of a file. As with python’s os.chown function, you must
pass both arguments, so if you only want to change one, use stat first to retrieve the current
owner and group.

Parameters

• path (str) – path to the file to change the owner and group of

• uid (int) – new owner’s uid

4.1. Modules 271

AiiDA documentation, Release 0.7.0

• gid (int) – new group id

close()
Closes the local transport channel

copy(remotesource, remotedestination, *args, **kwargs)
Copy a file or a directory from remote source to remote destination (On the same remote ma-
chine)

Parameters

• remotesource (str) – path of the remote source directory / file

• remotedestination (str) – path of the remote destination directory /
file

Raises IOError, if one of src or dst does not exist

copy_from_remote_to_remote(transportdestination, remotesource, remotedestination,
**kwargs)

Copy files or folders from a remote computer to another remote computer.
Parameters

• transportdestination – transport to be used for the destination com-
puter

• remotesource (str) – path to the remote source directory / file

• remotedestination (str) – path to the remote destination directory /
file

• kwargs – keyword parameters passed to the call to transportdestina-
tion.put, except for ‘dereference’ that is passed to self.get

Note: the keyword ‘dereference’ SHOULD be set to False for the final put (onto the destination),
while it can be set to the value given in kwargs for the get from the source. In that way, a symbolic
link would never be followed in the final copy to the remote destination. That way we could avoid
getting unknown (potentially malicious) files into the destination computer. HOWEVER, since
dereference=False is currently NOT supported by all plugins, we still force it to True for the final
put.

Note: the supported keys in kwargs are callback, dereference, overwrite and ig-
nore_nonexisting.

copyfile(remotesource, remotedestination, *args, **kwargs)
Copy a file from remote source to remote destination (On the same remote machine)

Parameters

• remotesource (str) – path of the remote source directory / file

• remotedestination (str) – path of the remote destination directory /
file

Raises IOError – if one of src or dst does not exist

copytree(remotesource, remotedestination, *args, **kwargs)
Copy a folder from remote source to remote destination (On the same remote machine)

Parameters

• remotesource (str) – path of the remote source directory / file

272 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

• remotedestination (str) – path of the remote destination directory /
file

Raises IOError – if one of src or dst does not exist

exec_command_wait(command, **kwargs)
Execute the command on the shell, waits for it to finish, and return the retcode, the stdout and
the stderr.

Enforce the execution to be run from the pwd (as given by self.getcwd), if this is not None.
Parameters command (str) – execute the command given as a string

Returns a list: the retcode (int), stdout (str) and stderr (str).

get(remotepath, localpath, *args, **kwargs)
Retrieve a file or folder from remote source to local destination dst must be an absolute path (src
not necessarily)

Parameters

• remotepath – (str) remote_folder_path

• localpath – (str) local_folder_path

get_attribute(path)
Return an object FixedFieldsAttributeDict for file in a given path, as defined in ai-
ida.common.extendeddicts Each attribute object consists in a dictionary with the following keys:

•st_size: size of files, in bytes
•st_uid: user id of owner
•st_gid: group id of owner
•st_mode: protection bits
•st_atime: time of most recent access
•st_mtime: time of most recent modification

Parameters path (str) – path to file

Returns object FixedFieldsAttributeDict

get_mode(path)
Return the portion of the file’s mode that can be set by chmod().

Parameters path (str) – path to file

Returns the portion of the file’s mode that can be set by chmod()

classmethod get_short_doc()
Return the first non-empty line of the class docstring, if available

classmethod get_valid_auth_params()
Return the internal list of valid auth_params

classmethod get_valid_transports()
Returns a list of existing plugin names

getcwd()
Get working directory

Returns a string identifying the current working directory

getfile(remotepath, localpath, *args, **kwargs)
Retrieve a file from remote source to local destination dst must be an absolute path (src not
necessarily)

Parameters

• remotepath (str) – remote_folder_path

4.1. Modules 273

AiiDA documentation, Release 0.7.0

• localpath (str) – local_folder_path

gettree(remotepath, localpath, *args, **kwargs)
Retrieve a folder recursively from remote source to local destination dst must be an absolute
path (src not necessarily)

Parameters

• remotepath (str) – remote_folder_path

• localpath (str) – local_folder_path

glob(pathname)
Return a list of paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

gotocomputer_command(remotedir)
Return a string to be run using os.system in order to connect via the transport to the remote
directory.

Expected behaviors:
•A new bash session is opened
•A reasonable error message is produced if the folder does not exist

Parameters remotedir (str) – the full path of the remote directory

iglob(pathname)
Return an iterator which yields the paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

isdir(path)
True if path is an existing directory.

Parameters path (str) – path to directory

Returns boolean

isfile(path)
Return True if path is an existing file.

Parameters path (str) – path to file

Returns boolean

listdir(path=’.’, pattern=None)
Return a list of the names of the entries in the given path. The list is in arbitrary order. It does
not include the special entries ‘.’ and ‘..’ even if they are present in the directory.

Parameters

• path (str) – path to list (default to ‘.’)

• pattern (str) – if used, listdir returns a list of files matching filters in
Unix style. Unix only.

Returns a list of strings

logger
Return the internal logger. If you have set extra parameters using _set_logger_extra(), a suitable
LoggerAdapter instance is created, bringing with itself also the extras.

makedirs(path, ignore_existing=False)
Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any
intermediate path segment (not just the rightmost) will be created if it does not exist.

Parameters

274 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

• path (str) – directory to create

• ignore_existing (bool) – if set to true, it doesn’t give any error if the
leaf directory does already exist

Raises OSError, if directory at path already exists

mkdir(path, ignore_existing=False)
Create a folder (directory) named path.

Parameters

• path (str) – name of the folder to create

• ignore_existing (bool) – if True, does not give any error if the direc-
tory already exists

Raises OSError, if directory at path already exists

normalize(path=’.’)
Return the normalized path (on the server) of a given path. This can be used to quickly resolve
symbolic links or determine what the server is considering to be the “current folder”.

Parameters path (str) – path to be normalized

Raises IOError – if the path can’t be resolved on the server

open()
Opens a local transport channel

path_exists(path)
Returns True if path exists, False otherwise.

put(localpath, remotepath, *args, **kwargs)
Put a file or a directory from local src to remote dst. src must be an absolute path (dst not
necessarily)) Redirects to putfile and puttree.

Parameters

• localpath (str) – absolute path to local source

• remotepath (str) – path to remote destination

putfile(localpath, remotepath, *args, **kwargs)
Put a file from local src to remote dst. src must be an absolute path (dst not necessarily))

Parameters

• localpath (str) – absolute path to local file

• remotepath (str) – path to remote file

puttree(localpath, remotepath, *args, **kwargs)
Put a folder recursively from local src to remote dst. src must be an absolute path (dst not
necessarily))

Parameters

• localpath (str) – absolute path to local folder

• remotepath (str) – path to remote folder

remove(path)
Remove the file at the given path. This only works on files; for removing folders (directories),
use rmdir.

Parameters path (str) – path to file to remove

Raises IOError – if the path is a directory

4.1. Modules 275

AiiDA documentation, Release 0.7.0

rename(oldpath, newpath)
Rename a file or folder from oldpath to newpath.

Parameters

• oldpath (str) – existing name of the file or folder

• newpath (str) – new name for the file or folder

Raises

• IOError – if oldpath/newpath is not found

• ValueError – if oldpath/newpath is not a valid string

rmdir(path)
Remove the folder named path. This works only for empty folders. For recursive remove, use
rmtree.

Parameters path (str) – absolute path to the folder to remove

rmtree(path)
Remove recursively the content at path

Parameters path (str) – absolute path to remove

symlink(remotesource, remotedestination)
Create a symbolic link between the remote source and the remote destination.

Parameters

• remotesource – remote source

• remotedestination – remote destination

whoami()
Get the remote username

Returns list of username (str), retval (int), stderr (str)

aiida.transport.__init__.TransportFactory(module)
Used to return a suitable Transport subclass.

Parameters module (str) – name of the module containing the Transport subclass
Returns the transport subclass located in module ‘module’

exception aiida.transport.__init__.TransportInternalError
Raised if there is a transport error that is raised to an internal error (e.g. a transport method called
without opening the channel first).

aiida.transport.__init__.copy_from_remote_to_remote(transportsource, transport-
destination, remotesource,
remotedestination, **kwargs)

Copy files or folders from a remote computer to another remote computer.
Parameters

• transportsource – transport to be used for the source computer

• transportdestination – transport to be used for the destination computer

• remotesource (str) – path to the remote source directory / file

• remotedestination (str) – path to the remote destination directory / file

• kwargs – keyword parameters passed to the final put, except for ‘dereference’
that is passed to the initial get

Note: it uses the method transportsource.copy_from_remote_to_remote

276 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Developing a plugin

The transport class is actually almost never used in first person by the user. It is mostly utilized by the Exe-
cutionManager, that use the transport plugin to connect to the remote computer to manage the calculation.
The ExecutionManager has to be able to use always the same function, or the same interface, regardless
of which kind of connection is actually really using.

The generic transport class contains a set of minimal methods that an implementation must support, in
order to be fully compatible with the other plugins. If not, a NotImplementedError will be raised, interrupting
the managing of the calculation or whatever is using the transport plugin.

Since it is important that all plugins have the same interface, or the same response behavior, a set of
generic tests has been written (alongside with set of tests that are implementation specific). After every
modification, or when implementing a new plugin, it is crucial to run the tests and verify that everything is
passed. The modification of tests possibly means breaking back-compatibility and/or modifications to every
piece of code using a transport plugin.

If an unexpected behavior is observed during the usage, the way of fixing it is:

1. Write a new test that shows the problem (one test for one problem when possible)

2. Fix the bug

3. Verify that the test is passed correctly

The importance of point 1) is often neglected, but unittesting is a useful tool that helps you avoiding the
repetition of errors. Despite the appearence, it’s a time-saver! Not only, the tests help you seeing how the
plugin is used.

As for the general functioning of the plugin, the __init__ method is used only to initialize the class
instance, without actually opening the transport channel. The connection must be opened only by the
__enter__ method, (and closed by __exit__. The __enter__ method let you use the transport class
using the with statement (see Python docs), in a way similar to the following:

t = TransportPlugin()
with open(t):

t.do_something_remotely

To ensure this, for example, the local plugin uses a hidden boolean variable _is_open that is set when the
__enter__ and __exit__ methods are called. The Ssh logic is instead given by the property sftp.

The other functions that require some care are the copying functions, called using the following terminology:

1. put: from local source to remote destination

2. get: from remote source to local destination

3. copy: copying files from remote source to remote destination

Note that these functions must copy files or folders regardless, internally, they will fallback to functions like
putfile or puttree.

The last function requiring care is exec_command_wait, which is an analogue to the subprocess Python
module. The function gives the freedom to execute a string as a remote command, thus it could produce
nasty effects if not written with care. Be sure to escape any string for bash!

Currently, the implemented plugins are the Local and the Ssh transports. The Local one is simply a wrapper
to some standard Python modules, like shutil or os, those functions are simply interfaced in a different
way with AiiDA. The SSh instead is an interface to the Paramiko library.

Below, you can find a template to fill for a new transport plugin, with a minimal docstring that also work for
the sphinx documentation.

4.1. Modules 277

http://docs.python.org/release/2.5/whatsnew/pep-343.html
http://docs.python.org/2/library/subprocess.html
http://www.lag.net/paramiko/

AiiDA documentation, Release 0.7.0

class NewTransport(aiida.transport.Transport):

def __init__(self, machine, **kwargs):
"""
Initialize the Transport class.

:param machine: the machine to connect to
"""

def __enter__(self):
"""
Open the connection
"""

def __exit__(self, type, value, traceback):
"""
Close the connection
"""

def chdir(self,path):
"""
Change directory to 'path'

:param str path: path to change working directory into.
:raises: IOError, if the requested path does not exist
:rtype: string
"""

def chmod(self,path,mode):
"""
Change permissions of a path.

:param str path: path to file
:param int mode: new permissions
"""

def copy(self,remotesource,remotedestination,*args,**kwargs):
"""
Copy a file or a directory from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raises: IOError, if source or destination does not exist
"""
raise NotImplementedError

def copyfile(self,remotesource,remotedestination,*args,**kwargs):
"""
Copy a file from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raises IOError: if one of src or dst does not exist
"""

278 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

def copytree(self,remotesource,remotedestination,*args,**kwargs):
"""
Copy a folder from remote source to remote destination
(On the same remote machine)

:param str remotesource: path of the remote source directory / file
:param str remotedestination: path of the remote destination directory / file

:raise IOError: if one of src or dst does not exist
"""

def exec_command_wait(self,command, **kwargs):
"""
Execute the command on the shell, waits for it to finish,
and return the retcode, the stdout and the stderr.

Enforce the execution to be run from the pwd (as given by
self.getcwd), if this is not None.

:param str command: execute the command given as a string
:return: a tuple: the retcode (int), stdout (str) and stderr (str).
"""

def get_attribute(self,path):
"""
Return an object FixedFieldsAttributeDict for file in a given path,
as defined in aiida.common.extendeddicts
Each attribute object consists in a dictionary with the following keys:

* st_size: size of files, in bytes

* st_uid: user id of owner

* st_gid: group id of owner

* st_mode: protection bits

* st_atime: time of most recent access

* st_mtime: time of most recent modification

:param str path: path to file
:return: object FixedFieldsAttributeDict
"""

def getcwd(self):
"""
Get working directory

:return: a string identifying the current working directory
"""

def get(self, remotepath, localpath, *args, **kwargs):
"""
Retrieve a file or folder from remote source to local destination
dst must be an absolute path (src not necessarily)

:param remotepath: (str) remote_folder_path

4.1. Modules 279

AiiDA documentation, Release 0.7.0

:param localpath: (str) local_folder_path
"""

def getfile(self, remotepath, localpath, *args, **kwargs):
"""
Retrieve a file from remote source to local destination
dst must be an absolute path (src not necessarily)

:param str remotepath: remote_folder_path
:param str localpath: local_folder_path
"""

def gettree(self, remotepath, localpath, *args, **kwargs):
"""
Retrieve a folder recursively from remote source to local destination
dst must be an absolute path (src not necessarily)

:param str remotepath: remote_folder_path
:param str localpath: local_folder_path
"""

def gotocomputer_command(self, remotedir):
"""
Return a string to be run using os.system in order to connect
via the transport to the remote directory.

Expected behaviors:

* A new bash session is opened

* A reasonable error message is produced if the folder does not exist

:param str remotedir: the full path of the remote directory
"""

def isdir(self,path):
"""
True if path is an existing directory.

:param str path: path to directory
:return: boolean
"""

def isfile(self,path):
"""
Return True if path is an existing file.

:param str path: path to file
:return: boolean
"""

def listdir(self, path='.',pattern=None):
"""
Return a list of the names of the entries in the given path.
The list is in arbitrary order. It does not include the special
entries '.' and '..' even if they are present in the directory.

:param str path: path to list (default to '.')

280 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

:param str pattern: if used, listdir returns a list of files matching
filters in Unix style. Unix only.

:return: a list of strings
"""

def makedirs(self,path,ignore_existing=False):
"""
Super-mkdir; create a leaf directory and all intermediate ones.
Works like mkdir, except that any intermediate path segment (not
just the rightmost) will be created if it does not exist.

:param str path: directory to create
:param bool ignore_existing: if set to true, it doesn't give any error

if the leaf directory does already exist

:raises: OSError, if directory at path already exists
"""

def mkdir(self,path,ignore_existing=False):
"""
Create a folder (directory) named path.

:param str path: name of the folder to create
:param bool ignore_existing: if True, does not give any error if the

directory already exists

:raises: OSError, if directory at path already exists
"""

def normalize(self,path='.'):
"""
Return the normalized path (on the server) of a given path.
This can be used to quickly resolve symbolic links or determine
what the server is considering to be the "current folder".

:param str path: path to be normalized

:raise IOError: if the path can't be resolved on the server
"""

def put(self, localpath, remotepath, *args, ** kwargs):
"""
Put a file or a directory from local src to remote dst.
src must be an absolute path (dst not necessarily))
Redirects to putfile and puttree.

:param str localpath: path to remote destination
:param str remotepath: absolute path to local source
"""

def putfile(self, localpath, remotepath, *args, ** kwargs):
"""
Put a file from local src to remote dst.
src must be an absolute path (dst not necessarily))

:param str localpath: path to remote file
:param str remotepath: absolute path to local file
"""

4.1. Modules 281

AiiDA documentation, Release 0.7.0

def puttree(self, localpath, remotepath, *args, ** kwargs):
"""
Put a folder recursively from local src to remote dst.
src must be an absolute path (dst not necessarily))

:param str localpath: path to remote folder
:param str remotepath: absolute path to local folder
"""

def rename(src,dst):
"""
Rename a file or folder from src to dst.

:param str oldpath: existing name of the file or folder
:param str newpath: new name for the file or folder

:raises IOError: if src/dst is not found
:raises ValueError: if src/dst is not a valid string
"""

def remove(self,path):
"""
Remove the file at the given path. This only works on files;
for removing folders (directories), use rmdir.

:param str path: path to file to remove

:raise IOError: if the path is a directory
"""

def rmdir(self,path):
"""
Remove the folder named path.
This works only for empty folders. For recursive remove, use rmtree.

:param str path: absolute path to the folder to remove
"""
raise NotImplementedError

def rmtree(self,path):
"""
Remove recursively the content at path

:param str path: absolute path to remove
"""

4.1.3 aiida.scheduler documentation

We report here the generic AiiDA scheduler implementation.

Generic scheduler class

class aiida.scheduler.__init__.Scheduler
Base class for all schedulers.

282 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

classmethod create_job_resource(**kwargs)
Create a suitable job resource from the kwargs specified

getJobs(jobs=None, user=None, as_dict=False)
Get the list of jobs and return it.

Typically, this function does not need to be modified by the plugins.
Parameters

• jobs (list) – a list of jobs to check; only these are checked

• user (str) – a string with a user: only jobs of this user are checked

• as_dict (list) – if False (default), a list of JobInfo objects is returned.
If True, a dictionary is returned, having as key the job_id and as value the
JobInfo object.

Note: typically, only either jobs or user can be specified. See also comments in
_get_joblist_command.

get_detailed_jobinfo(jobid)
Return a string with the output of the detailed_jobinfo command.

At the moment, the output text is just retrieved and stored for logging purposes, but no parsing
is performed.

classmethod get_short_doc()
Return the first non-empty line of the class docstring, if available

get_submit_script(job_tmpl)
Return the submit script as a string. :parameter job_tmpl: a ai-
ida.scheduler.datastrutures.JobTemplate object.

The plugin returns something like

#!/bin/bash <- this shebang line could be configurable in the future scheduler_dependent stuff to
choose numnodes, numcores, walltime, ... prepend_computer [also from calcinfo, joined with the
following?] prepend_code [from calcinfo] output of _get_script_main_content postpend_code
postpend_computer

kill(jobid)
Kill a remote job, and try to parse the output message of the scheduler to check if the scheduler
accepted the command.

..note:: On some schedulers, even if the command is accepted, it may take some seconds for
the job to actually disappear from the queue.

Parameters jobid (str) – the job id to be killed

Returns True if everything seems ok, False otherwise.

logger
Return the internal logger.

set_transport(transport)
Set the transport to be used to query the machine or to submit scripts. This class assumes that
the transport is open and active.

submit_from_script(working_directory, submit_script)
Goes in the working directory and submits the submit_script.

Return a string with the JobID in a valid format to be used for querying.

Typically, this function does not need to be modified by the plugins.

4.1. Modules 283

AiiDA documentation, Release 0.7.0

transport
Return the transport set for this scheduler.

aiida.scheduler.__init__.SchedulerFactory(module)
Used to load a suitable Scheduler subclass.

Parameters module (str) – a string with the module name
Returns the scheduler subclass contained in module ‘module’

Scheduler datastructures

This module defines the main data structures used by the Scheduler.

In particular, there is the definition of possible job states (job_states), the data structure to be filled for job
submission (JobTemplate), and the data structure that is returned when querying for jobs in the scheduler
(JobInfo).

class aiida.scheduler.datastructures.JobInfo(init=None)
Contains properties for a job in the queue. Most of the fields are taken from DRMAA v.2.

Note that default fields may be undefined. This is an expected behavior and the application must cope
with this case. An example for instance is the exit_status for jobs that have not finished yet; or features
not supported by the given scheduler.

Fields:
•job_id: the job ID on the scheduler
•title: the job title, as known by the scheduler
•exit_status: the exit status of the job as reported by the operating system on the execution
host

•terminating_signal: the UNIX signal that was responsible for the end of the job.
•annotation: human-readable description of the reason for the job being in the current state or
substate.

•job_state: the job state (one of those defined in aiida.scheduler.datastructures.job_states)
•job_substate: a string with the implementation-specific sub-state
•allocated_machines: a list of machines used for the current job. This is a list of
MachineInfo objects.

•job_owner: the job owner as reported by the scheduler
•num_mpiprocs: the total number of requested MPI procs
•num_cpus: the total number of requested CPUs (cores) [may be undefined]
•num_machines: the number of machines (i.e., nodes), required by the
job. If allocated_machines is not None, this number must be equal to
len(allocated_machines). Otherwise, for schedulers not supporting the retrieval of
the full list of allocated machines, this attribute can be used to know at least the number of
machines.

•queue_name: The name of the queue in which the job is queued or running.
•wallclock_time_seconds: the accumulated wallclock time, in seconds
•requested_wallclock_time_seconds: the requested wallclock time, in seconds
•cpu_time: the accumulated cpu time, in seconds
•submission_time: the absolute time at which the job was submitted, of type date-
time.datetime

•dispatch_time: the absolute time at which the job first entered the ‘started’ state, of type
datetime.datetime

•finish_time: the absolute time at which the job first entered the ‘finished’ state, of type
datetime.datetime

class aiida.scheduler.datastructures.JobResource(init=None)
A class to store the job resources. It must be inherited and redefined by the specific plugin, that should

284 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

contain a _job_resource_class attribute pointing to the correct JobResource subclass.

It should at least define the get_tot_num_mpiprocs() method, plus an __init__ to accept its set of
variables.

Typical attributes are:
•num_machines
•num_mpiprocs_per_machine

or (e.g. for SGE)
•tot_num_mpiprocs
•parallel_env

The __init__ should take care of checking the values. The init should raise only ValueError or Type-
Error on invalid parameters.

classmethod accepts_default_mpiprocs_per_machine()
Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False other-
wise.

Should be implemented in each subclass.

get_tot_num_mpiprocs()
Return the total number of cpus of this job resource.

classmethod get_valid_keys()
Return a list of valid keys to be passed to the __init__

class aiida.scheduler.datastructures.JobTemplate(init=None)
A template for submitting jobs. This contains all required information to create the job header.
The required fields are: working_directory, job_name, num_machines, num_mpiprocs_per_machine,

argv.
Fields:

•submit_as_hold: if set, the job will be in a ‘hold’ status right after the submission
•rerunnable: if the job is rerunnable (boolean)
•job_environment: a dictionary with environment variables to set before the execution of the
code.

•working_directory: the working directory for this job. During submission, the transport will
first do a ‘chdir’ to this directory, and then possibly set a scheduler parameter, if this is supported
by the scheduler.

•email: an email address for sending emails on job events.
•email_on_started: if True, ask the scheduler to send an email when the job starts.
•email_on_terminated: if True, ask the scheduler to send an email when the job ends. This
should also send emails on job failure, when possible.

•job_name: the name of this job. The actual name of the job can be different from the one
specified here, e.g. if there are unsupported characters, or the name is too long.

•sched_output_path: a (relative) file name for the stdout of this job
•sched_error_path: a (relative) file name for the stdout of this job
•sched_join_files: if True, write both stdout and stderr on the same file (the one specified
for stdout)

•queue_name: the name of the scheduler queue (sometimes also called partition), on which the
job will be submitted.

•job_resource: a suitable JobResource subclass with information on how
many nodes and cpus it should use. It must be an instance of the
aiida.scheduler.Scheduler._job_resource_class class. Use the Sched-
uler.create_job_resource method to create it.

•num_machines: how many machines (or nodes) should be used
•num_mpiprocs_per_machine: how many MPI procs should be used on each machine (or
node).

4.1. Modules 285

AiiDA documentation, Release 0.7.0

•priority: a priority for this job. Should be in the format accepted by the specific scheduler.
•max_memory_kb: The maximum amount of memory the job is allowed to allocate ON EACH
NODE, in kilobytes

•max_wallclock_seconds: The maximum wall clock time that all processes of a job are al-
lowed to exist, in seconds

•custom_scheduler_commands: a string that will be inserted right after the last scheduler
command, and before any other non-scheduler command; useful if some specific flag needs to
be added and is not supported by the plugin

•prepend_text: a (possibly multi-line) string to be inserted in the scheduler script before the
main execution line

•append_text: a (possibly multi-line) string to be inserted in the scheduler script after the main
execution line

•import_sys_environment: import the system environment variables
•codes_info: a list of aiida.common.datastructures.CalcInfo objects. Each contains the infor-
mation necessary to run a single code. At the moment, it can contain:

–cmdline_parameters: a list of strings with the command line arguments of the program
to run. This is the main program to be executed. NOTE: The first one is the executable
name. For MPI runs, this will probably be “mpirun” or a similar program; this has to be
chosen at a upper level.

–stdin_name: the (relative) file name to be used as stdin for the program specified with
argv.

–stdout_name: the (relative) file name to be used as stdout for the program specified with
argv.

–stderr_name: the (relative) file name to be used as stderr for the program specified with
argv.

–join_files: if True, stderr is redirected on the same file specified for stdout.
•codes_run_mode: sets the run_mode with which the (multiple) codes have to be executed.
For example, parallel execution:

mpirun -np 8 a.x &
mpirun -np 8 b.x &
wait

The serial execution would be without the &’s. Values are given by ai-
ida.common.datastructures.code_run_modes.

class aiida.scheduler.datastructures.MachineInfo(init=None)
Similarly to what is defined in the DRMAA v.2 as SlotInfo; this identifies each machine (also called
‘node’ on some schedulers) on which a job is running, and how many CPUs are being used. (Some
of them could be undefined)

•name: name of the machine
•num_cpus: number of cores used by the job on this machine
•num_mpiprocs: number of MPI processes used by the job on this machine

class aiida.scheduler.datastructures.NodeNumberJobResource(**kwargs)
An implementation of JobResource for schedulers that support the specification of a number of nodes
and a number of cpus per node

classmethod accepts_default_mpiprocs_per_machine()
Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False other-
wise.

get_tot_num_mpiprocs()
Return the total number of cpus of this job resource.

classmethod get_valid_keys()

286 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Return a list of valid keys to be passed to the __init__

class aiida.scheduler.datastructures.ParEnvJobResource(**kwargs)
An implementation of JobResource for schedulers that support the specification of a parallel environ-
ment (a string) + the total number of nodes

classmethod accepts_default_mpiprocs_per_machine()
Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’ key, False other-
wise.

get_tot_num_mpiprocs()
Return the total number of cpus of this job resource.

4.1.4 aiida.cmdline documentation

Baseclass

class aiida.cmdline.baseclass.VerdiCommand
This command has no documentation yet.

complete(subargs_idx, subargs)
Method called when the user asks for the bash completion. Print a list of valid keywords. Re-
turning without printing will use standard bash completion.

Parameters

• subargs_idx – the index of the subargs where the TAB key was pressed
(0 is the first element of subargs)

• subargs – a list of subarguments to this command

classmethod get_command_name()
Return the name of the verdi command associated to this class. By default, the lower-case
version of the class name.

get_full_command_name(with_exec_name=True)
Return the current command name. Also tries to get the subcommand name.

Parameters with_exec_name – if True, return the full string, including the exe-
cutable name (‘verdi’). If False, omit it.

run(*args)
Method executed when the command is called from the command line.

class aiida.cmdline.baseclass.VerdiCommandWithSubcommands
Used for commands with subcommands. Just define, in the __init__, the self.valid_subcommands
dictionary, in the format:

self.valid_subcommands = {
'uploadfamily': (self.uploadfamily, self.complete_auto),
'listfamilies': (self.listfamilies, self.complete_none),
}

where the key is the subcommand name to give on the command line, and the value is a tuple of
length 2, the first is the function to call on execution, the second is the function to call on complete.

This class already defined the complete_auto and complete_none commands, that respectively call
the default bash completion for filenames/folders, or do not give any completion suggestion. Other
functions can of course be defined.

4.1. Modules 287

AiiDA documentation, Release 0.7.0

Todo

Improve the docstrings for commands with subcommands.

get_full_command_name(*args, **kwargs)
Return the current command name. Also tries to get the subcommand name.

Also tries to see if the caller function was one specific submethod.
Parameters with_exec_name – if True, return the full string, including the exe-

cutable name (‘verdi’). If False, omit it.

Verdi lib

Command line commands for the main executable ‘verdi’ of aiida

If you want to define a new command line parameter, just define a new class inheriting from VerdiCommand,
and define a run(self,*args) method accepting a variable-length number of parameters args (the command-
line parameters), which will be invoked when this executable is called as verdi NAME

Don’t forget to add the docstring to the class: the first line will be the short description, the following ones
the long description.

class aiida.cmdline.verdilib.Completion
Manage bash completion

Return a list of available commands, separated by spaces. Calls the correct function of the command
if the TAB has been pressed after the first command.

Returning without printing will use the default bash completion.

class aiida.cmdline.verdilib.CompletionCommand
Return the bash completion function to put in ~/.bashrc

This command prints on screen the function to be inserted in your .bashrc command. You can copy
and paste the output, or simply add eval “verdi completioncommand” to your .bashrc, AFTER having
added the aiida/bin directory to the path.

run(*args)
I put the documentation here, and I don’t print it, so we don’t clutter too much the .bashrc.

•“${THE_WORDS[@]}” (with the @) puts each element as a different parameter; note that
the variable expansion etc. is performed

•I add a ‘x’ at the end and then remove it; in this way, $() will not remove trailing spaces
•If the completion command did not print anything, we use the default bash completion for
filenames

•If instead the code prints something empty, thanks to the workaround above $OUTPUT is
not empty, so we do go the the ‘else’ case and then, no substitution is suggested.

class aiida.cmdline.verdilib.Help
Describe a specific command

Pass a further argument to get a description of a given command.

class aiida.cmdline.verdilib.Install
Install/setup aiida for the current user

This command creates the ~/.aiida folder in the home directory of the user, interactively asks for
the database settings and the repository location, does a setup of the daemon and runs a migrate
command to create/setup the database.

288 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

complete(subargs_idx, subargs)
No completion after ‘verdi install’.

class aiida.cmdline.verdilib.ListParams
List available commands

List available commands and their short description. For the long description, use the ‘help’ command.

exception aiida.cmdline.verdilib.ProfileParsingException(*args, **kwargs)
Exception raised when parsing the profile command line option, if only -p is provided, and no profile
is specified

class aiida.cmdline.verdilib.Run
Execute an AiiDA script

class aiida.cmdline.verdilib.Runserver
Run the AiiDA webserver on localhost

This command runs the webserver on the default port. Further command line options are passed to
the Django manage runserver command

aiida.cmdline.verdilib.exec_from_cmdline(argv)
The main function to be called. Pass as parameter the sys.argv.

aiida.cmdline.verdilib.get_command_suggestion(command)
A function that prints on stderr a list of similar commands

aiida.cmdline.verdilib.get_listparams()
Return a string with the list of parameters, to be printed

The advantage of this function is that the calling routine can choose to print it on stdout or stderr,
depending on the needs.

aiida.cmdline.verdilib.parse_profile(argv, merge_equal=False)
Parse the argv to see if a profile has been specified, return it with the command position shift (index
where the commands start)

Parameters merge_equal – if True, merge things like (‘verdi’, ‘–profile’, ‘=’, ‘x’, ‘y’) to
(‘verdi’, ‘–profile=x’, ‘y’) but then return the correct index for the original array.

Raises ProfileParsingException – if there is only ‘verdi’ specified, or if only ‘verdi -p’
(in these cases, one has respectively exception.minus_p_provided equal to False or
True)

aiida.cmdline.verdilib.update_environment(*args, **kwds)
Used as a context manager, changes sys.argv with the new_argv argument, and restores it upon exit.

Daemon

class aiida.cmdline.commands.daemon.Daemon
Manage the AiiDA daemon

This command allows to interact with the AiiDA daemon. Valid subcommands are:
•start: start the daemon
•stop: restart the daemon
•restart: restart the aiida daemon, waiting for it to cleanly exit before restarting it.
•status: inquire the status of the Daemon.
•logshow: show the log in a continuous fashion, similar to the ‘tail -f’ command. Press CTRL+C
to exit.

__init__()
A dictionary with valid commands and functions to be called: start, stop, status and restart.

4.1. Modules 289

AiiDA documentation, Release 0.7.0

configure_user(*args)
Configure the user that can run the daemon.

daemon_logshow(*args)
Show the log of the daemon, press CTRL+C to quit.

daemon_restart(*args)
Restart the daemon. Before restarting, wait for the daemon to really shut down.

daemon_start(*args)
Start the daemon

daemon_status(*args)
Print the status of the daemon

daemon_stop(*args, **kwargs)
Stop the daemon.

Parameters wait_for_death – If True, also verifies that the process
was already killed. It attempts at most max_retries times, with
sleep_between_retries seconds between one attempt and the fol-
lowing one (both variables are for the time being hardcoded in the function).

Returns None if wait_for_death is False. True/False if the process was actually
dead or after all the retries it was still alive.

get_daemon_pid()
Return the daemon pid, as read from the supervisord.pid file. Return None if no pid is found (or
the pid is not valid).

kill_daemon()
This is the actual call that kills the daemon.

There are some print statements inside, but no sys.exit, so it is safe to be called from other parts
of the code.

aiida.cmdline.commands.daemon.is_daemon_user()
Return True if the user is the current daemon user, False otherwise.

Data

class aiida.cmdline.commands.data.Data
Setup and manage data specific types

There is a list of subcommands for managing specific types of data. For instance, ‘data upf’ manages
pseudopotentials in the UPF format.

__init__()
A dictionary with valid commands and functions to be called.

class aiida.cmdline.commands.data.Depositable
Provides shell completion for depositable data nodes.

Note: classes, inheriting Depositable, MUST NOT contain attributes, starting with _deposit_, which
are not plugins for depositing.

deposit(*args)
Deposit the data node to a given database.

Parameters args – a namespace with parsed command line parameters.

290 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

get_deposit_plugins()
Get the list of all implemented deposition methods for data class.

class aiida.cmdline.commands.data.Exportable
Provides shell completion for exportable data nodes.

Note: classes, inheriting Exportable, MUST NOT contain attributes, starting with _export_, which
are not plugins for exporting.

export(*args)
Export the data node to a given format.

get_export_plugins()
Get the list of all implemented exporters for data class.

class aiida.cmdline.commands.data.Importable
Provides shell completion for importable data nodes.

Note: classes, inheriting Importable, MUST NOT contain attributes, starting with _import_, which
are not plugins for importing.

get_import_plugins()
Get the list of all implemented importers for data class.

class aiida.cmdline.commands.data.Listable
Provides shell completion for listable data nodes.

Note: classes, inheriting Listable, MUST define value for property dataclass (preferably in
__init__), which has to point to correct *Data class.

append_list_cmdline_arguments(parser)
Append additional command line parameters, that are later parsed and used in the query con-
struction.

Parameters parser – instance of argparse.ArgumentParser

get_column_names()
Return the list with column names.

Note: neither the number nor correspondence of column names and actual columns in the
output from the query are checked.

list(*args)
List all instances of given data class.

Parameters args – a list of command line arguments.

query(args)
Perform the query and return information for the list.

Parameters args – a namespace with parsed command line parameters.

Returns table (list of lists) with information, describing nodes. Each row describes a
single hit.

query_group(q_object, args)
Subselect to filter data nodes by their group.

4.1. Modules 291

AiiDA documentation, Release 0.7.0

Parameters

• q_object – a query object

• args – a namespace with parsed command line parameters.

query_group_qb(filters, args)
Subselect to filter data nodes by their group.

Parameters

• q_object – a query object

• args – a namespace with parsed command line parameters.

query_past_days(q_object, args)
Subselect to filter data nodes by their age.

Parameters

• q_object – a query object

• args – a namespace with parsed command line parameters.

query_past_days_qb(filters, args)
Subselect to filter data nodes by their age.

Parameters

• filters – the filters to be enriched.

• args – a namespace with parsed command line parameters.

class aiida.cmdline.commands.data.Visualizable
Provides shell completion for visualizable data nodes.

Note: classes, inheriting Visualizable, MUST NOT contain attributes, starting with _show_, which
are not plugins for visualization.

In order to specify a default visualization format, one has to override _default_show_format prop-
erty (preferably in __init__), setting it to the name of default visualization tool.

get_show_plugins()
Get the list of all implemented plugins for visualizing the structure.

show(*args)
Show the data node with a visualization program.

4.1.5 aiida.execmanager documentation

Execution Manager

This file contains the main routines to submit, check and retrieve calculation results. These are general and
contain only the main logic; where appropriate, the routines make reference to the suitable plugins for all
plugin-specific operations.

aiida.daemon.execmanager.retrieve_computed_for_authinfo(authinfo)

aiida.daemon.execmanager.retrieve_jobs()

aiida.daemon.execmanager.submit_calc(calc, authinfo, transport=None)
Submit a calculation

292 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Note if no transport is passed, a new transport is opened and then closed within this func-
tion. If you want to use an already opened transport, pass it as further parameter. In
this case, the transport has to be already open, and must coincide with the transport
of the the computer defined by the authinfo.

Parameters

• calc – the calculation to submit (an instance of the aiida.orm.JobCalculation
class)

• authinfo – the authinfo for this calculation.

• transport – if passed, must be an already opened transport. No checks
are done on the consistency of the given transport with the transport of the
computer defined in the authinfo.

aiida.daemon.execmanager.submit_jobs()
Submit all jobs in the TOSUBMIT state.

aiida.daemon.execmanager.submit_jobs_with_authinfo(authinfo)
Submit jobs in TOSUBMIT status belonging to user and machine as defined in the ‘dbauthinfo’ table.

aiida.daemon.execmanager.update_jobs()
calls an update for each set of pairs (machine, aiidauser)

aiida.daemon.execmanager.update_running_calcs_status(authinfo)
Update the states of calculations in WITHSCHEDULER status belonging to user and machine as
defined in the ‘dbauthinfo’ table.

4.1.6 aiida.backends.djsite documentation

Database schema

class aiida.backends.djsite.db.models.DbAttribute(*args, **kwargs)
This table stores attributes that uniquely define the content of the node. Therefore, their modification
corrupts the data.

class aiida.backends.djsite.db.models.DbAttributeBaseClass(*args, **kwargs)
Abstract base class for tables storing element-attribute-value data. Element is the dbnode; attribute is
the key name. Value is the specific value to store.

This table had different SQL columns to store different types of data, and a datatype field to know the
actual datatype.

Moreover, this class unpacks dictionaries and lists when possible, so that it is possible to query inside
recursive lists and dicts.

classmethod del_value_for_node(dbnode, key)
Delete an attribute from the database for the given dbnode.

Note no exception is raised if no attribute with the given key is found in the DB.

Parameters

• dbnode – the dbnode for which you want to delete the key.

• key – the key to delete.

classmethod get_all_values_for_node(dbnode)
Return a dictionary with all attributes for the given dbnode.

Returns a dictionary where each key is a level-0 attribute stored in the Db table,
correctly converted to the right type.

4.1. Modules 293

AiiDA documentation, Release 0.7.0

classmethod get_all_values_for_nodepk(dbnodepk)
Return a dictionary with all attributes for the dbnode with given PK.

Returns a dictionary where each key is a level-0 attribute stored in the Db table,
correctly converted to the right type.

classmethod get_value_for_node(dbnode, key)
Get an attribute from the database for the given dbnode.

Returns the value stored in the Db table, correctly converted to the right type.

Raises AttributeError – if no key is found for the given dbnode

classmethod has_key(dbnode, key)
Return True if the given dbnode has an attribute with the given key, False otherwise.

classmethod list_all_node_elements(dbnode)
Return a django queryset with the attributes of the given node, only at deepness level zero (i.e.,
keys not containing the separator).

classmethod set_value_for_node(dbnode, key, value, with_transaction=True,
stop_if_existing=False)

This is the raw-level method that accesses the DB. No checks are done to prevent the user from
(re)setting a valid key. To be used only internally.

Todo there may be some error on concurrent write; not checked in this unlucky case!

Parameters

• dbnode – the dbnode for which the attribute should be stored; in an inte-
ger is passed, this is used as the PK of the dbnode, without any further
check (for speed reasons)

• key – the key of the attribute to store; must be a level-zero attribute (i.e.,
no separators in the key)

• value – the value of the attribute to store

• with_transaction – if True (default), do this within a transaction, so
that nothing gets stored if a subitem cannot be created. Otherwise, if this
parameter is False, no transaction management is performed.

• stop_if_existing – if True, it will stop with an UniquenessError ex-
ception if the key already exists for the given node. Otherwise, it will first
delete the old value, if existent. The use with True is useful if you want
to use a given attribute as a “locking” value, e.g. to avoid to perform an
action twice on the same node. Note that, if you are using transactions,
you may get the error only when the transaction is committed.

Raises ValueError – if the key contains the separator symbol used internally to
unpack dictionaries and lists (defined in cls._sep).

class aiida.backends.djsite.db.models.DbAuthInfo(*args, **kwargs)
Table that pairs aiida users and computers, with all required authentication information.

get_transport()
Given a computer and an aiida user (as entries of the DB) return a configured transport to
connect to the computer.

class aiida.backends.djsite.db.models.DbCalcState(*args, **kwargs)
Store the state of calculations.

The advantage of a table (with uniqueness constraints) is that this disallows entering twice in the same
state (e.g., retrieving twice).

294 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

class aiida.backends.djsite.db.models.DbComment(id, uuid, dbnode_id, ctime, mtime,
user_id, content)

class aiida.backends.djsite.db.models.DbComputer(*args, **kwargs)
Table of computers or clusters.

Attributes: * name: A name to be used to refer to this computer. Must be unique. * hostname:
Fully-qualified hostname of the host * transport_type: a string with a valid transport type

Note: other things that may be set in the metadata:
•mpirun command
•num cores per node
•max num cores
•workdir: Full path of the aiida folder on the host. It can contain the string {username} that
will be substituted by the username of the user on that machine. The actual workdir is
then obtained as workdir.format(username=THE_ACTUAL_USERNAME) Example: workdir =
“/scratch/{username}/aiida/”

•allocate full node = True or False
•... (further limits per user etc.)

classmethod get_dbcomputer(computer)
Return a DbComputer from its name (or from another Computer or DbComputer instance)

class aiida.backends.djsite.db.models.DbExtra(*args, **kwargs)
This table stores extra data, still in the key-value format, that the user can attach to a node. Therefore,
their modification simply changes the user-defined data, but does not corrupt the node (it will still be
loadable without errors). Could be useful to add “duplicate” information for easier querying, or for
tagging nodes.

class aiida.backends.djsite.db.models.DbGroup(*args, **kwargs)
A group of nodes.

Any group of nodes can be created, but some groups may have specific meaning if they satisfy specific
rules (for instance, groups of UpdData objects are pseudopotential families - if no two pseudos are
included for the same atomic element).

class aiida.backends.djsite.db.models.DbLink(*args, **kwargs)
Direct connection between two dbnodes. The label is identifying the link type.

class aiida.backends.djsite.db.models.DbLock(key, creation, timeout, owner)

class aiida.backends.djsite.db.models.DbLog(id, time, loggername, levelname, objname,
objpk, message, metadata)

classmethod add_from_logrecord(record)
Add a new entry from a LogRecord (from the standard python logging facility). No exceptions
are managed here.

class aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass(*args,
**kwargs)

Abstract base class for tables storing attribute + value data, of different data types (without any asso-
ciation to a Node).

classmethod create_value(key, value, subspecifier_value=None, other_attribs={})
Create a new list of attributes, without storing them, associated with the current key/value pair
(and to the given subspecifier, e.g. the DbNode for DbAttributes and DbExtras).

Note No hits are done on the DB, in particular no check is done on the existence of
the given nodes.

Parameters

4.1. Modules 295

AiiDA documentation, Release 0.7.0

• key – a string with the key to create (can contain the separator cls._sep if
this is a sub-attribute: indeed, this function calls itself recursively)

• value – the value to store (a basic data type or a list or a dict)

• subspecifier_value – must be None if this class has no subspecifier
set (e.g., the DbSetting class). Must be the value of the subspecifier (e.g.,
the dbnode) for classes that define it (e.g. DbAttribute and DbExtra)

• other_attribs – a dictionary of other parameters, to store only on the
level-zero attribute (e.g. for description in DbSetting).

Returns always a list of class instances; it is the user responsibility to store such
entries (typically with a Django bulk_create() call).

classmethod del_value(key, only_children=False, subspecifier_value=None)
Delete a value associated with the given key (if existing).

Note No exceptions are raised if no entry is found.

Parameters

• key – the key to delete. Can contain the separator cls._sep if you want to
delete a subkey.

• only_children – if True, delete only children and not the entry itself.

• subspecifier_value – must be None if this class has no subspecifier
set (e.g., the DbSetting class). Must be the value of the subspecifier (e.g.,
the dbnode) for classes that define it (e.g. DbAttribute and DbExtra)

classmethod get_query_dict(value)
Return a dictionary that can be used in a django filter to query for a specific value. This takes
care of checking the type of the input parameter ‘value’ and to convert it to the right query.

Parameters value – The value that should be queried. Note: can only be base
datatype, not a list or dict. For those, query directly for one of the sub-elements.

Todo see if we want to give the possibility to query for the existence of a (possibly
empty) dictionary or list, of for their length.

Note this will of course not find a data if this was stored in the DB as a serialized
JSON.

Returns a dictionary to be used in the django .filter() method. For instance, if ‘value’
is a string, it will return the dictionary {’datatype’: ’txt’, ’tval’:
value}.

Raise ValueError if value is not of a base datatype (string, integer, float, bool, None,
or date)

getvalue()
This can be called on a given row and will get the corresponding value, casting it correctly.

long_field_length()
Return the length of “long” fields. This is used, for instance, for the ‘key’ field of attributes. This
returns 1024 typically, but it returns 255 if the backend is mysql.

Note Call this function only AFTER having called load_dbenv!

classmethod set_value(key, value, with_transaction=True, subspecifier_value=None,
other_attribs={}, stop_if_existing=False)

Set a new value in the DB, possibly associated to the given subspecifier.
Note This method also stored directly in the DB.

Parameters

296 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

• key – a string with the key to create (must be a level-0 attribute, that is it
cannot contain the separator cls._sep).

• value – the value to store (a basic data type or a list or a dict)

• subspecifier_value – must be None if this class has no subspecifier
set (e.g., the DbSetting class). Must be the value of the subspecifier (e.g.,
the dbnode) for classes that define it (e.g. DbAttribute and DbExtra)

• with_transaction – True if you want this function to be managed with
transactions. Set to False if you already have a manual management of
transactions in the block where you are calling this function (useful for
speed improvements to avoid recursive transactions)

• other_attribs – a dictionary of other parameters, to store only on the
level-zero attribute (e.g. for description in DbSetting).

• stop_if_existing – if True, it will stop with an UniquenessError ex-
ception if the new entry would violate an uniqueness constraint in the DB
(same key, or same key+node, depending on the specific subclass). Oth-
erwise, it will first delete the old value, if existent. The use with True is
useful if you want to use a given attribute as a “locking” value, e.g. to
avoid to perform an action twice on the same node. Note that, if you are
using transactions, you may get the error only when the transaction is
committed.

subspecifier_pk
Return the subspecifier PK in the database (or None, if no subspecifier should be used)

subspecifiers_dict
Return a dict to narrow down the query to only those matching also the subspecifier.

classmethod validate_key(key)
Validate the key string to check if it is valid (e.g., if it does not contain the separator symbol.).

Returns None if the key is valid

Raises ValidationError – if the key is not valid

class aiida.backends.djsite.db.models.DbNode(*args, **kwargs)
Generic node: data or calculation or code.

Nodes can be linked (DbLink table) Naming convention for Node relationships: A –> C –> B.
•A is ‘input’ of C.
•C is ‘output’ of A.
•A is ‘parent’ of B,C
•C,B are ‘children’ of A.

Note parents and children are stored in the DbPath table, the transitive closure table, au-
tomatically updated via DB triggers whenever a link is added to or removed from the
DbLink table.

Internal attributes, that define the node itself, are stored in the DbAttribute table; further user-defined
attributes, called ‘extra’, are stored in the DbExtra table (same schema and methods of the DbAttribute
table, but the code does not rely on the content of the table, therefore the user can use it at his will to
tag or annotate nodes.

Note Attributes in the DbAttribute table have to be thought as belonging to the DbNode,
(this is the reason for which there is no ‘user’ field in the DbAttribute field). Moreover,
Attributes define uniquely the Node so should be immutable (except for the few ones
defined in the _updatable_attributes attribute of the Node() class, that are updatable:
these are Attributes that are set by AiiDA, so the user should not modify them, but

4.1. Modules 297

AiiDA documentation, Release 0.7.0

can be changed (e.g., the append_text of a code, that can be redefined if the code
has to be recompiled).

attributes
Return all attributes of the given node as a single dictionary.

extras
Return all extras of the given node as a single dictionary.

get_aiida_class()
Return the corresponding aiida instance of class aiida.orm.Node or a appropriate subclass.

get_simple_name(invalid_result=None)
Return a string with the last part of the type name.

If the type is empty, use ‘Node’. If the type is invalid, return the content of the input variable
invalid_result.

Parameters invalid_result – The value to be returned if the node type is not
recognized.

class aiida.backends.djsite.db.models.DbPath(*args, **kwargs)
Transitive closure table for all dbnode paths.

expand()
Method to expand a DbPath (recursive function), i.e., to get a list of all dbnodes that are traversed
in the given path.

Returns list of DbNode objects representing the expanded DbPath

class aiida.backends.djsite.db.models.DbSetting(*args, **kwargs)
This will store generic settings that should be database-wide.

class aiida.backends.djsite.db.models.DbUser(*args, **kwargs)
This class replaces the default User class of Django

class aiida.backends.djsite.db.models.DbWorkflow(id, uuid, ctime, mtime, user_id,
label, description, nodeversion,
lastsyncedversion, state, report,
module, module_class, script_path,
script_md5)

get_aiida_class()
Return the corresponding aiida instance of class aiida.worflow

is_subworkflow()
Return True if this is a subworkflow, False if it is a root workflow, launched by the user.

class aiida.backends.djsite.db.models.DbWorkflowData(id, parent_id, name, time,
data_type, value_type,
json_value, aiida_obj_id)

class aiida.backends.djsite.db.models.DbWorkflowStep(id, parent_id, name, user_id,
time, nextcall, state)

aiida.backends.djsite.db.models.deserialize_attributes(data, sep, origi-
nal_class=None, orig-
inal_pk=None)

Deserialize the attributes from the format internally stored in the DB to the actual format (dictionaries,
lists, integers, ...

Parameters

• data – must be a dictionary of dictionaries. In the top-level dictionary, the
key must be the key of the attribute. The value must be a dictionary with the
following keys: datatype, tval, fval, ival, bval, dval. Other keys are ignored.

298 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

NOTE that a type check is not performed! tval is expected to be a string, dval
a date, etc.

• sep – a string, the separator between subfields (to separate the name of a
dictionary from the keys it contains, for instance)

• original_class – if these elements come from a specific subclass of Db-
MultipleValueAttributeBaseClass, pass here the class (note: the class, not the
instance!). This is used only in case the wrong number of elements is found in
the raw data, to print a more meaningful message (if the class has a dbnode
associated to it)

• original_pk – if the elements come from a specific subclass of DbMultiple-
ValueAttributeBaseClass that has a dbnode associated to it, pass here the PK
integer. This is used only in case the wrong number of elements is found in the
raw data, to print a more meaningful message

Returns a dictionary, where for each entry the corresponding value is returned,
deserialized back to lists, dictionaries, etc. Example: if data = {’a’:
{’datatype’: "list", "ival": 2, ...}, ’a.0’: {’datatype’:
"int", "ival": 2, ...}, ’a.1’: {’datatype’: "txt", "tval":
"yy"}], it will return {"a": [2, "yy"]}

4.1.7 QueryTool documentation

This section describes the querytool class for querying nodes with an easy Python interface.

4.1.8 QueryBuilder documentation

The general functionalities that all querybuilders need to have are found in this module.
AbstractQueryBuilder() is the abstract class for QueryBuilder classes. Subclasses need to be written
for every schema/backend implemented in backends.

class aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder(*args,
**kwargs)

QueryBuilderBase is the base class for QueryBuilder classes, which are than adapted to the individual
schema and ORM used. In here, general graph traversal functionalities are implemented, the specific
type of node and link is dealt in subclasses. In order to load the correct subclass:

from aiida.orm.querybuilder import QueryBuilder

add_filter(tagspec, filter_spec)
Adding a filter to my filters.

Parameters

• tagspec – The tag, which has to exist already as a key in self._filters

• filter_spec – The specifications for the filter, has to be a dictionary

add_projection(tag_spec, projection_spec)
Adds a projection

Parameters

• tag_spec – A valid specification for a tag

• projection_spec – The specification for the projection. A projection is
a list of dictionaries, with each dictionary containing key-value pairs where

4.1. Modules 299

AiiDA documentation, Release 0.7.0

the key is database entity (e.g. a column / an attribute) and the value is
(optional) additional information on how to process this database entity.

If the given projection_spec is not a list, it will be expanded to a list. If the listitems are not
dictionaries, but strings (No additional processing of the projected results desired), they will be
expanded to dictionaries.

Usage:

qb = QueryBuilder()
qb.append(StructureData, tag='struc')

Will project the uuid and the kinds
qb.add_projection('struc', ['uuid', 'attributes.kinds'])

all(batch_size=None)
Executes the full query with the order of the rows as returned by the backend. the order inside
each row is given by the order of the vertices in the path and the order of the projections for
each vertice in the path.

Parameters batch_size (int) – The size of the batches to ask the backend to
batch results in subcollections. You can optimize the speed of the query by
tuning this parameter. Leave the default (None) if speed is not critical or if you
don’t know what you’re doing!

Returns a list of lists of all projected entities.

append(cls=None, type=None, tag=None, autotag=False, filters=None, project=None, sub-
classing=True, edge_tag=None, edge_filters=None, edge_project=None, **kwargs)

Any iterative procedure to build the path for a graph query needs to invoke this method to append
to the path.

Parameters

• cls – The Aiida-class (or backend-class) defining the appended vertice

• type – The type of the class, if cls is not given

• tag – A unique tag. If none is given, will take the classname. See keyword
autotag to achieve unique tag.

• filters – Filters to apply for this vertice. See usage examples for de-
tails.

• autotag – Whether to search for a unique tag, (default False). If True,
will find a unique tag. Cannot be set to True if tag is specified.

• subclassing – Whether to include subclasses of the given class (default
True). E.g. Specifying JobCalculation will include PwCalculation

A small usage example how this can be invoked:

qb = QueryBuilder() # Instantiating empty querybuilder instance
qb.append(cls=StructureData) # First item is StructureData node
The
next node in the path is a PwCalculation, with
the structure joined as an input
qb.append(

cls=PwCalculation,
output_of=StructureData

)

Returns self

300 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

children(**kwargs)
Join to children/descendants of previous vertice in path.

Returns self

count()
Counts the number of rows returned by the backend.

Returns the number of rows as an integer

dict(batch_size=None)
Executes the full query with the order of the rows as returned by the backend. the order inside
each row is given by the order of the vertices in the path and the order of the projections for
each vertice in the path.

Parameters batch_size (int) – The size of the batches to ask the backend to
batch results in subcollections. You can optimize the speed of the query by
tuning this parameter. Leave the default (None) if speed is not critical or if you
don’t know what you’re doing!

Returns a list of dictionaries of all projected entities. Each dictionary consists of key
value pairs, where the key is the tag of the vertice and the value a dictionary of
key-value pairs where key is the entity description (a column name or attribute
path) and the value the value in the DB.

Usage:

qb = QueryBuilder()
qb.append(

StructureData,
tag='structure',
filters={'uuid':{'==':myuuid}},

)
qb.append(

Node,
descendant_of='structure',
project=['type', 'id'], # returns type (string) and id (string)
tag='descendant'

)

Return the dictionaries:
print "qb.iterdict()"
for d in qb.iterdict():

print '>>>', d

results in the following output:

qb.iterdict()
>>> {'descendant': {

'type': u'calculation.job.quantumespresso.pw.PwCalculation.',
'id': 7716}

}
>>> {'descendant': {

'type': u'data.remote.RemoteData.',
'id': 8510}

}

distinct()
Asks for distinct rows. Does not execute the query! If you want a distinct query:

4.1. Modules 301

AiiDA documentation, Release 0.7.0

qb = QueryBuilder(**queryhelp)
qb.distinct().all() # or
qb.distinct().get_results_dict()

Returns self

except_if_input_to(calc_class)
Makes counterquery based on the own path, only selecting entries that have been input to
calc_class

Parameters calc_class – The calculation class to check against

Returns self

first()
Executes query asking for one instance. Use as follows:

qb = QueryBuilder(**queryhelp)
qb.first()

Returns One row of results as a list, order as given by order of vertices in path and
projections for vertice

get_alias(tag)
In order to continue a query by the user, this utility function returns the aliased ormclasses.

Parameters tag – The tag for a vertice in the path

Returns the alias given for that vertice

get_aliases()
Returns the list of aliases

get_json_compatible_queryhelp()
Makes the queryhelp a json - compatible dictionary. In this way,the queryhelp can be stored in a
node in the database and retrieved or shared.

Returns the json-compatible queryhelp
All classes defined in the input are converted to strings specifying the type, for example:

get_query()
Checks if the query instance is still valid by hashing the queryhelp. If not invokes
QueryBuilderBase._build().

Returns an instance of sqlalchemy.orm.Query

get_results_dict()
Deprecated, use QueryBuilderBase.dict() or QueryBuilderBase.iterdict() in-
stead

inject_query(query)
Manipulate the query an inject it back. This can be done to add custom filters using SQLA.
:param query: A sqlalchemy.orm.Query instance

inputs(**kwargs)
Join to inputs of previous vertice in path.

Returns self

iterall(batch_size=100)
Same as QueryBuilderBase.all(), but returns a generator. Be aware
that this is only safe if no commit will take place during this transac-
tion. You might also want to read the SQLAlchemy documentation on
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

302 Chapter 4. Modules provided with aiida

http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

AiiDA documentation, Release 0.7.0

Parameters batch_size (int) – The size of the batches to ask the backend to
batch results in subcollections. You can optimize the speed of the query by
tuning this parameter.

Returns a generator of lists

iterdict(batch_size=100)
Same as QueryBuilderBase.dict(), but returns a generator. Be aware
that this is only safe if no commit will take place during this transac-
tion. You might also want to read the SQLAlchemy documentation on
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

Parameters batch_size (int) – The size of the batches to ask the backend to
batch results in subcollections. You can optimize the speed of the query by
tuning this parameter.

Returns a generator of dictionaries

limit(limit)
Set the limit (nr of rows to return)

Parameters limit (int) – integers of nr of rows to return

offset(offset)
Set the offset. If offset is set, that many rows are skipped before returning. offset = 0 is the
same as omitting setting the offset. If both offset and limit appear, then offset rows are skipped
before starting to count the limit rows that are returned.

Parameters offset (int) – integers of nr of rows to skip

order_by(order_by)
Set the entity to order by

Parameters order_by – This is a list of items, where each item is a dictionary spec-
ifies what to sort for an entity

In each dictionary in that list, keys represent valid tags of entities (tables), and values are list of
columns.

Usage:

#Sorting by id (ascending):
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':['id']})

or
#Sorting by id (ascending):
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':{'order':'asc'}}]})

for descending order:
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':{'order':'desc'}}]})

or (shorter)
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':'desc'}]})

outputs(**kwargs)
Join to outputs of previous vertice in path.

4.1. Modules 303

http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

AiiDA documentation, Release 0.7.0

Returns self

parents(**kwargs)
Join to parents/ancestors of previous vertice in path.

Returns self

4.1.9 DbImporter documentation

Generic database importer class

This section describes the base class for the import of data from external databases.

aiida.tools.dbimporters.DbImporterFactory(pluginname)
This function loads the correct DbImporter plugin class

class aiida.tools.dbimporters.baseclasses.CifEntry(db_name=None, db_uri=None,
id=None, version=None, ex-
tras={}, uri=None)

Represents an entry from the structure database (COD, ICSD, ...).

cif
Returns raw contents of a CIF file as string.

get_aiida_structure()
Returns AiiDA structure corresponding to the CIF file.

get_ase_structure()
Returns ASE representation of the CIF.

Note: To be removed, as it is duplicated in aiida.orm.data.cif.CifData.

get_cif_node(store=False)
Creates a CIF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.cif.CifData object

get_parsed_cif()
Returns data structure, representing the CIF file. Can be created using PyCIFRW or any other
open-source parser.

Returns list of lists

get_raw_cif()
Returns raw contents of a CIF file as string.

Returns contents of a file as string

class aiida.tools.dbimporters.baseclasses.DbEntry(db_name=None, db_uri=None,
id=None, version=None, extras={},
uri=None)

Represents an entry from external database.

contents
Returns raw contents of a file as string.

class aiida.tools.dbimporters.baseclasses.DbImporter
Base class for database importers.

get_supported_keywords()
Returns the list of all supported query keywords.

Returns list of strings

304 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

query(**kwargs)
Method to query the database.

Parameters

• id – database-specific entry identificator

• element – element name from periodic table of elements

• number_of_elements – number of different elements

• mineral_name – name of mineral

• chemical_name – chemical name of substance

• formula – chemical formula

• volume – volume of the unit cell in cubic angstroms

• spacegroup – symmetry space group symbol in Hermann-Mauguin no-
tation

• spacegroup_hall – symmetry space group symbol in Hall notation

• a – length of lattice vector in angstroms

• b – length of lattice vector in angstroms

• c – length of lattice vector in angstroms

• alpha – angles between lattice vectors in degrees

• beta – angles between lattice vectors in degrees

• gamma – angles between lattice vectors in degrees

• z – number of the formula units in the unit cell

• measurement_temp – temperature in kelvins at which the unit-cell pa-
rameters were measured

• measurement_pressure – pressure in kPa at which the unit-cell pa-
rameters were measured

• diffraction_temp – mean temperature in kelvins at which the intensi-
ties were measured

• diffraction_pressure – mean pressure in kPa at which the intensi-
ties were measured

• authors – authors of the publication

• journal – name of the journal

• title – title of the publication

• year – year of the publication

• journal_volume – journal volume of the publication

• journal_issue – journal issue of the publication

• first_page – first page of the publication

• last_page – last page of the publication

• doi – digital object identifyer (DOI), refering to the publication

Raises NotImplementedError – if search using given keyword is not imple-
mented.

4.1. Modules 305

AiiDA documentation, Release 0.7.0

setup_db(**kwargs)
Sets the database parameters. The method should reconnect to the database using updated
parameters, if already connected.

class aiida.tools.dbimporters.baseclasses.DbSearchResults(results)
Base class for database results.

All classes, inheriting this one and overriding at(), are able to benefit from having functions
__iter__, __len__ and __getitem__.

class DbSearchResultsIterator(results, increment=1)
Iterator for search results

DbSearchResults.__iter__()
Instances of aiida.tools.dbimporters.baseclasses.DbSearchResults can be used
as iterators.

DbSearchResults.at(position)
Returns position-th result as aiida.tools.dbimporters.baseclasses.DbEntry.

Parameters position – zero-based index of a result.

Raises IndexError – if position is out of bounds.

DbSearchResults.fetch_all()
Returns all query results as an array of aiida.tools.dbimporters.baseclasses.DbEntry.

DbSearchResults.next()
Returns the next result of the query (instance of aiida.tools.dbimporters.baseclasses.DbEntry).

Raises StopIteration – when the end of result array is reached.

class aiida.tools.dbimporters.baseclasses.UpfEntry(db_name=None, db_uri=None,
id=None, version=None, ex-
tras={}, uri=None)

Represents an entry from the pseudopotential database.

get_upf_node(store=False)
Creates an UPF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.upf.UpfData object

Structural databases

COD database importer

class aiida.tools.dbimporters.plugins.cod.CodDbImporter(**kwargs)
Database importer for Crystallography Open Database.

get_supported_keywords()
Returns the list of all supported query keywords.

Returns list of strings

query(**kwargs)
Performs a query on the COD database using keyword = value pairs, specified in kwargs.

Returns an instance of aiida.tools.dbimporters.plugins.cod.CodSearchResults.

query_sql(**kwargs)
Forms a SQL query for querying the COD database using keyword = value pairs, specified
in kwargs.

Returns string containing a SQL statement.

306 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

setup_db(**kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.cod.CodEntry(uri, db_name=’Crystallography
Open Database’,
db_uri=’http://www.crystallography.net’,
**kwargs)

Represents an entry from COD.

class aiida.tools.dbimporters.plugins.cod.CodSearchResults(results)
Results of the search, performed on COD.

ICSD database importer

exception aiida.tools.dbimporters.plugins.icsd.CifFileErrorExp
Raised when the author loop is missing in a CIF file.

class aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(**kwargs)
Importer for the Inorganic Crystal Structure Database, short ICSD, provided by FIZ Karlsruhe. It allows
to run queries and analyse all the results. See the DbImporter documentation and tutorial page for
more information.

Parameters

• server – Server URL, the web page of the database. It is required in order to
have access to the full database. I t should contain both the protocol and the
domain name and end with a slash, as in:

server = "http://ICSDSERVER.com/"

• urladd – part of URL which is added between query and and the server URL
(default: index.php?). only needed for web page query

• querydb – boolean, decides whether the mysql database is queried (default:
True). If False, the query results are obtained through the web page query,
which is restricted to a maximum of 1000 results per query.

• dl_db – icsd comes with a full (default: icsd) and a demo database (icsdd).
This parameter allows the user to switch to the demo database for testing pur-
poses, if the access rights to the full database are not granted.

• host – MySQL database host. If the MySQL database is hosted on a different
machine, use “127.0.0.1” as host, and open a SSH tunnel to the host using:

ssh -L 3306:localhost:3306 username@hostname.com

or (if e.g. you get an URLError with Errno 111 (Connection refused) upon
querying):

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@hostname.com

• user – mysql database username (default: dba)

• passwd – mysql database password (default: sql)

• db – name of the database (default: icsd)

• port – Port to access the mysql database (default: 3306)
get_supported_keywords()

Returns List of all supported query keywords.

4.1. Modules 307

AiiDA documentation, Release 0.7.0

query(**kwargs)
Depending on the db_parameters, the mysql database or the web page are queried. Valid
parameters are found using IcsdDbImporter.get_supported_keywords().

Parameters kwargs – A list of ‘’keyword = [values]” pairs.

setup_db(**kwargs)
Change the database connection details. At least the host server has to be defined.

Parameters kwargs – db_parameters for the mysql database connection (host, user,
passwd, db, port)

class aiida.tools.dbimporters.plugins.icsd.IcsdEntry(uri, **kwargs)
Represent an entry from Icsd.

Note

• Before July 2nd 2015, source[’id’] contained icsd.IDNUM (internal icsd id num-
ber) and source[’extras’][’cif_nr’] the cif number (icsd.COLL_CODE).

• After July 2nd 2015, source[’id’] has been replaced by the cif number and
source[’extras’][’idnum’] is icsd.IDNUM .

cif
Returns cif file of Icsd entry.

get_aiida_structure()
Returns AiiDA structure corresponding to the CIF file.

get_ase_structure()
Returns ASE structure corresponding to the cif file.

get_cif_node()
Create a CIF node, that can be used in AiiDA workflow.

Returns aiida.orm.data.cif.CifData object

get_corrected_cif()
Add quotes to the lines in the author loop if missing.

Note ase raises an AssertionError if the quotes in the author loop are missing.

class aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults(query,
db_parameters)

Result manager for the query performed on ICSD.
Parameters

• query – mysql query or webpage query

• db_parameters – database parameter setup during the initialisation of the
IcsdDbImporter.

at(position)
Return position-th result as IcsdEntry.

next()
Return next result as IcsdEntry.

query_db_version()
Query the version of the icsd database (last row of RELEASE_TAGS).

query_page()
Query the mysql or web page database, depending on the db_parameters. Store the num-
ber_of_results, cif file number and the corresponding icsd number.

Note Icsd uses its own number system, different from the CIF file numbers.

exception aiida.tools.dbimporters.plugins.icsd.NoResultsWebExp
Raised when a webpage query returns no results.

308 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

aiida.tools.dbimporters.plugins.icsd.correct_cif(cif)
Correct the format of the CIF files. At the moment, it only fixes missing quotes in the authors field
(ase.read.io only works if the author names are quoted, if not an AssertionError is raised).

Parameters cif – A string containing the content of the CIF file.
Returns a string containing the corrected CIF file.

MPOD database importer

class aiida.tools.dbimporters.plugins.mpod.MpodDbImporter(**kwargs)
Database importer for Material Properties Open Database.

get_supported_keywords()
Returns the list of all supported query keywords.

Returns list of strings

query(**kwargs)
Performs a query on the MPOD database using keyword = value pairs, specified in kwargs.

Returns an instance of aiida.tools.dbimporters.plugins.mpod.MpodSearchResults.

query_get(**kwargs)
Forms a HTTP GET query for querying the MPOD database. May return more than one query
in case an intersection is needed.

Returns a list containing strings for HTTP GET statement.

setup_db(query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.mpod.MpodEntry(uri, **kwargs)
Represents an entry from MPOD.

class aiida.tools.dbimporters.plugins.mpod.MpodSearchResults(results)
Results of the search, performed on MPOD.

OQMD database importer

class aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter(**kwargs)
Database importer for Open Quantum Materials Database.

get_supported_keywords()
Returns the list of all supported query keywords.

Returns list of strings

query(**kwargs)
Performs a query on the OQMD database using keyword = value pairs, specified in kwargs.

Returns an instance of aiida.tools.dbimporters.plugins.oqmd.OqmdSearchResults.

query_get(**kwargs)
Forms a HTTP GET query for querying the OQMD database.

Returns a strings for HTTP GET statement.

setup_db(query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.oqmd.OqmdEntry(uri, **kwargs)
Represents an entry from OQMD.

class aiida.tools.dbimporters.plugins.oqmd.OqmdSearchResults(results)
Results of the search, performed on OQMD.

4.1. Modules 309

AiiDA documentation, Release 0.7.0

PCOD database importer

class aiida.tools.dbimporters.plugins.pcod.PcodDbImporter(**kwargs)
Database importer for Predicted Crystallography Open Database.

query(**kwargs)
Performs a query on the PCOD database using keyword = value pairs, specified in kwargs.

Returns an instance of aiida.tools.dbimporters.plugins.pcod.PcodSearchResults.

query_sql(**kwargs)
Forms a SQL query for querying the PCOD database using keyword = value pairs, specified
in kwargs.

Returns string containing a SQL statement.

class aiida.tools.dbimporters.plugins.pcod.PcodEntry(uri, db_name=’Predicted Crys-
tallography Open Database’,
db_uri=’http://www.crystallography.net/pcod’,
**kwargs)

Represents an entry from PCOD.

class aiida.tools.dbimporters.plugins.pcod.PcodSearchResults(results)
Results of the search, performed on PCOD.

TCOD database importer

class aiida.tools.dbimporters.plugins.tcod.TcodDbImporter(**kwargs)
Database importer for Theoretical Crystallography Open Database.

query(**kwargs)
Performs a query on the TCOD database using keyword = value pairs, specified in kwargs.

Returns an instance of aiida.tools.dbimporters.plugins.tcod.TcodSearchResults.

class aiida.tools.dbimporters.plugins.tcod.TcodEntry(uri, db_name=’Theoretical
Crystallography
Open Database’,
db_uri=’http://www.crystallography.net/tcod’,
**kwargs)

Represents an entry from TCOD.

class aiida.tools.dbimporters.plugins.tcod.TcodSearchResults(results)
Results of the search, performed on TCOD.

Other databases

NNINC database importer

class aiida.tools.dbimporters.plugins.nninc.NnincDbImporter(**kwargs)
Database importer for NNIN/C Pseudopotential Virtual Vault.

get_supported_keywords()
Returns the list of all supported query keywords.

Returns list of strings

query(**kwargs)
Performs a query on the NNIN/C Pseudopotential Virtual Vault using keyword = value pairs,
specified in kwargs.

310 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

Returns an instance of aiida.tools.dbimporters.plugins.nninc.NnincSearchResults.

query_get(**kwargs)
Forms a HTTP GET query for querying the NNIN/C Pseudopotential Virtual Vault.

Returns a string with HTTP GET statement.

setup_db(query_url=None, **kwargs)
Changes the database connection details.

class aiida.tools.dbimporters.plugins.nninc.NnincEntry(uri, **kwargs)
Represents an entry from NNIN/C Pseudopotential Virtual Vault.

class aiida.tools.dbimporters.plugins.nninc.NnincSearchResults(results)
Results of the search, performed on NNIN/C Pseudopotential Virtual Vault.

4.1.10 DbExporter documentation

TCOD database exporter

aiida.tools.dbexporters.tcod.cif_encode_contents(content, gzip=False,
gzip_threshold=1024)

Encodes data for usage in CIF text field in a best possible way: binary data is encoded using Base64
encoding; text with non-ASCII symbols, too long lines or lines starting with semicolons (‘;’) is encoded
using Quoted-printable encoding.

Parameters content – the content to be encoded
Return content encoded content
Return encoding a string specifying used encoding (None, ‘base64’, ‘ncr’, ‘quoted-

printable’, ‘gzip+base64’)

aiida.tools.dbexporters.tcod.decode_textfield(content, method)
Decodes the contents of encoded CIF textfield.

Parameters

• content – the content to be decoded

• method – method, which was used for encoding the contents (None, ‘base64’,
‘ncr’, ‘quoted-printable’, ‘gzip+base64’)

Returns decoded content
Raises ValueError – if the encoding method is unknown

aiida.tools.dbexporters.tcod.decode_textfield_base64(content)
Decodes the contents for CIF textfield from Base64 using standard Python implementation
(base64.standard_b64decode())

Parameters content – a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield_gzip_base64(content)
Decodes the contents for CIF textfield from Base64 and decompresses them with gzip.

Parameters content – a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield_ncr(content)
Decodes the contents for CIF textfield from Numeric Character Reference.

Parameters content – a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.decode_textfield_quoted_printable(content)
Decodes the contents for CIF textfield from quoted-printable encoding.

4.1. Modules 311

AiiDA documentation, Release 0.7.0

Parameters content – a string with contents
Returns decoded string

aiida.tools.dbexporters.tcod.deposit(what, type, author_name=None, au-
thor_email=None, url=None, title=None, user-
name=None, password=False, user_email=None,
code_label=’cif_cod_deposit’, com-
puter_name=None, replace=None, mes-
sage=None, **kwargs)

Launches a aiida.orm.calculation.job.JobCalculation to deposit data node to *COD-
type database.

Returns launched aiida.orm.calculation.job.JobCalculation instance.
Raises ValueError – if any of the required parameters are not given.

aiida.tools.dbexporters.tcod.deposition_cmdline_parameters(parser, exp-
class=’Data’)

Provides descriptions of command line options, that are used to control the process of deposition to
TCOD.

Parameters

• parser – an argparse.Parser instance

• expclass – name of the exported class to be shown in help string for the
command line options

Note: This method must not set any default values for command line options in order not to clash
with any other data deposition plugins.

aiida.tools.dbexporters.tcod.encode_textfield_base64(content, foldwidth=76)
Encodes the contents for CIF textfield in Base64 using standard Python implementation
(base64.standard_b64encode()).

Parameters

• content – a string with contents

• foldwidth – maximum width of line (default is 76)
Returns encoded string

aiida.tools.dbexporters.tcod.encode_textfield_gzip_base64(content, **kwargs)
Gzips the given string and encodes it in Base64.

Parameters content – a string with contents
Returns encoded string

aiida.tools.dbexporters.tcod.encode_textfield_ncr(content)
Encodes the contents for CIF textfield in Numeric Character Reference. Encoded characters:

•\x09, \x0A, \x0D, \x20–\x7E;
•‘;‘, if encountered on the beginning of the line;
•‘\t‘
•‘.‘ and ‘?‘, if comprise the entire textfield.

Parameters content – a string with contents
Returns encoded string

aiida.tools.dbexporters.tcod.encode_textfield_quoted_printable(content)
Encodes the contents for CIF textfield in quoted-printable encoding. In addition to non-ASCII char-
acters, that are encoded by Python function quopri.encodestring(), following characters are
encoded:

•‘;‘, if encountered on the beginning of the line;
•‘\t‘

312 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

•‘.‘ and ‘?‘, if comprise the entire textfield.

Parameters content – a string with contents
Returns encoded string

aiida.tools.dbexporters.tcod.export_cif(what, **kwargs)
Exports given coordinate-containing *Data node to string of CIF format.

Returns string with contents of CIF file.

aiida.tools.dbexporters.tcod.export_cifnode(what, parameters=None, trajec-
tory_index=None, store=False, re-
duce_symmetry=True, **kwargs)

The main exporter function. Exports given coordinate-containing *Data node to
aiida.orm.data.cif.CifData node, ready to be exported to TCOD. All *Data types, hav-
ing method _get_cif(), are supported in addition to aiida.orm.data.cif.CifData.

Parameters

• what – data node to be exported.

• parameters – a aiida.orm.data.parameter.ParameterData in-
stance, produced by the same calculation as the original exported node.

• trajectory_index – a step to be converted and exported in case a
aiida.orm.data.array.trajectory.TrajectoryData is exported.

• store – boolean indicating whether to store intermediate nodes or not. Default
False.

• dump_aiida_database – boolean indicating whether to include the dump
of AiiDA database (containing only transitive closure of the exported node).
Default True.

• exclude_external_contents – boolean indicating whether to exclude
nodes from AiiDA database dump, that are taken from external repositores
and have a URL link allowing to refetch their contents. Default False.

• gzip – boolean indicating whether to Gzip large CIF text fields. Default False.

• gzip_threshold – integer indicating the maximum size (in bytes) of uncom-
pressed CIF text fields when the gzip option is in action. Default 1024.

Returns a aiida.orm.data.cif.CifData node.

aiida.tools.dbexporters.tcod.export_values(what, **kwargs)
Exports given coordinate-containing *Data node to PyCIFRW CIF data structure.

Returns CIF data structure.

Note: Requires PyCIFRW.

aiida.tools.dbexporters.tcod.extend_with_cmdline_parameters(parser, exp-
class=’Data’)

Provides descriptions of command line options, that are used to control the process of exporting data
to TCOD CIF files.

Parameters

• parser – an argparse.Parser instance

• expclass – name of the exported class to be shown in help string for the
command line options

4.1. Modules 313

AiiDA documentation, Release 0.7.0

Note: This method must not set any default values for command line options in order not to clash
with any other data export plugins.

aiida.tools.dbexporters.tcod.translate_calculation_specific_values(calc,
trans-
lator,
**kwargs)

Translates calculation-specific values from aiida.orm.calculation.job.JobCalculation
subclass to appropriate TCOD CIF tags.

Parameters

• calc – an instance of aiida.orm.calculation.job.JobCalculation
subclass.

• translator – class, derived from aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator.
Raises ValueError – if translator is not derived from proper class.

TCOD parameter translator documentation

Base class

class aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
Base translator from calculation-specific input and output parameters to TCOD CIF dictionary tags.

classmethod get_BZ_integration_grid_X(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_Y(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_Z(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Z.

classmethod get_BZ_integration_grid_shift_X(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_shift_Y(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_shift_Z(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Z.

classmethod get_atom_site_residual_force_Cartesian_x(calc, **kwargs)
Returns a list of x components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_y(calc, **kwargs)
Returns a list of y components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_z(calc, **kwargs)
Returns a list of z components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_atom_type_basisset(calc, **kwargs)
Returns a list of basisset names for each atom type. The list order MUST be the same as of
get_atom_type_symbol().

314 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

classmethod get_atom_type_symbol(calc, **kwargs)
Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be
sorted.

classmethod get_atom_type_valence_configuration(calc, **kwargs)
Returns valence configuration of each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_computation_wallclock_time(calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_ewald_energy(calc, **kwargs)
Returns Ewald energy in eV.

classmethod get_exchange_correlation_energy(calc, **kwargs)
Returns exchange correlation (XC) energy in eV.

classmethod get_fermi_energy(calc, **kwargs)
Returns Fermi energy in eV.

classmethod get_hartree_energy(calc, **kwargs)
Returns Hartree energy in eV.

classmethod get_integration_Methfessel_Paxton_order(calc, **kwargs)
Returns the order of Methfessel-Paxton approximation if used.

classmethod get_integration_smearing_method(calc, **kwargs)
Returns the smearing method name as string.

classmethod get_integration_smearing_method_other(calc, **kwargs)
Returns the smearing method name as string if the name is different from specified in cif_dft.dic.

classmethod get_kinetic_energy_cutoff_EEX(calc, **kwargs)
Returns kinetic energy cutoff for exact exchange (EEX) operator in eV.

classmethod get_kinetic_energy_cutoff_charge_density(calc, **kwargs)
Returns kinetic energy cutoff for charge density in eV.

classmethod get_kinetic_energy_cutoff_wavefunctions(calc, **kwargs)
Returns kinetic energy cutoff for wavefunctions in eV.

classmethod get_number_of_electrons(calc, **kwargs)
Returns the number of electrons.

classmethod get_one_electron_energy(calc, **kwargs)
Returns one electron energy in eV.

classmethod get_software_executable_path(calc, **kwargs)
Returns the file-system path to the executable that was run for this computation.

classmethod get_software_package(calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package
or program name should be used, e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_software_package_compilation_timestamp(calc, **kwargs)
Returns the timestamp of package/program compilation in ISO 8601 format.

classmethod get_software_package_version(calc, **kwargs)
Returns software package version used to compute and produce the computed structure file.
Only version designator should be used, e.g. ‘3.4.0’, ‘2.1rc3’.

classmethod get_total_energy(calc, **kwargs)
Returns the total energy in eV.

4.1. Modules 315

AiiDA documentation, Release 0.7.0

CP

class aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
Quantum ESPRESSO’s CP-specific input and output parameter translator to TCOD CIF dictionary
tags.

classmethod get_computation_wallclock_time(calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_number_of_electrons(calc, **kwargs)
Returns the number of electrons.

classmethod get_software_package(calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package
or program name should be used, e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

NWChem (pymatgen-based)

class aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
NWChem’s input and output parameter translator to TCOD CIF dictionary tags.

classmethod get_atom_type_basisset(calc, **kwargs)
Returns a list of basisset names for each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_atom_type_symbol(calc, **kwargs)
Returns a list of atom types. Each atom site MUST occur only once in this list. List MUST be
sorted.

classmethod get_atom_type_valence_configuration(calc, **kwargs)
Returns valence configuration of each atom type. The list order MUST be the same as of
get_atom_type_symbol().

classmethod get_software_package(calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package
or program name should be used, e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_software_package_compilation_timestamp(calc, **kwargs)
Returns the timestamp of package/program compilation in ISO 8601 format.

classmethod get_software_package_version(calc, **kwargs)
Returns software package version used to compute and produce the computed structure file.
Only version designator should be used, e.g. ‘3.4.0’, ‘2.1rc3’.

PW

class aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
Quantum ESPRESSO’s PW-specific input and output parameter translator to TCOD CIF dictionary
tags.

classmethod get_BZ_integration_grid_X(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_Y(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_Z(calc, **kwargs)
Returns a number of points in the Brillouin zone along reciprocal lattice vector Z.

316 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

classmethod get_BZ_integration_grid_shift_X(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector X.

classmethod get_BZ_integration_grid_shift_Y(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Y.

classmethod get_BZ_integration_grid_shift_Z(calc, **kwargs)
Returns the shift of the Brillouin zone points along reciprocal lattice vector Z.

classmethod get_atom_site_residual_force_Cartesian_x(calc, **kwargs)
Returns a list of x components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_y(calc, **kwargs)
Returns a list of y components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_atom_site_residual_force_Cartesian_z(calc, **kwargs)
Returns a list of z components for Cartesian coordinates of residual force for atom. The list
order MUST be the same as in the resulting structure.

classmethod get_computation_wallclock_time(calc, **kwargs)
Returns the computation wallclock time in seconds.

classmethod get_ewald_energy(calc, **kwargs)
Returns Ewald energy in eV.

classmethod get_exchange_correlation_energy(calc, **kwargs)
Returns exchange correlation (XC) energy in eV.

classmethod get_fermi_energy(calc, **kwargs)
Returns Fermi energy in eV.

classmethod get_hartree_energy(calc, **kwargs)
Returns Hartree energy in eV.

classmethod get_integration_Methfessel_Paxton_order(calc, **kwargs)
Returns the order of Methfessel-Paxton approximation if used.

classmethod get_integration_smearing_method(calc, **kwargs)
Returns the smearing method name as string.

classmethod get_integration_smearing_method_other(calc, **kwargs)
Returns the smearing method name as string if the name is different from specified in cif_dft.dic.

classmethod get_kinetic_energy_cutoff_EEX(calc, **kwargs)
Returns kinetic energy cutoff for exact exchange (EEX) operator in eV.

Note: by default returns ecutrho, as indicated in http://www.quantum-espresso.org/wp-
content/uploads/Doc/INPUT_PW.html

classmethod get_kinetic_energy_cutoff_charge_density(calc, **kwargs)
Returns kinetic energy cutoff for charge density in eV.

Note: by default returns 4 * ecutwfc, as indicated in http://www.quantum-espresso.org/wp-
content/uploads/Doc/INPUT_PW.html

classmethod get_kinetic_energy_cutoff_wavefunctions(calc, **kwargs)
Returns kinetic energy cutoff for wavefunctions in eV.

4.1. Modules 317

http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

AiiDA documentation, Release 0.7.0

classmethod get_number_of_electrons(calc, **kwargs)
Returns the number of electrons.

classmethod get_one_electron_energy(calc, **kwargs)
Returns one electron energy in eV.

classmethod get_software_package(calc, **kwargs)
Returns the package or program name that was used to produce the structure. Only package
or program name should be used, e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

classmethod get_total_energy(calc, **kwargs)
Returns the total energy in eV.

4.1.11 aiida.tools documentation

Tools

pw input parser

Tools for parsing QE PW input files and creating AiiDa Node objects based on them.

TODO: Parse CONSTRAINTS, OCCUPATIONS, ATOMIC_FORCES once they are implemented in AiiDa

class aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile(pwinput)
Class used for parsing Quantum Espresso pw.x input files and using the info.

Variables

• namelists – A nested dictionary of the namelists and their key-value pairs.
The namelists will always be upper-case keys, while the parameter keys will
always be lower-case.

For example:

{"CONTROL": {"calculation": "bands",
"prefix": "al",
"pseudo_dir": "./pseudo",
"outdir": "./out"},

"ELECTRONS": {"diagonalization": "cg"},
"SYSTEM": {"nbnd": 8,

"ecutwfc": 15.0,
"celldm(1)": 7.5,
"ibrav": 2,
"nat": 1,
"ntyp": 1}

}

• atomic_positions – A dictionary with

– units: the units of the positions (always lower-case) or None

– names: list of the atom names (e.g. ’Si’, ’Si0’, ’Si_0’)

– positions: list of the [x, y, z] positions

– fixed_coords: list of [x, y, z] (bools) of the force modifications (Note: True
<–> Fixed, as defined in the BasePwCpInputGenerator._if_pos
method)

For example:

318 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

{'units': 'bohr',
'names': ['C', 'O'],
'positions': [[0.0, 0.0, 0.0],

[0.0, 0.0, 2.5]]
'fixed_coords': [[False, False, False],

[True, True, True]]}

• cell_parameters – A dictionary (if CELL_PARAMETERS is present; else:
None) with

– units: the units of the lattice vectors (always lower-case) or None

– cell: 3x3 list with lattice vectors as rows

For example:

{'units': 'angstrom',
'cell': [[16.9, 0.0, 0.0],

[-2.6, 8.0, 0.0],
[-2.6, -3.5, 7.2]]}

• k_points – A dictionary containing

– type: the type of kpoints (always lower-case)

– points: an Nx3 list of the kpoints (will not be present if type = ‘gamma’ or
type = ‘automatic’)

– weights: a 1xN list of the kpoint weights (will not be present if type =
‘gamma’ or type = ‘automatic’)

– mesh: a 1x3 list of the number of equally-spaced points in each direction
of the Brillouin zone, as in Monkhorst-Pack grids (only present if type =
‘automatic’)

– offset: a 1x3 list of the grid offsets in each direction of the Brillouin zone
(only present if type = ‘automatic’) (Note: The offset value for each direc-
tion will be one of 0.0 [no offset] or 0.5 [offset by half a grid step]. This
differs from the Quantum Espresso convention, where an offset value of
1 corresponds to a half-grid-step offset, but adheres to the current AiiDa
convention.

Examples:

{'type': 'crystal',
'points': [[0.125, 0.125, 0.0],

[0.125, 0.375, 0.0],
[0.375, 0.375, 0.0]],

'weights': [1.0, 2.0, 1.0]}

{'type': 'automatic',
'points': [8, 8, 8],
'offset': [0.0, 0.5, 0.0]}

{'type': 'gamma'}

• atomic_species – A dictionary with

– names: list of the atom names (e.g. ‘Si’, ‘Si0’, ‘Si_0’) (case as-is)

– masses: list of the masses of the atoms in ‘names’

4.1. Modules 319

AiiDA documentation, Release 0.7.0

– pseudo_file_names: list of the pseudopotential file names for the atoms
in ‘names’ (case as-is)

Example:

{'names': ['Li', 'O', 'Al', 'Si'],
'masses': [6.941, 15.9994, 26.98154, 28.0855],
'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',

'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

__init__(pwinput)
Parse inputs’s namelist and cards to create attributes of the info.

Parameters pwinput – Any one of the following

• A string of the (existing) absolute path to the pwinput file.

• A single string containing the pwinput file’s text.

• A list of strings, with the lines of the file as the elements.

• A file object. (It will be opened, if it isn’t already.)

Raises

• IOError – if pwinput is a file and there is a problem reading the file.

• TypeError – if pwinput is a list containing any non-string element(s).

• aiida.common.exceptions.ParsingError – if there are issues
parsing the pwinput.

get_kpointsdata()
Return a KpointsData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit conversion, ect. and then
creates an AiiDa KpointsData object.

Note: If the calculation uses only the gamma k-point (if self.k_points[’type’] == ‘gamma’), it is
necessary to also attach a settings node to the calculation with gamma_only = True.

Returns KpointsData object of the kpoints in the input file

Return type aiida.orm.data.array.kpoints.KpointsData

Raises aiida.common.exceptions.NotImplimentedError – if the kpoints
are in a format not yet supported.

get_structuredata()
Return a StructureData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit conversion, ect. and then
creates an AiiDa StructureData object.

All of the names corresponding of the Kind objects composing the StructureData object will
match those found in the ATOMIC_SPECIES block, so the pseudopotentials can be linked to
the calculation using the kind.name for each specific type of atom (in the event that you wish to
use different pseudo’s for two or more of the same atom).

Returns StructureData object of the structure in the input file

Return type aiida.orm.data.structure.StructureData

Raises aiida.common.exceptions.ParsingError – if there are issues pars-
ing the input.

320 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_positions(txt)
Return a dictionary containing info from the ATOMIC_POSITIONS card block in txt.

Note: If the units are unspecified, they will be returned as None.

Parameters txt (str) – A single string containing the QE input text to be parsed.
Returns

A dictionary with

• units: the units of the positions (always lower-case) or None

• names: list of the atom names (e.g. ’Si’, ’Si0’, ’Si_0’)

• positions: list of the [x, y, z] positions

• fixed_coords: list of [x, y, z] (bools) of the force modifications (Note: True <–>
Fixed, as defined in the BasePwCpInputGenerator._if_pos method)

For example:

{'units': 'bohr',
'names': ['C', 'O'],
'positions': [[0.0, 0.0, 0.0],

[0.0, 0.0, 2.5]]
'fixed_coords': [[False, False, False],

[True, True, True]]}

Return type dictionary
Raises aiida.common.exceptions.ParsingError – if there are issues parsing the

input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_species(txt)
Return a dictionary containing info from the ATOMIC_SPECIES card block in txt.

Parameters txt (str) – A single string containing the QE input text to be parsed.
Returns

A dictionary with

• names: list of the atom names (e.g. ‘Si’, ‘Si0’, ‘Si_0’) (case as-is)

• masses: list of the masses of the atoms in ‘names’

• pseudo_file_names: list of the pseudopotential file names for the atoms in
‘names’ (case as-is)

Example:

{'names': ['Li', 'O', 'Al', 'Si'],
'masses': [6.941, 15.9994, 26.98154, 28.0855],
'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',

'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

Return type dictionary
Raises aiida.common.exceptions.ParsingError – if there are issues parsing the

input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_cell_parameters(txt)
Return dict containing info from the CELL_PARAMETERS card block in txt.

4.1. Modules 321

AiiDA documentation, Release 0.7.0

Note: This card is only needed if ibrav = 0. Therefore, if the card is not present, the function will
return None and not raise an error.

Note: If the units are unspecified, they will be returned as None. The units interpreted by QE depend
on whether or not one of ‘celldm(1)’ or ‘a’ is set in &SYSTEM.

Parameters txt (str) – A single string containing the QE input text to be parsed.
Returns

A dictionary (if CELL_PARAMETERS is present; else: None) with

• units: the units of the lattice vectors (always lower-case) or None

• cell: 3x3 list with lattice vectors as rows

For example:

{'units': 'angstrom',
'cell': [[16.9, 0.0, 0.0],

[-2.6, 8.0, 0.0],
[-2.6, -3.5, 7.2]]}

Return type dict or None
Raises aiida.common.exceptions.ParsingError – if there are issues parsing the

input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_k_points(txt)
Return a dictionary containing info from the K_POINTS card block in txt.

Note: If the type of kpoints (where type = x in the card header, “K_POINTS x”) is not present, type
will be returned as ‘tpiba’, the QE default.

Parameters txt (str) – A single string containing the QE input text to be parsed.
Returns

A dictionary containing

• type: the type of kpoints (always lower-case)

• points: an Nx3 list of the kpoints (will not be present if type = ‘gamma’ or type
= ‘automatic’)

• weights: a 1xN list of the kpoint weights (will not be present if type = ‘gamma’
or type = ‘automatic’)

• mesh: a 1x3 list of the number of equally-spaced points in each direction of the
Brillouin zone, as in Monkhorst-Pack grids (only present if type = ‘automatic’)

• offset: a 1x3 list of the grid offsets in each direction of the Brillouin zone (only
present if type = ‘automatic’) (Note: The offset value for each direction will be
one of 0.0 [no offset] or 0.5 [offset by half a grid step]. This differs from the
Quantum Espresso convention, where an offset value of 1 corresponds to a
half-grid-step offset, but adheres to the current AiiDa convention.

Examples:

322 Chapter 4. Modules provided with aiida

AiiDA documentation, Release 0.7.0

{'type': 'crystal',
'points': [[0.125, 0.125, 0.0],

[0.125, 0.375, 0.0],
[0.375, 0.375, 0.0]],

'weights': [1.0, 2.0, 1.0]}

{'type': 'automatic',
'points': [8, 8, 8],
'offset': [0.0, 0.5, 0.0]}

{'type': 'gamma'}

Return type dictionary
Raises aiida.common.exceptions.ParsingError – if there are issues parsing the

input.

aiida.tools.codespecific.quantumespresso.pwinputparser.parse_namelists(txt)
Parse txt to extract a dictionary of the namelist info.

Parameters txt (str) – A single string containing the QE input text to be parsed.
Returns

A nested dictionary of the namelists and their key-value pairs. The namelists will
always be upper-case keys, while the parameter keys will always be lower-case.

For example:

{"CONTROL": {"calculation": "bands",
"prefix": "al",
"pseudo_dir": "./pseudo",
"outdir": "./out"},

"ELECTRONS": {"diagonalization": "cg"},
"SYSTEM": {"nbnd": 8,

"ecutwfc": 15.0,
"celldm(1)": 7.5,
"ibrav": 2,
"nat": 1,
"ntyp": 1}

}

Return type dictionary
Raises aiida.common.exceptions.ParsingError – if there are issues parsing the

input.

aiida.tools.codespecific.quantumespresso.pwinputparser.str2val(valstr)
Return a python value by converting valstr according to f90 syntax.

Parameters valstr (str) – String representation of the variable to be converted. (e.g.
‘.true.’)

Returns A python variable corresponding to valstr.
Return type bool or float or int or str
Raises ValueError: if a suitable conversion of valstr cannot be found.

4.1. Modules 323

AiiDA documentation, Release 0.7.0

324 Chapter 4. Modules provided with aiida

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

325

AiiDA documentation, Release 0.7.0

326 Chapter 5. Indices and tables

Python Module Index

a
aiida.backends.djsite.db.models, 293
aiida.backends.querybuild.querybuilder_base,

299
aiida.cmdline, 287
aiida.cmdline.baseclass, 287
aiida.cmdline.commands.daemon, 289
aiida.cmdline.commands.data, 290
aiida.cmdline.verdilib, 288
aiida.common, 259
aiida.common.datastructures, 259
aiida.common.exceptions, 260
aiida.common.extendeddicts, 261
aiida.common.folders, 263
aiida.common.pluginloader, 266
aiida.common.utils, 267
aiida.daemon.execmanager, 292
aiida.orm.calculation.inline, 241
aiida.orm.calculation.job.quantumespresso.helpers,

245
aiida.orm.calculation.job.quantumespresso.pw,

245
aiida.orm.calculation.job.quantumespresso.pwimmigrant,

247
aiida.orm.calculation.job.simpleplugins.templatereplacer,

249
aiida.orm.data, 219
aiida.orm.data.array, 235
aiida.orm.data.array.kpoints, 235
aiida.orm.data.array.trajectory, 237
aiida.orm.data.cif, 232
aiida.orm.data.folder, 230
aiida.orm.data.parameter, 234
aiida.orm.data.remote, 234
aiida.orm.data.singlefile, 230
aiida.orm.data.structure, 220
aiida.orm.data.upf, 231
aiida.orm.implementation.general.calculation,

240

aiida.orm.implementation.general.calculation.job,
241

aiida.orm.implementation.general.code,
216

aiida.orm.implementation.general.computer,
203

aiida.orm.implementation.general.node,
205

aiida.orm.implementation.general.workflow,
211

aiida.orm.querytool, 299
aiida.orm.utils, 202
aiida.parsers.plugins.quantumespresso,

250
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp,

250
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw,

251
aiida.parsers.plugins.quantumespresso.basicpw,

252
aiida.parsers.plugins.quantumespresso.constants,

253
aiida.parsers.plugins.quantumespresso.cp,

253
aiida.scheduler.__init__, 282
aiida.scheduler.datastructures, 284
aiida.tools.codespecific.quantumespresso.pwinputparser,

318
aiida.tools.dbexporters.tcod, 311
aiida.tools.dbexporters.tcod_plugins,

314
aiida.tools.dbexporters.tcod_plugins.cp,

316
aiida.tools.dbexporters.tcod_plugins.nwcpymatgen,

316
aiida.tools.dbexporters.tcod_plugins.pw,

316
aiida.tools.dbimporters, 304
aiida.tools.dbimporters.baseclasses,

304

327

AiiDA documentation, Release 0.7.0

aiida.tools.dbimporters.plugins.cod,
306

aiida.tools.dbimporters.plugins.icsd,
307

aiida.tools.dbimporters.plugins.mpod,
309

aiida.tools.dbimporters.plugins.nninc,
310

aiida.tools.dbimporters.plugins.oqmd,
309

aiida.tools.dbimporters.plugins.pcod,
310

aiida.tools.dbimporters.plugins.tcod,
310

aiida.transport.__init__, 271

328 Python Module Index

Index

Symbols
__enter__() (aiida.transport.__init__.Transport

method), 271
__exit__() (aiida.transport.__init__.Transport

method), 271
__init__() (aiida.cmdline.commands.daemon.Daemon

method), 289
__init__() (aiida.cmdline.commands.data.Data

method), 290
__init__() (aiida.orm.data.structure.Kind method),

220
__init__() (aiida.orm.data.structure.Site method),

222
__init__() (aiida.orm.implementation.general.calculation.job.CalculationResultManager

method), 245
__init__() (aiida.orm.implementation.general.node.AbstractNode

method), 205
__init__() (aiida.orm.implementation.general.node.AttributeManager

method), 211
__init__() (aiida.orm.implementation.general.node.NodeInputManager

method), 211
__init__() (aiida.orm.implementation.general.node.NodeOutputManager

method), 211
__init__() (aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile

method), 320
__iter__() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 306

A
abspath (aiida.common.folders.Folder attribute), 263
AbstractCalculation (class in ai-

ida.orm.implementation.general.calculation),
240

AbstractCode (class in ai-
ida.orm.implementation.general.code),
216

AbstractComputer (class in ai-
ida.orm.implementation.general.computer),
203

AbstractJobCalculation (class in ai-
ida.orm.implementation.general.calculation.job),
241

AbstractNode (class in ai-
ida.orm.implementation.general.node),
205

AbstractQueryBuilder (class in ai-
ida.backends.querybuild.querybuilder_base),
299

AbstractWorkflow (class in ai-
ida.orm.implementation.general.workflow),
211

accepts_default_mpiprocs_per_machine() (ai-
ida.scheduler.datastructures.JobResource
class method), 285

accepts_default_mpiprocs_per_machine() (ai-
ida.scheduler.datastructures.NodeNumberJobResource
class method), 286

accepts_default_mpiprocs_per_machine() (ai-
ida.scheduler.datastructures.ParEnvJobResource
class method), 287

add_attribute() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 211

add_attributes() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 211

add_comment() (aiida.orm.implementation.general.node.AbstractNode
method), 205

add_filter() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 299

add_from_logrecord() (ai-
ida.backends.djsite.db.models.DbLog
class method), 295

add_link_from() (aiida.orm.implementation.general.calculation.AbstractCalculation
method), 240

add_link_from() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 241

add_link_from() (aiida.orm.implementation.general.node.AbstractNode
method), 205

add_path() (aiida.orm.data.remote.RemoteData
method), 234

329

AiiDA documentation, Release 0.7.0

add_path() (aiida.orm.data.singlefile.SinglefileData
method), 230

add_path() (aiida.orm.implementation.general.node.AbstractNode
method), 205

add_path() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 211

add_projection() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 299

add_result() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 211

add_results() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 211

aiida.backends.djsite.db.models (module), 293
aiida.backends.querybuild.querybuilder_base (mod-

ule), 299
aiida.cmdline (module), 287
aiida.cmdline.baseclass (module), 287
aiida.cmdline.commands.daemon (module), 289
aiida.cmdline.commands.data (module), 290
aiida.cmdline.verdilib (module), 288
aiida.common (module), 259
aiida.common.datastructures (module), 259
aiida.common.exceptions (module), 260
aiida.common.extendeddicts (module), 261
aiida.common.folders (module), 263
aiida.common.pluginloader (module), 266
aiida.common.utils (module), 267
aiida.daemon.execmanager (module), 292
aiida.orm.calculation.inline (module), 241
aiida.orm.calculation.job.quantumespresso.helpers

(module), 245
aiida.orm.calculation.job.quantumespresso.pw

(module), 245
aiida.orm.calculation.job.quantumespresso.pwimmigrant

(module), 247
aiida.orm.calculation.job.simpleplugins.templatereplacer

(module), 249
aiida.orm.data (module), 219
aiida.orm.data.array (module), 235
aiida.orm.data.array.kpoints (module), 235
aiida.orm.data.array.trajectory (module), 237
aiida.orm.data.cif (module), 232
aiida.orm.data.folder (module), 230
aiida.orm.data.parameter (module), 234
aiida.orm.data.remote (module), 234
aiida.orm.data.singlefile (module), 230
aiida.orm.data.structure (module), 220
aiida.orm.data.upf (module), 231
aiida.orm.implementation.general.calculation (mod-

ule), 240
aiida.orm.implementation.general.calculation.job

(module), 241
aiida.orm.implementation.general.code (module),

216

aiida.orm.implementation.general.computer (mod-
ule), 203

aiida.orm.implementation.general.node (module),
205

aiida.orm.implementation.general.workflow (mod-
ule), 211

aiida.orm.querytool (module), 299
aiida.orm.utils (module), 202
aiida.parsers.plugins.quantumespresso (module),

250
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp

(module), 250
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw

(module), 251
aiida.parsers.plugins.quantumespresso.basicpw

(module), 252
aiida.parsers.plugins.quantumespresso.constants

(module), 253
aiida.parsers.plugins.quantumespresso.cp (mod-

ule), 253
aiida.scheduler.__init__ (module), 282
aiida.scheduler.datastructures (module), 284
aiida.tools.codespecific.quantumespresso.pwinputparser

(module), 318
aiida.tools.dbexporters.tcod (module), 311
aiida.tools.dbexporters.tcod_plugins (module), 314
aiida.tools.dbexporters.tcod_plugins.cp (module),

316
aiida.tools.dbexporters.tcod_plugins.nwcpymatgen

(module), 316
aiida.tools.dbexporters.tcod_plugins.pw (module),

316
aiida.tools.dbimporters (module), 304
aiida.tools.dbimporters.baseclasses (module), 304
aiida.tools.dbimporters.plugins.cod (module), 306
aiida.tools.dbimporters.plugins.icsd (module), 307
aiida.tools.dbimporters.plugins.mpod (module), 309
aiida.tools.dbimporters.plugins.nninc (module), 310
aiida.tools.dbimporters.plugins.oqmd (module), 309
aiida.tools.dbimporters.plugins.pcod (module), 310
aiida.tools.dbimporters.plugins.tcod (module), 310
aiida.transport.__init__ (module), 271
AiidaException, 260
all() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 300
append() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 300
append_atom() (aiida.orm.data.structure.StructureData

method), 222
append_kind() (aiida.orm.data.structure.StructureData

method), 223
append_list_cmdline_arguments() (ai-

ida.cmdline.commands.data.Listable
method), 291

330 Index

AiiDA documentation, Release 0.7.0

append_site() (aiida.orm.data.structure.StructureData
method), 223

append_to_report() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 212

are_dir_trees_equal() (in module ai-
ida.common.utils), 267

ArrayCounter (class in aiida.common.utils), 267
ArrayData (class in aiida.orm.data.array), 235
arraynames() (aiida.orm.data.array.ArrayData

method), 235
ase (aiida.orm.data.cif.CifData attribute), 232
ase_refine_cell() (in module ai-

ida.orm.data.structure), 227
ask_question() (in module aiida.common.utils), 267
at() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 306
at() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults

method), 308
attach_calculation() (ai-

ida.orm.implementation.general.workflow.AbstractWorkflow
method), 212

attach_workflow() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 212

AttributeDict (class in aiida.common.extendeddicts),
261

AttributeManager (class in ai-
ida.orm.implementation.general.node),
211

attributes (aiida.backends.djsite.db.models.DbNode
attribute), 298

attrs() (aiida.orm.implementation.general.node.AbstractNode
method), 206

AuthenticationError, 260

B
BaseFactory() (in module ai-

ida.common.pluginloader), 266
BaseTcodtranslator (class in ai-

ida.tools.dbexporters.tcod_plugins), 314
BasicpwParser (class in ai-

ida.parsers.plugins.quantumespresso.basicpw),
252

C
calc_cell_volume() (in module ai-

ida.orm.data.structure), 227
CalcInfo (class in aiida.common.datastructures),

259
CalculationFactory() (in module aiida.orm.utils), 202
CalculationResultManager (class in ai-

ida.orm.implementation.general.calculation.job),
245

can_run_on() (aiida.orm.implementation.general.code.AbstractCode
method), 217

cell (aiida.orm.data.array.kpoints.KpointsData at-
tribute), 236

cell (aiida.orm.data.structure.StructureData at-
tribute), 223

cell_angles (aiida.orm.data.structure.StructureData
attribute), 223

cell_lengths (aiida.orm.data.structure.StructureData
attribute), 223

cell_volume() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
251

chdir() (aiida.transport.__init__.Transport method),
271

children() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 300

chmod() (aiida.transport.__init__.Transport method),
271

chown() (aiida.transport.__init__.Transport method),
271

cif (aiida.tools.dbimporters.baseclasses.CifEntry at-
tribute), 304

cif (aiida.tools.dbimporters.plugins.icsd.IcsdEntry at-
tribute), 308

cif_encode_contents() (in module ai-
ida.tools.dbexporters.tcod), 311

cif_from_ase() (in module aiida.orm.data.cif), 233
CifData (class in aiida.orm.data.cif), 232
CifEntry (class in ai-

ida.tools.dbimporters.baseclasses), 304
CifFileErrorExp, 307
classproperty (class in aiida.common.utils), 267
clear_internal_cache() (ai-

ida.orm.data.array.ArrayData method),
235

clear_kinds() (aiida.orm.data.structure.StructureData
method), 223

clear_report() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 212

clear_sites() (aiida.orm.data.structure.StructureData
method), 223

close() (aiida.transport.__init__.Transport method),
272

CodDbImporter (class in ai-
ida.tools.dbimporters.plugins.cod), 306

CodeInfo (class in aiida.common.datastructures),
259

CodEntry (class in ai-
ida.tools.dbimporters.plugins.cod), 307

CodSearchResults (class in ai-
ida.tools.dbimporters.plugins.cod), 307

combomethod (class in aiida.common.utils), 267

Index 331

AiiDA documentation, Release 0.7.0

compare_with() (aiida.orm.data.structure.Kind
method), 220

complete() (aiida.cmdline.baseclass.VerdiCommand
method), 287

complete() (aiida.cmdline.verdilib.Install method),
288

Completion (class in aiida.cmdline.verdilib), 288
CompletionCommand (class in ai-

ida.cmdline.verdilib), 288
ConfigurationError, 260
configure_user() (aiida.cmdline.commands.daemon.Daemon

method), 289
ContentNotExistent, 260
contents (aiida.tools.dbimporters.baseclasses.DbEntry

attribute), 304
conv_to_fortran() (in module aiida.common.utils),

268
convert() (aiida.orm.data.Data method), 219
convert_list_to_matrix() (in module ai-

ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
251

convert_qe2aiida_structure() (in module ai-
ida.parsers.plugins.quantumespresso),
250

convert_qe_time_to_sec() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
251

copy() (aiida.common.extendeddicts.AttributeDict
method), 261

copy() (aiida.orm.implementation.general.computer.AbstractComputer
method), 203

copy() (aiida.orm.implementation.general.node.AbstractNode
method), 206

copy() (aiida.transport.__init__.Transport method),
272

copy_from_remote_to_remote() (ai-
ida.transport.__init__.Transport method),
272

copy_from_remote_to_remote() (in module ai-
ida.transport.__init__), 276

copyfile() (aiida.transport.__init__.Transport
method), 272

copytree() (aiida.transport.__init__.Transport
method), 272

correct_cif() (in module ai-
ida.tools.dbimporters.plugins.icsd), 308

count() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 301

CpParser (class in ai-
ida.parsers.plugins.quantumespresso.cp),
253

CpTcodtranslator (class in ai-
ida.tools.dbexporters.tcod_plugins.cp),
316

create() (aiida.common.folders.Folder method), 263
create_display_name() (in module ai-

ida.common.utils), 268
create_file_from_filelike() (ai-

ida.common.folders.Folder method),
263

create_input_nodes() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 247

create_job_resource() (ai-
ida.scheduler.__init__.Scheduler class
method), 282

create_symlink() (aiida.common.folders.Folder
method), 263

create_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
class method), 295

ctime (aiida.orm.implementation.general.node.AbstractNode
attribute), 206

current_folder (aiida.orm.implementation.general.workflow.AbstractWorkflow
attribute), 212

D
Daemon (class in ai-

ida.cmdline.commands.daemon), 289
daemon_logshow() (ai-

ida.cmdline.commands.daemon.Daemon
method), 290

daemon_restart() (ai-
ida.cmdline.commands.daemon.Daemon
method), 290

daemon_start() (aiida.cmdline.commands.daemon.Daemon
method), 290

daemon_status() (aiida.cmdline.commands.daemon.Daemon
method), 290

daemon_stop() (aiida.cmdline.commands.daemon.Daemon
method), 290

Data (class in aiida.cmdline.commands.data), 290
Data (class in aiida.orm.data), 219
DataFactory() (in module aiida.orm.utils), 203
DbAttribute (class in ai-

ida.backends.djsite.db.models), 293
DbAttributeBaseClass (class in ai-

ida.backends.djsite.db.models), 293
DbAuthInfo (class in ai-

ida.backends.djsite.db.models), 294
DbCalcState (class in ai-

ida.backends.djsite.db.models), 294
DbComment (class in ai-

ida.backends.djsite.db.models), 294
DbComputer (class in ai-

ida.backends.djsite.db.models), 295
DbContentError, 260
DbEntry (class in ai-

ida.tools.dbimporters.baseclasses), 304

332 Index

AiiDA documentation, Release 0.7.0

DbExtra (class in aiida.backends.djsite.db.models),
295

DbGroup (class in aiida.backends.djsite.db.models),
295

DbImporter (class in ai-
ida.tools.dbimporters.baseclasses), 304

DbImporterFactory() (in module ai-
ida.tools.dbimporters), 304

DbLink (class in aiida.backends.djsite.db.models),
295

DbLock (class in aiida.backends.djsite.db.models),
295

DbLog (class in aiida.backends.djsite.db.models),
295

DbMultipleValueAttributeBaseClass (class in ai-
ida.backends.djsite.db.models), 295

dbnode (aiida.orm.implementation.general.node.AbstractNode
attribute), 206

DbNode (class in aiida.backends.djsite.db.models),
297

DbPath (class in aiida.backends.djsite.db.models),
298

DbSearchResults (class in ai-
ida.tools.dbimporters.baseclasses), 306

DbSearchResults.DbSearchResultsIterator (class in
aiida.tools.dbimporters.baseclasses), 306

DbSetting (class in ai-
ida.backends.djsite.db.models), 298

DbUser (class in aiida.backends.djsite.db.models),
298

DbWorkflow (class in ai-
ida.backends.djsite.db.models), 298

DbWorkflowData (class in ai-
ida.backends.djsite.db.models), 298

dbworkflowinstance (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
attribute), 212

DbWorkflowStep (class in ai-
ida.backends.djsite.db.models), 298

decode_textfield() (in module ai-
ida.tools.dbexporters.tcod), 311

decode_textfield_base64() (in module ai-
ida.tools.dbexporters.tcod), 311

decode_textfield_gzip_base64() (in module ai-
ida.tools.dbexporters.tcod), 311

decode_textfield_ncr() (in module ai-
ida.tools.dbexporters.tcod), 311

decode_textfield_quoted_printable() (in module ai-
ida.tools.dbexporters.tcod), 311

DefaultFieldsAttributeDict (class in ai-
ida.common.extendeddicts), 261

defaultkeys() (aiida.common.extendeddicts.DefaultFieldsAttributeDict
method), 262

del_extra() (aiida.orm.implementation.general.node.AbstractNode
method), 206

del_file() (aiida.orm.data.singlefile.SinglefileData
method), 230

del_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
class method), 296

del_value_for_node() (ai-
ida.backends.djsite.db.models.DbAttributeBaseClass
class method), 293

delete_array() (aiida.orm.data.array.ArrayData
method), 235

delete_code() (in module ai-
ida.orm.implementation.general.code),
219

deposit() (aiida.cmdline.commands.data.Depositable
method), 290

deposit() (in module aiida.tools.dbexporters.tcod),
312

Depositable (class in ai-
ida.cmdline.commands.data), 290

deposition_cmdline_parameters() (in module ai-
ida.tools.dbexporters.tcod), 312

description (aiida.orm.implementation.general.node.AbstractNode
attribute), 206

description (aiida.orm.implementation.general.workflow.AbstractWorkflow
attribute), 212

deserialize_attributes() (in module ai-
ida.backends.djsite.db.models), 298

dict (aiida.orm.data.parameter.ParameterData at-
tribute), 234

dict() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 301

distinct() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 301

E
encode_textfield_base64() (in module ai-

ida.tools.dbexporters.tcod), 312
encode_textfield_gzip_base64() (in module ai-

ida.tools.dbexporters.tcod), 312
encode_textfield_ncr() (in module ai-

ida.tools.dbexporters.tcod), 312
encode_textfield_quoted_printable() (in module ai-

ida.tools.dbexporters.tcod), 312
erase() (aiida.common.folders.Folder method), 263
escape_for_bash() (in module aiida.common.utils),

268
except_if_input_to() (ai-

ida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

exec_command_wait() (ai-
ida.transport.__init__.Transport method),
273

Index 333

AiiDA documentation, Release 0.7.0

exec_from_cmdline() (in module ai-
ida.cmdline.verdilib), 289

existing_plugins() (in module ai-
ida.common.pluginloader), 266

exists() (aiida.common.folders.Folder method), 263
exit() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 212
expand() (aiida.backends.djsite.db.models.DbPath

method), 298
export() (aiida.cmdline.commands.data.Exportable

method), 291
export() (aiida.orm.data.Data method), 219
export_cif() (in module aiida.tools.dbexporters.tcod),

313
export_cifnode() (in module ai-

ida.tools.dbexporters.tcod), 313
export_shard_uuid() (in module aiida.common.utils),

268
export_values() (in module ai-

ida.tools.dbexporters.tcod), 313
Exportable (class in aiida.cmdline.commands.data),

291
extend_with_cmdline_parameters() (in module ai-

ida.tools.dbexporters.tcod), 313
extrakeys() (aiida.common.extendeddicts.DefaultFieldsAttributeDict

method), 262
extras (aiida.backends.djsite.db.models.DbNode at-

tribute), 298
extras() (aiida.orm.implementation.general.node.AbstractNode

method), 206

F
FailedError, 260
FeatureDisabled, 260
FeatureNotAvailable, 260
fetch_all() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 306
FileAttribute (class in aiida.transport.__init__), 271
filename (aiida.orm.data.singlefile.SinglefileData at-

tribute), 230
first() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 302
FixedFieldsAttributeDict (class in ai-

ida.common.extendeddicts), 262
flatten_list() (in module aiida.common.utils), 268
folder (aiida.orm.implementation.general.node.AbstractNode

attribute), 206
Folder (class in aiida.common.folders), 263
folder_limit (aiida.common.folders.Folder attribute),

263
FolderData (class in aiida.orm.data.folder), 230
from_md5() (aiida.orm.data.cif.CifData class

method), 232

from_md5() (aiida.orm.data.upf.UpfData class
method), 231

from_type_to_pluginclassname() (in module ai-
ida.common.pluginloader), 266

full_text_info (aiida.orm.implementation.general.code.AbstractCode
attribute), 217

full_text_info (aiida.orm.implementation.general.computer.AbstractComputer
attribute), 204

G
generate_md5() (aiida.orm.data.cif.CifData

method), 232
get() (aiida.orm.implementation.general.code.AbstractCode

class method), 217
get() (aiida.orm.implementation.general.computer.AbstractComputer

class method), 204
get() (aiida.transport.__init__.Transport method),

273
get_abs_path() (aiida.common.folders.Folder

method), 263
get_abs_path() (aiida.orm.implementation.general.node.AbstractNode

method), 206
get_abs_path() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 212
get_aiida_class() (ai-

ida.backends.djsite.db.models.DbNode
method), 298

get_aiida_class() (ai-
ida.backends.djsite.db.models.DbWorkflow
method), 298

get_aiida_structure() (ai-
ida.tools.dbimporters.baseclasses.CifEntry
method), 304

get_aiida_structure() (ai-
ida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 308

get_alias() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

get_aliases() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

get_all_calcs() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 212

get_all_values_for_node() (ai-
ida.backends.djsite.db.models.DbAttributeBaseClass
class method), 293

get_all_values_for_nodepk() (ai-
ida.backends.djsite.db.models.DbAttributeBaseClass
class method), 293

get_append_text() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 241

get_append_text() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 217

334 Index

AiiDA documentation, Release 0.7.0

get_array() (aiida.orm.data.array.ArrayData
method), 235

get_arraynames() (aiida.orm.data.array.ArrayData
method), 235

get_ase() (aiida.orm.data.cif.CifData method), 232
get_ase() (aiida.orm.data.structure.Site method),

222
get_ase() (aiida.orm.data.structure.StructureData

method), 223
get_ase_structure() (ai-

ida.tools.dbimporters.baseclasses.CifEntry
method), 304

get_ase_structure() (ai-
ida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 308

get_atom_site_residual_force_Cartesian_x() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_atom_site_residual_force_Cartesian_x() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_atom_site_residual_force_Cartesian_y() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_atom_site_residual_force_Cartesian_y() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_atom_site_residual_force_Cartesian_z() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_atom_site_residual_force_Cartesian_z() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_atom_type_basisset() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_atom_type_basisset() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_atom_type_symbol() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_atom_type_symbol() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_atom_type_valence_configuration() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_atom_type_valence_configuration() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_attr() (aiida.orm.implementation.general.node.AbstractNode
method), 206

get_attribute() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_attribute() (aiida.transport.__init__.Transport
method), 273

get_attributes() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_attrs() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_BZ_integration_grid_shift_X() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_shift_X() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 316

get_BZ_integration_grid_shift_Y() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_shift_Y() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_BZ_integration_grid_shift_Z() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_shift_Z() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_BZ_integration_grid_X() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_X() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 316

get_BZ_integration_grid_Y() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_Y() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 316

get_BZ_integration_grid_Z() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 314

get_BZ_integration_grid_Z() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 316

get_cell_volume() (ai-
ida.orm.data.structure.StructureData
method), 223

get_cells() (aiida.orm.data.array.trajectory.TrajectoryData
method), 237

get_cif_node() (aiida.tools.dbimporters.baseclasses.CifEntry
method), 304

get_cif_node() (aiida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 308

Index 335

AiiDA documentation, Release 0.7.0

get_class_string() (in module aiida.common.utils),
268

get_class_typestring() (in module ai-
ida.common.pluginloader), 266

get_code() (aiida.orm.implementation.general.calculation.AbstractCalculation
method), 240

get_column_names() (ai-
ida.cmdline.commands.data.Listable
method), 291

get_command_name() (ai-
ida.cmdline.baseclass.VerdiCommand
class method), 287

get_command_suggestion() (in module ai-
ida.cmdline.verdilib), 289

get_comments() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_composition() (ai-
ida.orm.data.structure.StructureData
method), 223

get_computation_wallclock_time() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_computation_wallclock_time() (ai-
ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
class method), 316

get_computation_wallclock_time() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_computer() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_configured_user_email() (in module ai-
ida.common.utils), 268

get_content_list() (aiida.common.folders.Folder
method), 264

get_corrected_cif() (ai-
ida.tools.dbimporters.plugins.icsd.IcsdEntry
method), 308

get_custom_scheduler_commands() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 241

get_daemon_pid() (ai-
ida.cmdline.commands.daemon.Daemon
method), 290

get_dbauthinfo() (aiida.orm.implementation.general.computer.AbstractComputer
method), 204

get_dbcomputer() (ai-
ida.backends.djsite.db.models.DbComputer
class method), 295

get_default_fields() (ai-
ida.common.extendeddicts.DefaultFieldsAttributeDict
class method), 262

get_default_mpiprocs_per_machine() (ai-
ida.orm.implementation.general.computer.AbstractComputer
method), 204

get_deposit_plugins() (ai-
ida.cmdline.commands.data.Depositable
method), 290

get_detailed_jobinfo() (ai-
ida.scheduler.__init__.Scheduler method),
283

get_dict() (aiida.orm.data.parameter.ParameterData
method), 234

get_environment_variables() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 241

get_ewald_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_ewald_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_exchange_correlation_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_exchange_correlation_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_execname() (aiida.orm.implementation.general.code.AbstractCode
method), 217

get_export_plugins() (ai-
ida.cmdline.commands.data.Exportable
method), 291

get_extra() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_extras() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_extremas_from_positions() (in module ai-
ida.common.utils), 268

get_fermi_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_fermi_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_file_abs_path() (ai-
ida.orm.data.singlefile.SinglefileData
method), 230

get_file_content() (aiida.orm.data.folder.FolderData
method), 230

get_folder_list() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_folder_list() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_formula() (aiida.orm.data.structure.StructureData
method), 224

get_formula() (in module aiida.orm.data.structure),
227

336 Index

AiiDA documentation, Release 0.7.0

get_formula_from_symbol_list() (in module ai-
ida.orm.data.structure), 228

get_formula_group() (in module ai-
ida.orm.data.structure), 228

get_formulae() (aiida.orm.data.cif.CifData method),
232

get_fortfloat() (in module aiida.common.utils), 268
get_from_string() (ai-

ida.orm.implementation.general.code.AbstractCode
class method), 217

get_full_command_name() (ai-
ida.cmdline.baseclass.VerdiCommand
method), 287

get_full_command_name() (ai-
ida.cmdline.baseclass.VerdiCommandWithSubcommands
method), 288

get_hartree_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_hartree_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_import_plugins() (ai-
ida.cmdline.commands.data.Importable
method), 291

get_import_sys_environment() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 241

get_index_from_stepid() (ai-
ida.orm.data.array.trajectory.TrajectoryData
method), 238

get_input_plugin_name() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 217

get_inputs() (aiida.orm.implementation.general.node.AbstractNode
method), 207

get_inputs_dict() (aiida.orm.implementation.general.node.AbstractNode
method), 208

get_integration_Methfessel_Paxton_order() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_integration_Methfessel_Paxton_order() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_integration_smearing_method() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_integration_smearing_method() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_integration_smearing_method_other() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_integration_smearing_method_other() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_job_id() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_json_compatible_queryhelp() (ai-
ida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

get_kind() (aiida.orm.data.structure.StructureData
method), 224

get_kind_names() (ai-
ida.orm.data.structure.StructureData
method), 224

get_kinetic_energy_cutoff_charge_density() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_kinetic_energy_cutoff_charge_density() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_kinetic_energy_cutoff_EEX() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_kinetic_energy_cutoff_EEX() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_kinetic_energy_cutoff_wavefunctions() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_kinetic_energy_cutoff_wavefunctions() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_kpoints() (aiida.orm.data.array.kpoints.KpointsData
method), 236

get_kpoints_mesh() (ai-
ida.orm.data.array.kpoints.KpointsData
method), 236

get_kpointsdata() (ai-
ida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile
method), 320

get_linkname() (aiida.orm.implementation.general.calculation.AbstractCalculation
method), 240

get_linkname_out_kpoints() (ai-
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

get_linkname_outarray() (ai-
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

get_linkname_outstructure() (ai-
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

get_linkname_outtrajectory() (ai-
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

Index 337

AiiDA documentation, Release 0.7.0

get_linkname_trajectory() (ai-
ida.parsers.plugins.quantumespresso.cp.CpParser
method), 253

get_listparams() (in module aiida.cmdline.verdilib),
289

get_max_memory_kb() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_max_wallclock_seconds() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_mode() (aiida.transport.__init__.Transport
method), 273

get_mpirun_command() (ai-
ida.orm.implementation.general.computer.AbstractComputer
method), 204

get_mpirun_extra_params() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_new_uuid() (in module aiida.common.utils), 269
get_number_of_electrons() (ai-

ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_number_of_electrons() (ai-
ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
class method), 316

get_number_of_electrons() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 317

get_object_from_string() (in module ai-
ida.common.utils), 269

get_one_electron_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_one_electron_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 318

get_or_create() (aiida.orm.data.cif.CifData class
method), 233

get_or_create() (aiida.orm.data.upf.UpfData class
method), 231

get_outputs() (aiida.orm.implementation.general.node.AbstractNode
method), 208

get_outputs_dict() (ai-
ida.orm.implementation.general.node.AbstractNode
method), 208

get_parameter() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_parameters() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_parsed_cif() (aiida.tools.dbimporters.baseclasses.CifEntry
method), 304

get_parser_name() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_parser_settings_key() (ai-
ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

get_parserclass() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_positions() (aiida.orm.data.array.trajectory.TrajectoryData
method), 238

get_prepend_text() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_prepend_text() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 217

get_priority() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_pseudos_from_structure() (in module ai-
ida.orm.data.upf), 231

get_pymatgen() (aiida.orm.data.structure.StructureData
method), 225

get_pymatgen_molecule() (ai-
ida.orm.data.structure.StructureData
method), 225

get_pymatgen_structure() (ai-
ida.orm.data.structure.StructureData
method), 225

get_pymatgen_version() (in module ai-
ida.orm.data.structure), 228

get_query() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

get_query_dict() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
class method), 296

get_query_type_string() (in module ai-
ida.common.pluginloader), 266

get_queue_name() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_raw() (aiida.orm.data.structure.Kind method),
220

get_raw() (aiida.orm.data.structure.Site method),
222

get_raw_cif() (aiida.tools.dbimporters.baseclasses.CifEntry
method), 304

get_report() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_repository_folder() (in module ai-
ida.common.utils), 269

get_resources() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_result() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

338 Index

AiiDA documentation, Release 0.7.0

get_results() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_results_dict() (ai-
ida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 302

get_retrieved_node() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_scheduler_error() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 242

get_scheduler_output() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

get_scheduler_state() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

get_shape() (aiida.orm.data.array.ArrayData
method), 235

get_short_doc() (aiida.scheduler.__init__.Scheduler
class method), 283

get_short_doc() (aiida.transport.__init__.Transport
class method), 273

get_show_plugins() (ai-
ida.cmdline.commands.data.Visualizable
method), 292

get_simple_name() (ai-
ida.backends.djsite.db.models.DbNode
method), 298

get_site_kindnames() (ai-
ida.orm.data.structure.StructureData
method), 225

get_software_executable_path() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_software_package() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_software_package() (ai-
ida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator
class method), 316

get_software_package() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_software_package() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 318

get_software_package_compilation_timestamp()
(aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_software_package_compilation_timestamp()
(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_software_package_version() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_software_package_version() (ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator
class method), 316

get_spacegroup_numbers() (ai-
ida.orm.data.cif.CifData method), 233

get_state() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

get_state() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_step() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_step_calculations() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_step_data() (aiida.orm.data.array.trajectory.TrajectoryData
method), 238

get_step_index() (aiida.orm.data.array.trajectory.TrajectoryData
method), 238

get_step_structure() (ai-
ida.orm.data.array.trajectory.TrajectoryData
method), 238

get_step_workflows() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_stepids() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

get_steps() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

get_steps() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 213

get_structuredata() (ai-
ida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile
method), 320

get_structuredata_from_qeinput() (in module ai-
ida.orm.data.structure), 228

get_subclass_from_dbnode() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
class method), 213

get_subclass_from_pk() (ai-
ida.orm.implementation.general.node.AbstractNode
class method), 208

get_subclass_from_pk() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
class method), 214

get_subclass_from_uuid() (ai-
ida.orm.implementation.general.node.AbstractNode
class method), 208

get_subclass_from_uuid() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
class method), 214

Index 339

AiiDA documentation, Release 0.7.0

get_subfolder() (aiida.common.folders.Folder
method), 264

get_submit_script() (ai-
ida.scheduler.__init__.Scheduler method),
283

get_suggestion() (in module aiida.common.utils),
269

get_supported_keywords() (ai-
ida.tools.dbimporters.baseclasses.DbImporter
method), 304

get_supported_keywords() (ai-
ida.tools.dbimporters.plugins.cod.CodDbImporter
method), 306

get_supported_keywords() (ai-
ida.tools.dbimporters.plugins.icsd.IcsdDbImporter
method), 307

get_supported_keywords() (ai-
ida.tools.dbimporters.plugins.mpod.MpodDbImporter
method), 309

get_supported_keywords() (ai-
ida.tools.dbimporters.plugins.nninc.NnincDbImporter
method), 310

get_supported_keywords() (ai-
ida.tools.dbimporters.plugins.oqmd.OqmdDbImporter
method), 309

get_symbols() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

get_symbols_set() (ai-
ida.orm.data.structure.StructureData
method), 225

get_symbols_string() (aiida.orm.data.structure.Kind
method), 220

get_symbols_string() (in module ai-
ida.orm.data.structure), 228

get_temp_folder() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 214

get_times() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

get_topdir() (aiida.common.folders.RepositoryFolder
method), 265

get_tot_num_mpiprocs() (ai-
ida.scheduler.datastructures.JobResource
method), 285

get_tot_num_mpiprocs() (ai-
ida.scheduler.datastructures.NodeNumberJobResource
method), 286

get_tot_num_mpiprocs() (ai-
ida.scheduler.datastructures.ParEnvJobResource
method), 287

get_total_energy() (ai-
ida.tools.dbexporters.tcod_plugins.BaseTcodtranslator
class method), 315

get_total_energy() (ai-
ida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator
class method), 318

get_transport() (aiida.backends.djsite.db.models.DbAuthInfo
method), 294

get_unique_filename() (in module ai-
ida.common.utils), 269

get_upf_family_names() (ai-
ida.orm.data.upf.UpfData method), 231

get_upf_group() (aiida.orm.data.upf.UpfData class
method), 231

get_upf_groups() (aiida.orm.data.upf.UpfData class
method), 231

get_upf_node() (aiida.tools.dbimporters.baseclasses.UpfEntry
method), 306

get_user() (aiida.orm.implementation.general.node.AbstractNode
method), 208

get_valid_auth_params() (ai-
ida.transport.__init__.Transport class
method), 273

get_valid_fields() (ai-
ida.common.extendeddicts.FixedFieldsAttributeDict
class method), 262

get_valid_keys() (aiida.scheduler.datastructures.JobResource
class method), 285

get_valid_keys() (aiida.scheduler.datastructures.NodeNumberJobResource
class method), 286

get_valid_pbc() (in module ai-
ida.orm.data.structure), 229

get_valid_transports() (ai-
ida.transport.__init__.Transport class
method), 273

get_value_for_node() (ai-
ida.backends.djsite.db.models.DbAttributeBaseClass
class method), 294

get_velocities() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

get_withmpi() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

get_workflow_info() (in module ai-
ida.orm.implementation.general.workflow),
216

getcwd() (aiida.transport.__init__.Transport
method), 273

getfile() (aiida.transport.__init__.Transport method),
273

getJobs() (aiida.scheduler.__init__.Scheduler
method), 283

gettree() (aiida.transport.__init__.Transport
method), 274

getvalue() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
method), 296

glob() (aiida.transport.__init__.Transport method),
274

340 Index

AiiDA documentation, Release 0.7.0

gotocomputer_command() (ai-
ida.transport.__init__.Transport method),
274

group_symbols() (in module ai-
ida.orm.data.structure), 229

grouper() (in module aiida.common.utils), 269
gunzip_string() (in module aiida.common.utils), 269
gzip_string() (in module aiida.common.utils), 269

H
has_ase() (in module aiida.orm.data.structure), 229
has_attached_hydrogens() (ai-

ida.orm.data.cif.CifData method), 233
has_children (aiida.orm.implementation.general.node.AbstractNode

attribute), 208
has_failed() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation

method), 243
has_failed() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
has_finished_ok() (ai-

ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

has_finished_ok() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 214

has_key() (aiida.backends.djsite.db.models.DbAttributeBaseClass
class method), 294

has_parents (aiida.orm.implementation.general.node.AbstractNode
attribute), 208

has_partial_occupancies() (ai-
ida.orm.data.cif.CifData method), 233

has_pycifrw() (in module aiida.orm.data.cif), 233
has_pymatgen() (in module ai-

ida.orm.data.structure), 229
has_pyspglib() (in module aiida.orm.data.structure),

229
has_step() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
has_vacancies() (aiida.orm.data.structure.Kind

method), 221
has_vacancies() (aiida.orm.data.structure.StructureData

method), 225
has_vacancies() (in module ai-

ida.orm.data.structure), 229
Help (class in aiida.cmdline.verdilib), 288

I
IcsdDbImporter (class in ai-

ida.tools.dbimporters.plugins.icsd), 307
IcsdEntry (class in ai-

ida.tools.dbimporters.plugins.icsd), 308
IcsdSearchResults (class in ai-

ida.tools.dbimporters.plugins.icsd), 308

id (aiida.orm.implementation.general.computer.AbstractComputer
attribute), 204

id (aiida.orm.implementation.general.node.AbstractNode
attribute), 208

iglob() (aiida.transport.__init__.Transport method),
274

Importable (class in aiida.cmdline.commands.data),
291

importfile() (aiida.orm.data.Data method), 219
importstring() (aiida.orm.data.Data method), 219
info() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
inject_query() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 302
inp (aiida.orm.implementation.general.node.AbstractNode

attribute), 208
input_helper() (aiida.orm.calculation.job.quantumespresso.pw.PwCalculation

class method), 245
inputs() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 302
InputValidationError, 260
insert_path() (aiida.common.folders.Folder method),

264
Install (class in aiida.cmdline.verdilib), 288
InternalError, 260
InvalidOperation, 260
is_alloy() (aiida.orm.data.structure.Kind method),

221
is_alloy() (aiida.orm.data.structure.StructureData

method), 226
is_ase_atoms() (in module ai-

ida.orm.data.structure), 229
is_daemon_user() (in module ai-

ida.cmdline.commands.daemon), 290
is_empty() (aiida.orm.data.remote.RemoteData

method), 234
is_local() (aiida.orm.implementation.general.code.AbstractCode

method), 218
is_new() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
is_running() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
is_subworkflow() (aiida.backends.djsite.db.models.DbWorkflow

method), 298
is_subworkflow() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
is_user_configured() (ai-

ida.orm.implementation.general.computer.AbstractComputer
method), 204

is_user_enabled() (ai-
ida.orm.implementation.general.computer.AbstractComputer
method), 204

is_valid_symbol() (in module ai-
ida.orm.data.structure), 229

Index 341

AiiDA documentation, Release 0.7.0

isdir() (aiida.common.folders.Folder method), 264
isdir() (aiida.transport.__init__.Transport method),

274
isfile() (aiida.common.folders.Folder method), 264
isfile() (aiida.transport.__init__.Transport method),

274
iterall() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 302
iterarrays() (aiida.orm.data.array.ArrayData

method), 235
iterattrs() (aiida.orm.implementation.general.node.AbstractNode

method), 209
iterdict() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 303
iterextras() (aiida.orm.implementation.general.node.AbstractNode

method), 209

J
JobInfo (class in aiida.scheduler.datastructures),

284
JobResource (class in ai-

ida.scheduler.datastructures), 284
JobTemplate (class in ai-

ida.scheduler.datastructures), 285

K
keys() (aiida.orm.data.parameter.ParameterData

method), 234
kill() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation

method), 243
kill() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 214
kill() (aiida.scheduler.__init__.Scheduler method),

283
kill_all() (in module ai-

ida.orm.implementation.general.workflow),
216

kill_daemon() (aiida.cmdline.commands.daemon.Daemon
method), 290

kill_from_pk() (in module ai-
ida.orm.implementation.general.workflow),
216

kill_step_calculations() (ai-
ida.orm.implementation.general.workflow.AbstractWorkflow
method), 214

Kind (class in aiida.orm.data.structure), 220
kind_name (aiida.orm.data.structure.Site attribute),

222
kinds (aiida.orm.data.structure.StructureData at-

tribute), 226
KpointsData (class in aiida.orm.data.array.kpoints),

235

L
label (aiida.orm.implementation.general.node.AbstractNode

attribute), 209
label (aiida.orm.implementation.general.workflow.AbstractWorkflow

attribute), 214
labels (aiida.orm.data.array.kpoints.KpointsData at-

tribute), 236
LicensingException, 261
limit() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 303
list() (aiida.cmdline.commands.data.Listable

method), 291
list_all_node_elements() (ai-

ida.backends.djsite.db.models.DbAttributeBaseClass
class method), 294

list_for_plugin() (aiida.orm.implementation.general.code.AbstractCode
class method), 218

list_names() (aiida.orm.implementation.general.computer.AbstractComputer
class method), 204

Listable (class in aiida.cmdline.commands.data),
291

listdir() (aiida.transport.__init__.Transport method),
274

ListParams (class in aiida.cmdline.verdilib), 289
load_node() (in module aiida.orm.utils), 203
load_plugin() (in module ai-

ida.common.pluginloader), 267
load_workflow() (in module aiida.orm.utils), 203
LockPresent, 261
logger (aiida.orm.implementation.general.calculation.AbstractCalculation

attribute), 240
logger (aiida.orm.implementation.general.node.AbstractNode

attribute), 209
logger (aiida.orm.implementation.general.workflow.AbstractWorkflow

attribute), 214
logger (aiida.scheduler.__init__.Scheduler at-

tribute), 283
logger (aiida.transport.__init__.Transport attribute),

274
long_field_length() (ai-

ida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
method), 296

M
MachineInfo (class in ai-

ida.scheduler.datastructures), 286
makedirs() (aiida.transport.__init__.Transport

method), 274
mass (aiida.orm.data.structure.Kind attribute), 221
md5_file() (in module aiida.common.utils), 269
MissingPluginError, 261
mkdir() (aiida.transport.__init__.Transport method),

275

342 Index

AiiDA documentation, Release 0.7.0

mode_dir (aiida.common.folders.Folder attribute),
264

mode_file (aiida.common.folders.Folder attribute),
265

ModificationNotAllowed, 261
MpodDbImporter (class in ai-

ida.tools.dbimporters.plugins.mpod),
309

MpodEntry (class in ai-
ida.tools.dbimporters.plugins.mpod),
309

MpodSearchResults (class in ai-
ida.tools.dbimporters.plugins.mpod),
309

mtime (aiida.orm.implementation.general.node.AbstractNode
attribute), 209

MultipleObjectsError, 261

N
name (aiida.orm.data.structure.Kind attribute), 221
new_calc() (aiida.orm.implementation.general.code.AbstractCode

method), 218
next() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 215
next() (aiida.tools.dbimporters.baseclasses.DbSearchResults

method), 306
next() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults

method), 308
NnincDbImporter (class in ai-

ida.tools.dbimporters.plugins.nninc),
310

NnincEntry (class in ai-
ida.tools.dbimporters.plugins.nninc),
311

NnincSearchResults (class in ai-
ida.tools.dbimporters.plugins.nninc),
311

NodeInputManager (class in ai-
ida.orm.implementation.general.node),
211

NodeNumberJobResource (class in ai-
ida.scheduler.datastructures), 286

NodeOutputManager (class in ai-
ida.orm.implementation.general.node),
211

NoResultsWebExp, 308
normalize() (aiida.transport.__init__.Transport

method), 275
NotExistent, 261
numsites (aiida.orm.data.array.trajectory.TrajectoryData

attribute), 239
numsteps (aiida.orm.data.array.trajectory.TrajectoryData

attribute), 239

NwcpymatgenTcodtranslator (class in ai-
ida.tools.dbexporters.tcod_plugins.nwcpymatgen),
316

O
offset() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 303
open() (aiida.common.folders.Folder method), 265
open() (aiida.transport.__init__.Transport method),

275
optional_inline() (in module ai-

ida.orm.calculation.inline), 241
OqmdDbImporter (class in ai-

ida.tools.dbimporters.plugins.oqmd),
309

OqmdEntry (class in ai-
ida.tools.dbimporters.plugins.oqmd),
309

OqmdSearchResults (class in ai-
ida.tools.dbimporters.plugins.oqmd),
309

order_by() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 303

out (aiida.orm.implementation.general.node.AbstractNode
attribute), 209

outputs() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder
method), 303

P
ParameterData (class in aiida.orm.data.parameter),

234
parents() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder

method), 304
ParEnvJobResource (class in ai-

ida.scheduler.datastructures), 287
parse_atomic_positions() (in module ai-

ida.tools.codespecific.quantumespresso.pwinputparser),
320

parse_atomic_species() (in module ai-
ida.tools.codespecific.quantumespresso.pwinputparser),
321

parse_cell_parameters() (in module ai-
ida.tools.codespecific.quantumespresso.pwinputparser),
321

parse_cp_text_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_cp),
250

parse_cp_traj_stanzas() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_cp),
250

parse_cp_xml_counter_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_cp),
250

Index 343

AiiDA documentation, Release 0.7.0

parse_cp_xml_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_cp),
251

parse_formula() (in module aiida.orm.data.cif), 233
parse_k_points() (in module ai-

ida.tools.codespecific.quantumespresso.pwinputparser),
322

parse_namelists() (in module ai-
ida.tools.codespecific.quantumespresso.pwinputparser),
323

parse_profile() (in module aiida.cmdline.verdilib),
289

parse_pw_text_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
251

parse_pw_xml_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
252

parse_QE_errors() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
251

parse_raw_output() (in module ai-
ida.parsers.plugins.quantumespresso.basic_raw_parser_pw),
252

parse_upf() (in module aiida.orm.data.upf), 231
parse_with_retrieved() (ai-

ida.parsers.plugins.quantumespresso.basicpw.BasicpwParser
method), 252

parse_with_retrieved() (ai-
ida.parsers.plugins.quantumespresso.cp.CpParser
method), 253

ParsingError, 261
path_exists() (aiida.transport.__init__.Transport

method), 275
pbc (aiida.orm.data.array.kpoints.KpointsData at-

tribute), 236
pbc (aiida.orm.data.structure.StructureData at-

tribute), 226
PcodDbImporter (class in ai-

ida.tools.dbimporters.plugins.pcod), 310
PcodEntry (class in ai-

ida.tools.dbimporters.plugins.pcod), 310
PcodSearchResults (class in ai-

ida.tools.dbimporters.plugins.pcod), 310
pk (aiida.orm.implementation.general.computer.AbstractComputer

attribute), 204
pk (aiida.orm.implementation.general.node.AbstractNode

attribute), 209
pk (aiida.orm.implementation.general.workflow.AbstractWorkflow

attribute), 215
PluginInternalError, 261
position (aiida.orm.data.structure.Site attribute), 222
prepare_for_retrieval_and_parsing() (ai-

ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation

method), 248
ProfileConfigurationError, 261
ProfileParsingException, 289
put() (aiida.transport.__init__.Transport method),

275
putfile() (aiida.transport.__init__.Transport method),

275
puttree() (aiida.transport.__init__.Transport

method), 275
pw_input_helper() (in module ai-

ida.orm.calculation.job.quantumespresso.helpers),
245

PwCalculation (class in ai-
ida.orm.calculation.job.quantumespresso.pw),
245

PwimmigrantCalculation (class in ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant),
247

PwInputFile (class in ai-
ida.tools.codespecific.quantumespresso.pwinputparser),
318

PwTcodtranslator (class in ai-
ida.tools.dbexporters.tcod_plugins.pw),
316

pycifrw_from_cif() (in module aiida.orm.data.cif),
233

Q
QEInputValidationError, 245
query() (aiida.cmdline.commands.data.Listable

method), 291
query() (aiida.orm.implementation.general.node.AbstractNode

class method), 209
query() (aiida.orm.implementation.general.workflow.AbstractWorkflow

class method), 215
query() (aiida.tools.dbimporters.baseclasses.DbImporter

method), 304
query() (aiida.tools.dbimporters.plugins.cod.CodDbImporter

method), 306
query() (aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter

method), 307
query() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter

method), 309
query() (aiida.tools.dbimporters.plugins.nninc.NnincDbImporter

method), 310
query() (aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter

method), 309
query() (aiida.tools.dbimporters.plugins.pcod.PcodDbImporter

method), 310
query() (aiida.tools.dbimporters.plugins.tcod.TcodDbImporter

method), 310
query_db_version() (ai-

ida.tools.dbimporters.plugins.icsd.IcsdSearchResults
method), 308

344 Index

AiiDA documentation, Release 0.7.0

query_get() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter
method), 309

query_get() (aiida.tools.dbimporters.plugins.nninc.NnincDbImporter
method), 311

query_get() (aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter
method), 309

query_group() (aiida.cmdline.commands.data.Listable
method), 291

query_group_qb() (ai-
ida.cmdline.commands.data.Listable
method), 292

query_page() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults
method), 308

query_past_days() (ai-
ida.cmdline.commands.data.Listable
method), 292

query_past_days_qb() (ai-
ida.cmdline.commands.data.Listable
method), 292

query_sql() (aiida.tools.dbimporters.plugins.cod.CodDbImporter
method), 306

query_sql() (aiida.tools.dbimporters.plugins.pcod.PcodDbImporter
method), 310

query_string() (in module aiida.common.utils), 270
query_yes_no() (in module aiida.common.utils), 270
querybuild() (aiida.orm.implementation.general.node.AbstractNode

method), 209

R
read_cif() (aiida.orm.data.cif.CifData static method),

233
RemoteData (class in aiida.orm.data.remote), 234
RemoteOperationError, 261
remove() (aiida.transport.__init__.Transport

method), 275
remove_path() (aiida.common.folders.Folder

method), 265
remove_path() (aiida.orm.implementation.general.node.AbstractNode

method), 209
remove_path() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 215
rename() (aiida.transport.__init__.Transport

method), 275
replace_with_folder() (aiida.common.folders.Folder

method), 265
replace_with_folder() (ai-

ida.orm.data.folder.FolderData method),
230

repo_folder (aiida.orm.implementation.general.workflow.AbstractWorkflow
attribute), 215

RepositoryFolder (class in aiida.common.folders),
265

res (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
attribute), 243

reset_cell() (aiida.orm.data.structure.StructureData
method), 226

reset_mass() (aiida.orm.data.structure.Kind
method), 221

reset_sites_positions() (ai-
ida.orm.data.structure.StructureData
method), 226

retrieve_computed_for_authinfo() (in module ai-
ida.daemon.execmanager), 292

retrieve_jobs() (in module ai-
ida.daemon.execmanager), 292

rmdir() (aiida.transport.__init__.Transport method),
276

rmtree() (aiida.transport.__init__.Transport method),
276

Run (class in aiida.cmdline.verdilib), 289
run() (aiida.cmdline.baseclass.VerdiCommand

method), 287
run() (aiida.cmdline.verdilib.CompletionCommand

method), 288
Runserver (class in aiida.cmdline.verdilib), 289

S
SandboxFolder (class in aiida.common.folders), 265
Scheduler (class in aiida.scheduler.__init__), 282
SchedulerFactory() (in module ai-

ida.scheduler.__init__), 284
section (aiida.common.folders.RepositoryFolder at-

tribute), 265
set() (aiida.orm.implementation.general.node.AbstractNode

method), 210
set_append_text() (ai-

ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 243

set_append_text() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 218

set_array() (aiida.orm.data.array.ArrayData
method), 235

set_ase() (aiida.orm.data.structure.StructureData
method), 226

set_automatic_kind_name() (ai-
ida.orm.data.structure.Kind method),
221

set_cell() (aiida.orm.data.array.kpoints.KpointsData
method), 236

set_cell_from_structure() (ai-
ida.orm.data.array.kpoints.KpointsData
method), 236

set_computer() (aiida.orm.implementation.general.node.AbstractNode
method), 210

set_custom_scheduler_commands() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

Index 345

AiiDA documentation, Release 0.7.0

set_default_mpiprocs_per_machine() (ai-
ida.orm.implementation.general.computer.AbstractComputer
method), 204

set_dict() (aiida.orm.data.parameter.ParameterData
method), 234

set_environment_variables() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_extra() (aiida.orm.implementation.general.node.AbstractNode
method), 210

set_extras() (aiida.orm.implementation.general.node.AbstractNode
method), 210

set_file() (aiida.orm.data.cif.CifData method), 233
set_file() (aiida.orm.data.singlefile.SinglefileData

method), 230
set_file() (aiida.orm.data.upf.UpfData method), 231
set_files() (aiida.orm.implementation.general.code.AbstractCode

method), 218
set_import_sys_environment() (ai-

ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_input_file_name() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 249

set_input_plugin_name() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 218

set_kpoints() (aiida.orm.data.array.kpoints.KpointsData
method), 236

set_kpoints_mesh() (ai-
ida.orm.data.array.kpoints.KpointsData
method), 237

set_kpoints_mesh_from_density() (ai-
ida.orm.data.array.kpoints.KpointsData
method), 237

set_local_executable() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 218

set_max_memory_kb() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_max_wallclock_seconds() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_mpirun_command() (ai-
ida.orm.implementation.general.computer.AbstractComputer
method), 204

set_mpirun_extra_params() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_output_file_name() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 249

set_output_subfolder() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 249

set_params() (aiida.orm.implementation.general.workflow.AbstractWorkflow
method), 215

set_parser_name() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_prefix() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 249

set_prepend_text() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_prepend_text() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 218

set_priority() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_pymatgen() (aiida.orm.data.structure.StructureData
method), 226

set_pymatgen_molecule() (ai-
ida.orm.data.structure.StructureData
method), 226

set_pymatgen_structure() (ai-
ida.orm.data.structure.StructureData
method), 226

set_queue_name() (ai-
ida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_remote_computer_exec() (ai-
ida.orm.implementation.general.code.AbstractCode
method), 218

set_remote_workdir() (ai-
ida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation
method), 249

set_resources() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 244

set_source() (aiida.orm.data.Data method), 219
set_state() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 215
set_structurelist() (ai-

ida.orm.data.array.trajectory.TrajectoryData
method), 239

set_symbols_and_weights() (ai-
ida.orm.data.structure.Kind method),
221

set_trajectory() (aiida.orm.data.array.trajectory.TrajectoryData
method), 239

set_transport() (aiida.scheduler.__init__.Scheduler
method), 283

set_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
class method), 296

set_value_for_node() (ai-
ida.backends.djsite.db.models.DbAttributeBaseClass

346 Index

AiiDA documentation, Release 0.7.0

class method), 294
set_withmpi() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation

method), 245
setup_db() (aiida.tools.dbimporters.baseclasses.DbImporter

method), 305
setup_db() (aiida.tools.dbimporters.plugins.cod.CodDbImporter

method), 306
setup_db() (aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter

method), 308
setup_db() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter

method), 309
setup_db() (aiida.tools.dbimporters.plugins.nninc.NnincDbImporter

method), 311
setup_db() (aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter

method), 309
sha1_file() (in module aiida.common.utils), 270
show() (aiida.cmdline.commands.data.Visualizable

method), 292
SinglefileData (class in aiida.orm.data.singlefile),

230
Site (class in aiida.orm.data.structure), 222
sites (aiida.orm.data.structure.StructureData at-

tribute), 227
sleep() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 215
sort_states() (in module ai-

ida.common.datastructures), 260
source (aiida.orm.data.Data attribute), 219
step() (aiida.orm.implementation.general.workflow.AbstractWorkflow

class method), 215
step_to_structure() (ai-

ida.orm.data.array.trajectory.TrajectoryData
method), 240

store() (aiida.orm.data.cif.CifData method), 233
store() (aiida.orm.data.upf.UpfData method), 231
store() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation

method), 245
store() (aiida.orm.implementation.general.computer.AbstractComputer

method), 204
store() (aiida.orm.implementation.general.node.AbstractNode

method), 210
store() (aiida.orm.implementation.general.workflow.AbstractWorkflow

method), 216
store_all() (aiida.orm.implementation.general.node.AbstractNode

method), 210
str2val() (in module ai-

ida.tools.codespecific.quantumespresso.pwinputparser),
323

str_timedelta() (in module aiida.common.utils), 270
StructureData (class in aiida.orm.data.structure),

222
subfolder (aiida.common.folders.RepositoryFolder

attribute), 265

submit() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 245

submit_calc() (in module ai-
ida.daemon.execmanager), 292

submit_from_script() (ai-
ida.scheduler.__init__.Scheduler method),
283

submit_jobs() (in module ai-
ida.daemon.execmanager), 293

submit_jobs_with_authinfo() (in module ai-
ida.daemon.execmanager), 293

submit_test() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation
method), 245

subspecifier_pk (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
attribute), 297

subspecifiers_dict (ai-
ida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass
attribute), 297

symbol (aiida.orm.data.structure.Kind attribute), 221
symbols (aiida.orm.data.structure.Kind attribute),

221
symlink() (aiida.transport.__init__.Transport

method), 276
symop_fract_from_ortho() (in module ai-

ida.orm.data.structure), 229
symop_ortho_from_fract() (in module ai-

ida.orm.data.structure), 229
symop_string_from_symop_matrix_tr() (in module

aiida.orm.data.cif), 234

T
TcodDbImporter (class in ai-

ida.tools.dbimporters.plugins.tcod), 310
TcodEntry (class in ai-

ida.tools.dbimporters.plugins.tcod), 310
TcodSearchResults (class in ai-

ida.tools.dbimporters.plugins.tcod), 310
TemplatereplacerCalculation (class in ai-

ida.orm.calculation.job.simpleplugins.templatereplacer),
250

TrajectoryData (class in ai-
ida.orm.data.array.trajectory), 237

translate_calculation_specific_values() (in module
aiida.tools.dbexporters.tcod), 314

transport (aiida.scheduler.__init__.Scheduler at-
tribute), 283

Transport (class in aiida.transport.__init__), 271
TransportFactory() (in module ai-

ida.transport.__init__), 276
TransportInternalError, 276

U
UniquenessError, 261

Index 347

AiiDA documentation, Release 0.7.0

update_dict() (aiida.orm.data.parameter.ParameterData
method), 234

update_environment() (in module ai-
ida.cmdline.verdilib), 289

update_jobs() (in module ai-
ida.daemon.execmanager), 293

update_running_calcs_status() (in module ai-
ida.daemon.execmanager), 293

UpfData (class in aiida.orm.data.upf), 231
UpfEntry (class in ai-

ida.tools.dbimporters.baseclasses), 306
upload_upf_family() (in module aiida.orm.data.upf),

232
uuid (aiida.common.folders.RepositoryFolder at-

tribute), 265
uuid (aiida.orm.implementation.general.computer.AbstractComputer

attribute), 205
uuid (aiida.orm.implementation.general.node.AbstractNode

attribute), 211
uuid (aiida.orm.implementation.general.workflow.AbstractWorkflow

attribute), 216

V
validate() (aiida.common.extendeddicts.DefaultFieldsAttributeDict

method), 262
validate() (aiida.orm.implementation.general.computer.AbstractComputer

method), 205
validate_key() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass

class method), 297
validate_list_of_string_tuples() (in module ai-

ida.common.utils), 270
validate_symbols_tuple() (in module ai-

ida.orm.data.structure), 229
validate_weights_tuple() (in module ai-

ida.orm.data.structure), 230
ValidationError, 261
values (aiida.orm.data.cif.CifData attribute), 233
VerdiCommand (class in aiida.cmdline.baseclass),

287
VerdiCommandWithSubcommands (class in ai-

ida.cmdline.baseclass), 287
Visualizable (class in ai-

ida.cmdline.commands.data), 292

W
weights (aiida.orm.data.structure.Kind attribute),

222
whoami() (aiida.transport.__init__.Transport

method), 276
WorkflowFactory() (in module aiida.orm.utils), 203
WorkflowInputValidationError, 261
WorkflowKillError, 216
WorkflowUnkillable, 216

X
xyz_parser_iterator() (in module ai-

ida.common.utils), 271

348 Index

	User's guide
	User's guide
	Databases for AiiDA
	Supported databases
	Setup instructions

	AiiDA Backup
	How to backup the databases
	How to move the physical location of a database
	How to set up an incremental backup for the repository

	Installation and Deployment of AiiDA
	Supported architecture
	Installing python
	Installation of the core dependencies
	Downloading the code
	Python dependencies
	AiiDA configuration
	Optional dependencies
	Further comments and troubleshooting
	Updating AiiDA from a previous version

	Setup of computers and codes
	Remote computer requirements
	Computer setup and configuration
	Code setup and configuration

	Plug-ins for AiiDA
	Available plugins

	Scripting with AiiDA
	verdi shell
	Writing python scripts for AiiDA

	StructureData tutorial
	General comments
	Tutorial
	Internals: Kinds and Sites
	Conversion to/from ASE
	Conversion to/from pymatgen

	Quantum Espresso PWscf user-tutorial
	Your classic pw.x input file
	Quantum Espresso Pw Walkthrough
	Code
	Structure
	Parameters
	Other inputs
	Calculation
	Pseudopotentials
	Labels and comments
	Execute
	Script: source code
	Compact script
	Exception tolerant code
	Advanced features

	Importing previously run Quantum ESPRESSO pw.x calculations: PwImmigrant
	Quantum Espresso PWscf immigration user-tutorial

	Quantum Espresso Phonon user-tutorial
	Walkthrough
	Code
	Parameter
	Calculation
	Parent calculation
	Execution
	Script to execute
	Exception tolerant code

	Quantum Espresso Car-Parrinello user-tutorial
	Walkthrough
	Exception tolerant code

	Wannier90 user-tutorial
	Calculation Setup
	Input Script
	Additional Exercises
	Exception tolerant code

	Quantum Espresso Projwfc user-tutorial
	Script to execute

	Getting parsed calculation results
	The CalculationResultManager

	Pseudopotential families tutorial
	What is a pseudopotential family
	How to create a pseudopotential family
	Get the list of existing families

	Manually loading pseudopotentials
	The verdi commands
	verdi calculation
	verdi code
	verdi comment
	verdi completioncommand
	verdi computer
	verdi daemon
	verdi data
	verdi devel
	verdi export
	verdi group
	verdi import
	verdi install
	verdi node
	verdi profile
	verdi run
	verdi runserver
	verdi shell
	verdi user
	verdi workflow

	AiiDA schedulers
	Supported schedulers
	Job resources

	Calculations
	Check the state of calculations
	The verdi calculation command
	Directly in python
	The verdi calculation gotocomputer command

	Set calculation properties
	Comments
	Extracting data from the Database
	Finding input and output nodes

	Querying in AiiDA
	Directly querying in Django
	Directly querying in SQLAlchemy
	Using the querytool
	The transitive closure table
	Using the QueryBuilder

	AiiDA workflows
	How it works
	The AiiDA daemon
	A workflow demo
	Running a workflow
	A more sophisticated workflow
	Chaining workflows

	Import structures from external databases
	Available plugins

	Export data to external databases
	Supported databases

	Run scripts and open an interactive shell with AiiDA
	How to run a script
	verdi shell

	Other guide resources
	Other guide resources
	AiiDA cookbook (useful code snippets)
	Deletion of nodes

	Troubleshooting and tricks
	Some tricks
	Connection problems
	Increasing the debug level
	Tips to ease the life of the hard drive (for large databases)

	Using AiiDA in multi-user mode
	Deploying AiiDA using Apache
	AiiDA Website

	Developer's guide
	Developer's guide
	Developer's Guide For AiiDA
	Python style
	Version number
	Inline calculations
	Database schema
	Commits and GIT usage
	Tests
	Virtual environment
	Deprecated features, renaming, and adding new methods

	AiiDA internals
	Node
	DbNode
	Folders

	Developer calculation plugin tutorial - Integer summation
	Overview
	Code
	Input plugin
	Setup of the code
	Output plugin: the parser
	Submission script
	Conclusion

	Developer data plugin tutorial - Float summation
	Introducing a new data type
	Exercise: Modifying the calculation plugin

	Developer code plugin tutorial - Quantum Espresso
	InputPlugin
	OutputPlugin

	Parser warnings policy
	Warnings
	Parser_warnings

	Automated parser tests
	Test folders
	Creation of a test from an existing calculation
	Running tests

	Workflow's Guide For AiiDA
	Creating new workflows

	Developer Workflow tutorial
	Creating new workflows
	Running a workflow
	Exercise

	Verdi command line plugins
	Framework for verdi data
	Adding a verdi command

	Exporting structures to TCOD
	GIT cheatsheet
	Interesting online resources
	Set the push default behavior to push only the current branch
	View commits that would be pushed
	Switch to another branch
	Associate a local and remote branch
	Branch renaming
	Create a new (lightweight) tag
	Create a new branch from a given tag
	Disallow a branch deletion, or committing to a branch, on BitBucket
	Merge from a different repository

	Sphinx cheatsheet
	Main Titles and Subtitles
	Formatting
	Links, Code Display, Cross References
	Table of Contents Docs and Code
	How To Format Docstrings
	Changing The Docs

	Properties

	Modules provided with aiida
	Modules
	aiida.common documentation
	Calculation datastructures
	Exceptions
	Extended dictionaries
	Folders
	Plugin loaders
	Utilities

	aiida.transport documentation
	Generic transport class
	Developing a plugin

	aiida.scheduler documentation
	Generic scheduler class
	Scheduler datastructures

	aiida.cmdline documentation
	Baseclass
	Verdi lib
	Daemon
	Data

	aiida.execmanager documentation
	Execution Manager

	aiida.backends.djsite documentation
	Database schema

	QueryTool documentation
	QueryBuilder documentation
	DbImporter documentation
	Generic database importer class
	Structural databases
	Other databases

	DbExporter documentation
	TCOD database exporter
	TCOD parameter translator documentation

	aiida.tools documentation
	Tools

	Indices and tables
	Python Module Index

